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Synopsis

� Weconsider general order-` electric, magnetic and toroidalmultipole den-

sities (called polarizations) in crystals; cases with ` = 1 subsume familiar

electric dipolarization in ferroelectrics and magnetization in ferromagnets

� Multipole densities defined by symmetry under

space inversion i , time inversion θ: signature ss ′
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Multipolar order in bulk crystalline solids is characterized by multipole densities — denoted as
polarizations in this work — that cannot be cleanly defined using the concepts of classical electro-
magnetism. Here we use group theory to overcome this di�culty and present a systematic study of
electric, magnetic and toroidal multipolar order in crystalline solids. Based on our symmetry analy-
sis, we identify five categories of polarized matter, each of which is characterized by distinct features
in the electronic band structure. For example, Rashba spin splitting in electropolar bulk materials
like wurtzite represents the electric dipolarization in these materials. We also develop a general
formalism of indicators for individual multipole densities that provide a physical interpretation and
quantification of multipolar order. Our work clarifies the relation between patterns of localized
multipoles and macroscopic multipole densities they give rise to. To illustrate the general theory,
we discuss its application to polarized variants of hexagonal lonsdaleite and cubic diamond struc-
tures. Our work provides a general framework for classifying and expanding current understanding
of multipolar order in complex materials.

I. INTRODUCTION

It is well-known that a proper definition of electric
dipolarization as a bulk property is nontrivial [1, 2]. The
naive electromagnetic definition of electric dipolarization
as the dipole moment of a unit cell is unsatisfactory as
this quantity generally depends on the arbitrary choice of
a unit cell [3]. Thus, a proper description of the electro-
magnetic properties of solids requires tools beyond those
supplied by classical electrodynamics.

Important progress has been made by introducing the
modern theories of electric dipolarization and magneti-
zation where geometric phases are used to quantify these
dipole densities (multipole order ` = 1) independently of
the choice of unit cell [1, 2, 4, 5]. Within the modern
theory, the electric dipolarization has a clear physical in-
terpretation relative to a reference state. However, for
systems showing a spontaneous electric dipolarization,
the interpretation and observability of this quantity have
remained ambiguous. Also, it is a significant challenge to
extend the modern-theory approaches to multipole den-
sities of higher multipole order ` > 1 [6].

Even before the advent of the modern theories, some
early studies did not make any reference to electromag-
netism in their investigation of dipolarizations in materi-
als, as they recognized how crystal symmetry allows one
to identify crystal structures that permit a bulk electric
dipolarization (so-called polar crystals include pyroelec-
tric and ferroelectric media [7–9]) or a bulk magnetiza-
tion (ferromagnetic crystals [10–12]). According to Neu-
mann’s principle (see Refs. [7] and [8] for seminal discus-
sions), the crystal classes can be rigorously divided into
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those that permit a macroscopic electric dipolarization or
magnetization, and those for which these phenomena are
forbidden. Magnetic crystal classes that do not permit a
magnetization have been generically associated with an-
tiferromagnetism [12].
The approach pursued in the present work overcomes

the unsatisfactory electromagnetic definition of electric
and magnetic multipole densities that is inadequate for
crystalline solids; we rely entirely on symmetry to extend
the notion of bulk dipolarization and magnetization to
electric and magnetic multipole densities of higher orders
` > 1. To this end, we treat the black-white symmetries
space inversion symmetry (SIS) and time inversion sym-
metry (TIS) on the same footing [13]. Moreover, we treat
electric and magnetic order on the same footing. Our sys-
tematic theory provides a broader framework for recent
e↵orts to study electric and magnetic multipolar order
in solids [14–18] and lends itself for wider application
in the context of complex materials [19–24]. Through-
out this work, we focus on systems that are in thermal
equilibrium, thus leaving aside the interesting topic of
current-induced multipolar order [25].
In the following, the term polarization refers to a gen-

TABLE I. Signature ss0 of multipoles of order `. The four
di↵erent types of multipoles arising for any given ` are asso-
ciated with the respective irreducible representations Dss0

