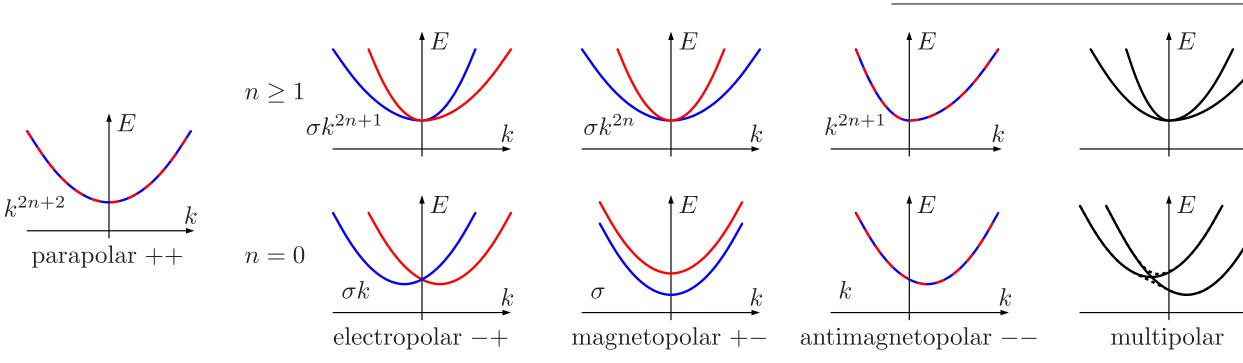
Electric, magnetic and toroidal polarizations in crystals

Roland Winkler Northern Illinois University & Argonne National Lab Ulrich Zülicke Victoria University of Wellington, New Zealand

Synopsis

- \blacksquare We consider general order- ℓ electric, magnetic and toroidal multipole densities (called *polarizations*) in crystals; cases with $\ell = 1$ subsume familiar electric dipolarization in ferroelectrics and magnetization in ferromagnets
- Multipole densities defined by symmetry under space inversion *i*, time inversion θ : signature $ss' \stackrel{\ell \text{ even } ++}{\underline{\ell \text{ odd } } -+}$
- Five inversion groups with *i* and $\theta \Rightarrow$ five categories of polarized matter
- Multipole densities (polarizations) couple to specific electronic degrees of freedom \Rightarrow identify unique indicators for each multipolar order


electric dipolarization \Rightarrow Rashba term; magnetization \Rightarrow Zeeman term

General and systematic study of polarized versions of lonsdaleite

	D _{6h} :	++	$\ell = 2$	$m^{(e,2)}(k_x^2 + k_y^2 - 2 k_z^2)$	lonsdaleite
trice and a second	<i>D</i> _{3<i>h</i>} :	-+	$\ell = 3$	$m^{(\mathrm{e},3)} k_z \left[\sigma_x k_x k_y + \frac{1}{2} \sigma_y (k_x^2 - k_y^2) \right]$	$\left(x_y^2\right)$
				$+m^{(\mathrm{e},3)}\sigma_zk_y\left(3k_x^2-k_y^2\right)$	
	C_{6v} :	-+	$\ell = 1$	$m^{(\mathrm{e},1)}\left(\sigma_{x}k_{y}-\sigma_{y}k_{x} ight)$	wurtzite
	$D_{6h}(D_{3h})$:		$\ell = 4$	$m^{(\mathrm{m},4)} k_x \left(k_x^2 - 3k_y^2\right)$	
l=2	$D_{6h}(D_{3d})$:	+-	$\ell = 3$	$m^{(\mathrm{m},3)} \sigma_z k_x k_z \left(k_x^2 - 3k_y^2\right)$	altermagnet
a na go	$D_{6h}(D_6)$:		$\ell = 2$	$m^{(m,2)}(k_x^2-3k_y^2)(k_y^2-3k_x^2)k_x$	k _y k _z
	$D_{6h}(C_{6h})$:	+-	$\ell = 1$	$m^{(m,1)}\sigma_z$	ferromagnet

	version symmetry			electric		magnetic		
inversion			symm		mmetry ℓ even ℓ		ℓodd	ℓ even
group	i	heta	iθ	++	-+		+-	polarized matter
$\overline{C_{i\times\theta}} = \{e, i, \theta, i\theta\}$	•	•	•	•	0	0	0	parapolar
$\mathcal{C}_{ heta} = \{oldsymbol{e}, heta\}$	0	•	0	•	•	0	0	electropolar
$C_i = \{e, i\}$	•	0	0	•	0	0	•	magnetopolar
$C_{i\theta} = \{e, i\theta\}$	0	0	•	•	0	•	0	antimagnetopolar
$C_1 = \{e\}$	0	0	0	●	•	•	•	multipolar

Categories of polarized matter have distinctive spinful electronic band dispersions $E_{\sigma}(\mathbf{k})$