` of
the full rotation group Ri⇥✓ ⌘ R ⇥ Ci⇥✓, where R ⌘ SO(3)
is the proper rotation group.

electric magnetic electro-
toroidal

magneto-
toroidal

` even ++ �� �+ +�
` odd �+ +� ++ ��

� Five inversion groups with i and θ ⇒ five categories of polarized matter

Categories of Polarized Matter
I inversion symmetries ) five inversion groups

I classification of multipole densities and crystal classes based on five inversion groups

electric magnetic

symmetry ` even ` odd ` even ` oddinversion

group i ✓ i✓ ++ �+ �� +�
category of

polarized matter

Ci⇥✓ = {e, i , ✓, i✓} • • • • � � � parapolar

C✓ = {e, ✓} � • � • • � � electropolar

Ci = {e, i} • � � • � � • magnetopolar

Ci✓ = {e, i✓} � � • • � • � antimagnetopolar

C1 = {e} � � � • • • • multipolar

I treat space inversion i and time inversion ✓ on equal footing

I treat electric and magnetic order on equal footing
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� Categories of polarized matter have distinctive

spinful electronic band dispersions Eσ(k)
The signature
matters!

(1) characteristic
terms in band
structure
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(2) band
degeneracies

category E�(k) E�(�k) E�̄(k) E�̄(�k)

parapolar Ci⇥✓
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� Multipole densities (polarizations) couple to specific electronic degrees of

freedom ⇒ identify unique indicators for each multipolar order

electric dipolarization ⇒ Rashba term; magnetization ⇒ Zeeman term

� General and systematic study of polarized versions of lonsdaleite

� General and systematic study of polarized versions of diamond

Indicators of multipolar order
� a multipole densitym can be decomposed into componentsmG

α asso-

ciated with IRs α of the crystallographic point group G
� theory of invariants: effect of m described by terms

∑
α aG

αKG
α mG

α in

Hamiltonian H , where tensors KG
α have same signature ss ′ asmα

� finite expectation value of indicator IG
α = aG

αKG
α signals polarizationmG

α

� examples: expectation value of σz signals magnetizationm(m,1); expec-
tation value of σx ky − σy kx signals electric dipolarizationm(e,1)

Toroidal moments are not distinct in crystals
� electric,magnetic and toroidalmoments canbedistinguished in vacuum

� in crystals, all multipoles map onto the same finite set of IRs of G
� allowed toroidal moment couples to same indicator as allowed electric

or magnetic multipole with same ss ′ ⇒ same observable physics!

Electropolarizations: Rashba and Dresselhaus terms
Lonsdaleite structure with electric dipolarization: wurtzite

� site symmetry C3v allows local electric octupoles; with

different atoms on red/green sites ⇒ dipolarization

� Rashba term is associated invariant (indicator)

Diamond structure with electric octupolarization: zincblende

� site symmetry Td allows local electric octupoles; with

different atoms on red/green sites ⇒ octupolarization

� Dresselhaus term is associated invariant (indicator)
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FIG. 4. Multipole densities in the diamond family. Crys-
tal structure of (a) pristine diamond and (b) zincblende. In
(a), the two atoms in a unit cell are highlighted in blue. Lo-
cal octupole moments give rise to (c) a hexadecapolarization
(` = 4) and (d) an octupolarization (` = 3). Local dipole
moments give rise to (e) a quadrupolarization (` = 2) and (f)
a dipolarization (` = 1).

group is Oh = O ⇥ Ci, i.e., diamond is parapolar. The
lowest nonvanishing electric multipole density allowed by
Oh is an electric hexadecapole density (` = 4) with com-
patibility relation [45]

Ri 7! Oh : D+
4 7! �+

1 + �+
3 + �+

4 + �+
5 . (31)

In lowest order of the wave vector k, the scalar operator
associated with the hexadecapole density is the term

H(e,4) = a(e,4)m(e,4)
�
k2xk

2
y + k2yk

2
z + k2zk

2
x

�
(32)

that represents the warping of the energy dispersion E(k)
of band electrons in the cubic diamond structure [92, 93].

The site symmetry of the atoms forming the dia-
mond structure is the group Td [37] that permits a lo-
cal electric octupole moment [45]. Similar to lonsdaleite
(Sec. IIIA), the octupole moment is naturally realized by
the sp3 hybrid orbitals with which elements like C, Si,

and Ge form the diamond structure [Fig. 4(c)]. There-
fore, the invariant (32) exists already in a simple sp3 TB
model. Using the notation of Refs. [94, 95], in lowest
order of the TB matrix elements Vxy and Vsp, we have
a(e,4)m(e,4) / V 2

xy V
2
sp.

The lowest electrotoroidal moment permitted in dia-
mond has ` = 9.

B. Electric octupolarization in diamond –
zincblende

The unit cell of pristine diamond contains two iden-
tical atoms [Fig. 4(a)]. If these two atoms are distinct,
we obtain the zincblende structure [Fig. 4(b)] that is re-
alized by several III-V semiconductors including GaAs
and InSb. The space group of zincblende is T 2

d (No. 216,
F 4̄3m), and the crystallographic point group is Td. Un-
like Oh = Td ⇥ Ci, the group Td breaks SIS so that
zincblende is electropolar. More specifically, the com-
patibility relation [45]

Ri 7! Td : D�
3 7! �1 + �5 + �4 (33)

indicates that zincblende naturally permits an electric
octupole density (` = 3). The corresponding invariant in
the Hamiltonian (to lowest order in k) is

H(e,3) = a(e,3)m(e,3)
⇥
�xkx(k

2
y � k2z) + cp

⇤
, (34)

where “cp” denotes cyclic permutation of the preceding
term. The invariant H(e,3) represents a spin-orbit cou-
pling commonly known as Dresselhaus term [33].
A more complete analysis of the electric octupole den-

sity in zincblende is given in Table IX. Ignoring TIS, the
octupole density transforms according to D�

3 of Ri. A
cubic environment (point group Oh) yields the compati-
bility relation [45]

Ri 7! Oh : D�
3 7! ��

2 + ��
4 + ��

5 , (35)

so that, as to be expected, an octupole density is forbid-
den in diamond. The lowest-order tensor operator with
signature �+ and transforming like ��

2 is

K(e,3)
2� = �xkx(k

2
y � k2z) + cp . (36)

Examples of tensor operators transforming like ��
4 and

��
5 are listed in Table IX. The expectation value of these

operators must thus vanish in diamond. When the sym-
metry is further reduced to Td (zincblende), we get the
compatibility relation [45]

Oh 7! Td : ��
2 7! �1, ��

4 7! �5, ��
5 7! �4 , (37)

so that the tensor operator (36) becomes allowed and
yields the Dresselhaus term (34).
The site symmetry of the atoms is, once again, Td [37].

However, similar to wurtzite, the two distinct atoms in

Magnetic octupolarization: Magnetopolar AFM
Lonsdaleite structure with magnetic octupolarization

� local magnetic dipoles forming a centrosymmetric AFM

� octupolarization indicator∝ σk4: ’g -wave’ altermagnet
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FIG. 2. Multipole densities in the lonsdaleite family. Top row [(a), (b), (c), and (d)]: pristine lonsdaleite (c) and variants of
the lonsdaleite crystal structure including wurtzite (d). In (c), the four atoms in a unit cell are highlighted in blue. (g) The
local electric octupole moments M0 on the identical atoms in pristine lonsdaleite give rise to an electric quadrupolarization
(` = 2). Remaining panels in the central row [(e), (f), and (h)]: For the structures (a), (b), and (d) consisting of two distinct
types of atoms, panels (e), (f), and (h) show the deviation �M of the local octupole moments compared with the moments
M0 when all atoms are identical [panel (g)]. These local moments �M give rise to (e) an electric quadrupolarization (` = 2),
(f) an octupolarization (` = 3), and (h) a dipolarization (` = 1). Bottom row [(i), (j), (l), and (k)]: local magnetic dipole
moments give rise to (i) a hexadecapolarization (` = 4), (j) an octupolarization (` = 3), (k) a quadrupolarization (` = 2), and
(l) a magnetization (` = 1). Panels (i), (j), (k), and (l) show the local magnetic dipole moments with di↵erent shades of the
same color because all sites are equivalent by symmetry (i.e., they have the same Wycko↵ letter) so that the local moments
are likewise symmetry-equivalent. The same situation arises for the electric octupole moments (g) of the nonmagnetic pristine
lonsdaleite structure (c).