General and systematic study of polarized versions of diamond

	<i>O_h</i> :	++	$\ell = 4$	$m^{(\mathrm{e},4)}\left(k_{x}^{2}k_{y}^{2}+k_{y}^{2}k_{z}^{2}+k_{z}^{2}k_{x}^{2} ight)$	diamond
tric	T_d :	-+	$\ell = 3$	$m^{(\mathrm{e},3)}\left[\sigma_{x}\textit{k}_{x}(\textit{k}_{y}^{2}-\textit{k}_{z}^{2})+\mathrm{cp} ight]$	zincblende
elec	D_{4h} :	++	$\ell = 2$	$m_z^{({ m e},2)}(k_x^2+k_y^2-2k_z^2)$	strain
	C_{3v} :	-+	$\ell = 1$	$m^{(e,1)}\left(\sigma_{x}k_{y}-\sigma_{y}k_{x} ight)$	zb, piezoelectric
()	$O_h(O)$:		$\ell = 4$	$m^{({\sf m},4)}[k_xk_yk_z(k_y^2-k_z^2)(k_z^2$	$k_x^2)(k_x^2-k_y^2)]$
Jetio	$O_h(T_h)$:	+-	$\ell = 3$	$m^{(m,3)}[\sigma_{x}k_{y}k_{z}+cp]$	altermagnet
Jagı	$D_{4h}(D_{2d})$:		$\ell = 2$	$m^{({\sf m},2)}k_z(k_x^2-k_y^2)$	
C	$D_{4h}(C_{4h})$:	+-	$\ell = 1$	$m^{(m,1)}\sigma_z$	ferromagnet
	0	$\begin{array}{c c} & T_d : \\ & D_{4h} : \\ & C_{3v} : \\ \hline & O_h(O) : \\ & O_h(T_h) : \\ & D_{4h}(D_{2d}) : \\ \end{array}$	$\begin{array}{cccc} & T_{d}: & -+ \\ & D_{4h}: & ++ \\ & C_{3v}: & -+ \\ \hline & O_{h}(O): & \\ & O_{h}(T_{h}): & +- \\ & D_{4h}(D_{2d}): & \end{array}$	T_d : $-+$ $\ell = 3$ D_{4h} : $++$ $\ell = 2$ C_{3v} : $-+$ $\ell = 1$ $O_h(O)$: $$ $\ell = 4$ $O_h(O)$: $$ $\ell = 3$ $D_{4h}(D_{2d})$: $$ $\ell = 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Indicators of multipolar order

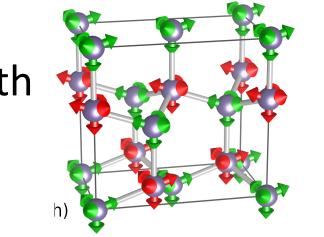
a multipole density *m* can be decomposed into components m_{α}^{G} associated with IRs α of the crystallographic point group G

Magnetic octupolarization: Magnetopolar AFM

Lonsdaleite structure with magnetic octupolarization

- Iocal magnetic dipoles forming a centrosymmetric AFM

- theory of invariants: effect of *m* described by terms $\sum_{\alpha} a_{\alpha}^{G} K_{\alpha}^{G} m_{\alpha}^{G}$ in Hamiltonian H, where tensors K_{α}^{G} have same signature $\bar{ss'}$ as \bar{m}_{α}
- finite expectation value of indicator $I_{\alpha}^{G} = a_{\alpha}^{G} K_{\alpha}^{G}$ signals polarization m_{α}^{G}
- examples: expectation value of σ_z signals magnetization $m^{(m,1)}$; expectation value of $\sigma_x k_v - \sigma_v k_x$ signals electric dipolarization $m^{(e,1)}$

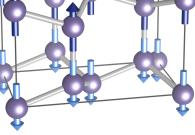

Toroidal moments are not distinct in crystals

- electric, magnetic and toroidal moments can be distinguished in vacuum
- in crystals, all multipoles map onto the same finite set of IRs of G
- allowed toroidal moment couples to same indicator as allowed electric or magnetic multipole with same $ss' \Rightarrow$ same observable physics!

Electropolarizations: Rashba and Dresselhaus terms

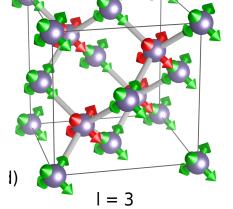
Lonsdaleite structure with electric dipolarization: wurtzite

site symmetry C_{3v} allows local electric octupoles; with different atoms on red/green sites \Rightarrow dipolarization


electric

 $++: k^{2n+2}$

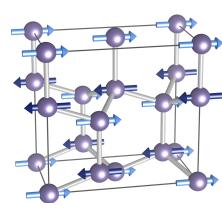
 $-+: k^{2n+1}$


magnetic

• octupolarization indicator $\propto \sigma k^4$: 'g-wave' altermagnet

Diamond structure with magnetic octupolarization

Iocal magnetic octupoles ordered ferroically



• octupolarization indicator $\propto \sigma k^2$ with cubic symmetry: 'd-wave' altermagnet w/o global spin-quantization axis

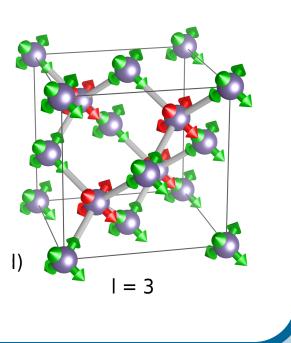
Magnetic quadrupolarization: Antimagnetopolar AFM

Lonsdaleite structure with magnetic quadrupolarization

Néel vector || c: quadrupolarization indicator $\propto k^7$

Néel vector $\perp c$: quadrupolarization indicator $\propto k$

Diamond structure with magnetic quadrupolarization


- **bulk diamond AFM: quadrupolarization indicator** $\propto k^3$
- with strain/quantum confinement \perp Néel vector: $\propto k$

- Rashba term is associated invariant (indicator)

Diamond structure with electric octupolarization: zincblende

- site symmetry T_d allows local electric octupoles; with different atoms on red/green sites \Rightarrow octupolarization
- Dresselhaus term is associated invariant (indicator)

Read more details in our publication!

preprint arXiv:2301.09842, to appear in Physical Review B part of Collection in Honor of Emmanuel I. Rashba and His Fundamental Contributions to Solid-State Physics