so that this structure is electropolar. The lowest-order
electric multipole density supported by the crystal struc-
ture in Fig. 2(b) is an electric octupole density (` = 3)
that yields the compatibility relation [45]

Ri 7! D3h : D�
3 7! �1 + �2 + �4 + �5 + �6 . (14)

The corresponding invariants in the Hamiltonian read (to
lowest order in k)

H(e,3) = a(e,3)m(e,3) kz
⇥
�xkxky +

1
2�y(k

2
x � k2y)

⇤

+ b(e,3)m(e,3) �z ky
�
3k2x � k2y

�
. (15)

These terms represent a spin-orbit coupling.
The site symmetry of the atoms is, once again, C3v

[37]. However, the two distinct atoms in Fig. 2(b)

have di↵erent Wycko↵ positions (with two atoms of each
type per unit cell), and they may carry di↵erent elec-
tric octupole moments. We decompose these moments
M⌘ M0 +�M into one part M0 that is equal for all
atoms as in lonsdaleite. These moments thus have the
same observable e↵ect as the local moments in pristine
lonsdaleite [Fig. 2(g)], i.e., they give rise to the invariant
(13). It is the remaining part �M oriented oppositely
that is shown in Fig. 2(f) and that gives rise to the new
invariants (15). This can be worked out quantitatively
in a simple sp3 TB model [89].

The lowest electrotoroidal moment permitted in this
structure has ` = 4.

Diamond structure with magnetic octupolarization

� local magnetic octupoles ordered ferroically

� octupolarization indicator ∝ σk2 with cubic symmetry:

’d -wave’ altermagnet w/o global spin-quantization axis
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FIG. 4. Multipole densities in the diamond family. Crys-
tal structure of (a) pristine diamond and (b) zincblende. In
(a), the two atoms in a unit cell are highlighted in blue. Lo-
cal octupole moments give rise to (c) a hexadecapolarization
(` = 4) and (d) an octupolarization (` = 3). Local dipole
moments give rise to (e) a quadrupolarization (` = 2) and (f)
a dipolarization (` = 1).

group is Oh = O ⇥ Ci, i.e., diamond is parapolar. The
lowest nonvanishing electric multipole density allowed by
Oh is an electric hexadecapole density (` = 4) with com-
patibility relation [45]

Ri 7! Oh : D+
4 7! �+

1 + �+
3 + �+

4 + �+
5 . (31)

In lowest order of the wave vector k, the scalar operator
associated with the hexadecapole density is the term

H(e,4) = a(e,4)m(e,4)
�
k2xk

2
y + k2yk

2
z + k2zk

2
x

�
(32)

that represents the warping of the energy dispersion E(k)
of band electrons in the cubic diamond structure [92, 93].

The site symmetry of the atoms forming the dia-
mond structure is the group Td [37] that permits a lo-
cal electric octupole moment [45]. Similar to lonsdaleite
(Sec. IIIA), the octupole moment is naturally realized by
the sp3 hybrid orbitals with which elements like C, Si,

and Ge form the diamond structure [Fig. 4(c)]. There-
fore, the invariant (32) exists already in a simple sp3 TB
model. Using the notation of Refs. [94, 95], in lowest
order of the TB matrix elements Vxy and Vsp, we have
a(e,4)m(e,4) / V 2

xy V
2
sp.

The lowest electrotoroidal moment permitted in dia-
mond has ` = 9.

B. Electric octupolarization in diamond –
zincblende

The unit cell of pristine diamond contains two iden-
tical atoms [Fig. 4(a)]. If these two atoms are distinct,
we obtain the zincblende structure [Fig. 4(b)] that is re-
alized by several III-V semiconductors including GaAs
and InSb. The space group of zincblende is T 2

d (No. 216,
F 4̄3m), and the crystallographic point group is Td. Un-
like Oh = Td ⇥ Ci, the group Td breaks SIS so that
zincblende is electropolar. More specifically, the com-
patibility relation [45]

Ri 7! Td : D�
3 7! �1 + �5 + �4 (33)

indicates that zincblende naturally permits an electric
octupole density (` = 3). The corresponding invariant in
the Hamiltonian (to lowest order in k) is

H(e,3) = a(e,3)m(e,3)
⇥
�xkx(k

2
y � k2z) + cp

⇤
, (34)

where “cp” denotes cyclic permutation of the preceding
term. The invariant H(e,3) represents a spin-orbit cou-
pling commonly known as Dresselhaus term [33].
A more complete analysis of the electric octupole den-

sity in zincblende is given in Table IX. Ignoring TIS, the
octupole density transforms according to D�

3 of Ri. A
cubic environment (point group Oh) yields the compati-
bility relation [45]

Ri 7! Oh : D�
3 7! ��

2 + ��
4 + ��

5 , (35)

so that, as to be expected, an octupole density is forbid-
den in diamond. The lowest-order tensor operator with
signature �+ and transforming like ��

2 is

K(e,3)
2� = �xkx(k

2
y � k2z) + cp . (36)

Examples of tensor operators transforming like ��
4 and

��
5 are listed in Table IX. The expectation value of these

operators must thus vanish in diamond. When the sym-
metry is further reduced to Td (zincblende), we get the
compatibility relation [45]

Oh 7! Td : ��
2 7! �1, ��

4 7! �5, ��
5 7! �4 , (37)

so that the tensor operator (36) becomes allowed and
yields the Dresselhaus term (34).
The site symmetry of the atoms is, once again, Td [37].

However, similar to wurtzite, the two distinct atoms in

Magnetic quadrupolarization: Antimagnetopolar AFM
Lonsdaleite structure with magnetic quadrupolarization

� Néel vector ‖c : quadrupolarization indicator ∝ k7

� Néel vector ⊥c : quadrupolarization indicator ∝ k
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recently been associated with altermagnetism [78, 79].
This term aligns the magnetic moments of the Bloch
electrons (anti-)parallel to the local magnetic moments
on the individual atoms [Fig. 2(j)]. The combined ef-
fect of nonrelativistic exchange coupling and relativistic
spin-orbit coupling gives rise to additional invariants

H(m,3)
2 = b(m,3)m(m,3) (�xky � �ykx) kz

+ c(m,3)m(m,3)
⇥
1
2�x(k

2
y � k2x) + �ykxky

⇤
,
(26)

which are also proportional to m(m,3) and an even power
of components of k. These terms are typically smaller in
magnitude than the nonrelativistic term (25) and tend
to align the magnetic moments of the Bloch electrons
perpendicular to the local magnetic moments on the in-
dividual atoms.

A momentum-dependent spin splitting of the form
�zkxky has recently been found in MnF2 [90], where it
was called “AFM-induced spin splitting”. See also Ref.
[77]. MnF2 has a tetragonal rutile structure. Its mag-
netic point group is D4h(D2h) = D4(D2)⇥Ci [91], mak-
ing the system magnetopolar. Similar to the hexagonal
magnetic structure discussed here, the tetragonal point

group D4h(D2h) of MnF2 has `(m)
min = 3, i.e., the lowest

allowed magnetic multipole density is an octupole [18].
While Refs. [77, 90] focused on magnetic space groups to
discuss the AFM-induced spin splitting, magnetic point
groups are su�cient to discuss this e↵ect [8, 52, 91].
Among the candidate materials proposed to exhibit al-
termagnetism [79], CrSb has the same space group and
thus also the same point group D6h(D3d) as the magnet-
ically ordered structure depicted in Fig. 2(j) and, there-
fore should exhibit all of the properties discussed above.

F. Magnetic quadrupolarization in lonsdaleite

A magnetic quadrupole density in lonsdaleite is ana-
lyzed in Table VIII. When going from the rotation group
Ri⇥✓ ! Ri to D6h ⇥ C✓ ! D6h, the compatibility rela-
tion for a magnetic quadrupole D��

2 ! D�
2 reads

Ri 7! D6h : D�
2 7! ��

1 + ��
5 + ��

6 , (27)

so that the quadrupole remains forbidden. The lowest-
order tensor operators transforming according to the IRs
��
1 , �

�
5 , and ��

6 and consistent with the signature �� of
a magnetic quadrupole density are listed in Table VIII.

If the four equivalent atoms in the unit cell of lons-
daleite possess oppositely oriented local magnetic mo-
ments pointing parallel to the lonsdaleite main axis
[Fig. 2(k)], the system acquires a magnetic quadrupole
density that yields the magnetic space group P63/m0m0c0

(No. 194.271), and the point group symmetry is reduced
from D6h ⇥ C✓ = D6 ⇥ Ci⇥✓ to D6h(D6) = D6 ⇥ Ci✓.
The system is thus antimagnetopolar. More specifically,
it is the m = 0 component of the quadrupole density

FIG. 3. Magnetic lonsdaleite with oppositely oriented local
magnetic moments pointing perpendicular to the lonsdaleite
main axis, compare Fig 2(k). The local moments give rise to
a magnetic quadrupolarization (` = 2).

that becomes nonzero and transforms according to �1 of
D6h(D6). The compatibility relations and lowest-order
tensor operators for these IRs are listed in Table VIII.
Under D6h(D6), magnetic order is then signaled by a
nonzero expectation value of

I(m,2)
1k / K(m,2)

1k = (k2x � 3k2y)(k
2
y � 3k2x)kxkykz . (28)

If, instead, the four atoms in the unit cell possess oppo-
sitely oriented local magnetic moments pointing perpen-
dicular to the lonsdaleite main axis (see Fig. 3), the sys-
tem acquires a magnetic quadrupole density that yields
the orthorhombic space group Cmc0m (No. 63.460), and
the point-group symmetry is reduced from D6h ⇥ C✓

to D2h(C2v). The latter group possesses only one-
dimensional IRs so that the two-dimensional IRs ��

5
and ��

6 of D6h ⇥ C✓ split into one-dimensional IRs of
D2h(C2v). More specifically, we have

D6h ⇥ C✓ 7! D2h(C2v) : ��
5 7! �1 + �2 , (29)

which includes the identity representation �1. The
lowest-order tensor operators transforming according to
these IRs are listed in Table VIII. Quadrupolar magnetic
order is signaled in this case by a nonzero expectation
value of

I(m,2)
1? / K(m,2)

1? = kx . (30)

Table VIII also includes the compatibility relations for
a magnetotoroidal dipole (` = 1) that has the same sig-
nature �� as the magnetic quadrupole density. For the
magnetic order depicted in Fig. 2(k) when the symmetry
group is D6h(D6), a magnetotoroidal dipole transforms
according to the IRs �2 and �5 of D6h(D6) so that it re-
mains forbidden. If we instead have the magnetic order
depicted in Fig. 3 and the symmetry group is D2h(C2v),
a magnetotoroidal dipole transforms according to the IRs
�1, �2, and �4. The presence of magnetotoroidal order is
thus signaled by a nonzero expectation value of the same
operator (30) that also signals the presence of quadrupo-
lar magnetic order.

Diamond structure with magnetic quadrupolarization

� bulk diamond AFM: quadrupolarization indicator ∝ k3

� with strain/quantum confinement ⊥ Néel vector: ∝ k
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TABLE XI. Irreducible representations (IRs) and their lowest-order representative basis functions of an electric quadrupole
and axial-toroidal vector (signatures ++) in a cubic crystalline environment. The IRs are labeled according to Koster et al.
[45].

Ri⇥✓ ! Ri D++
2 ! D+

2 D++
1 ! D+

1

Oh ⇥ C✓ ! Oh �+
3 + �+

5 �+
4

(2k2
z � k2

x � k2
y),

p
3(k2

x � k2
y) kykz, kzkx, kxky kykz(k

2
y � k2

z), kzkx(k
2
z � k2

x), kxky(k
2
x � k2

y)

[001] : D4h �+
1 + �+

3 �+
4 + �+

5 �+
2 + �+

5

k2
x + k2

y; k
2
z k2

x � k2
y kxky kykz, kzkx kxky(k

2
x � k2

y) kykz(k
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FIG. 5. Quadrupole densities in tetragonally distorted di-
amond. (a) The distorted electric octupole moments due to
the sp3 hybrid orbitals give rise to local electric quadrupole
moments which, in turn, give rise to an electric quadrupole
density. Alternating patterns of magnetic dipole moments
oriented (b) parallel and (c) perpendicular to the tetragonal
axis give rise to magnetic quadrupole densities.

D4h. The site symmetry of the atoms becomes D2d that
supports an electric quadrupole moment [Fig. 5(a)].

E. Electric dipolarization in zincblende

Similar to wurtzite, an electric dipole density becomes
allowed if the symmetry of diamond is reduced from Oh

to one of the polar subgroups of Oh including C4v, C3v,
and C2v. This is summarized in Table XII. In these cases,
the dipole density manifests itself via the same Rashba
term (17) as in wurtzite. Starting from a bulk zincblende
structure, the polar point groups C3v and C2v can be
obtained experimentally by applying uniaxial strain in
the crystallographic direction [111] (C3v) or [110] (C2v),
which is the familiar piezoelectric e↵ect [8] that exists
for zincblende structures (but not for diamond). It has
been noted previously [98, 99] that for systems with point
groups C3v and C2v, the Dresselhaus term takes the form
of a Rashba term linear in the wave vector k. Indeed,
this is due to the fact that the system becomes polar and
possesses an electric dipole density.

TABLE XII. Irreducible representations (IRs) and their
lowest-order representative basis functions of an electric
dipole (signature �+) and magnetic dipole (signature +�)
in a cubic crystalline environment. The IRs are labeled ac-
cording to Koster et al. [45].

Ri⇥✓ ! Ri D�+
1 ! D�

1

Oh ⇥ C✓ ! Oh ��
4

�ykz � �zky,�zkx � �xkz,�xky � �ykx

Td ⇥ C✓ ! Td �5

�ykz � �zky,�zkx � �xkz,�xky � �ykx

[001] : C4v �1 + �5

�xky � �ykx �ykz � �zky,�zkx � �xkz
[111] : C3v �1 + �3

�xky � �ykx �ykz � �zky,�zkx � �xkz
[110] : C2v �1 + �2 + �4

�xky;�ykx �ykz;�zky �xkz;�zkx

Ri⇥✓ ! Ri D+�
1 ! D+

1

Oh ⇥ C✓ ! Oh �+
4

�x,�y,�z

[001] : D4h(C4h) ! C4h �+
1 + �+

3 + �+
4

�z �x,�y

F. Magnetic hexadecapolarization in diamond

In analogy with the electric hexadecapole density char-
acterizing pristine diamond (Sec. IVA) and the oc-
tupole density characterizing the zincblende structure
(Sec. IVB), we can also discuss magnetic multipole den-
sities that can be modeled using atomic octupoles on the
two sublattices of diamond as the elementary building
blocks for the multipolar order [36]. When going from the
rotation group Ri⇥✓ ! Ri to Oh⇥C✓ ! Oh, the compat-
ibility relation for a magnetic hexadecapole D��

4 ! D�
4

reads

Ri 7! Oh : D�
4 7! ��

1 + ��
3 + ��

4 + ��
5 , (43)

hence the hexadecapole remains forbidden. If local mag-
netic octupoles on the two sublattices of diamond are
oriented as in Fig. 4(c), they reduce the symmetry of di-
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