Electric, magnetic and toroidal polarizations in crystals

Roland Winkler Northern Illinois University & Argonne National Lab
Ulrich Zülicke Victoria University of Wellington, New Zealand

We consider general order-l electric, magnetic and toroidal multipole densities (called polarizations) in crystals; cases with $l = 1$ subsume familiar electric dipolarization in ferroelectrics and magnetization in ferromagnets.

Multipole densities defined by symmetry under space inversion i, time inversion θ: signature s_s.

Five inversion groups with i and $\theta \Rightarrow$ five categories of polarized matter.

<table>
<thead>
<tr>
<th>Inversion Group</th>
<th>Symmetry s_s</th>
<th>Electric Order l</th>
<th>Magnetic Order l</th>
<th>Category of Polarized Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l even</td>
</tr>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l odd</td>
</tr>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l even</td>
</tr>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l odd</td>
</tr>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l even</td>
</tr>
</tbody>
</table>

Categories of polarized matter have distinctive spinful electronic band dispersions $E_s(k)$.

<table>
<thead>
<tr>
<th>Even</th>
<th>Odd</th>
<th>Even</th>
<th>Odd</th>
<th>Even</th>
<th>Odd</th>
<th>Even</th>
<th>Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{i\theta}$</td>
<td>s_s</td>
<td>l even</td>
<td>l odd</td>
<td>l even</td>
<td>l odd</td>
<td>l even</td>
<td>l odd</td>
</tr>
</tbody>
</table>

Indicators of multipolar order

A multipole density m can be decomposed into components m_{α}^L associated with IRs α of the crystallographic point group G.

Theory of invariants: effect of m described by terms $\sum_{\alpha} a_\alpha^L K^\alpha m_{\alpha}^L$ in Hamiltonian H, where tensors K^α have same signature s_s as m_{α}.

Finite expectation value of indicator $I_{\alpha} = a_\alpha^L K^\alpha$ signals polarization m_{α}^L.

Examples: expectation value of σz signals magnetization m_z, expectation value of $\sigma_x k_y - \sigma_y k_x$ signals electric dipolarization m_{xy}.

Toroidal moments are not distinct in crystals

Electric, magnetic and toroidal moments can be distinguished in vacuum.

In crystals, all multipoles map onto the same finite set of IRs of G.

Allowed toroidal moment couples to same indicator as allowed electric or magnetic multipole with same s_s.

Electropolarizations: Rashba and Dresselhaus terms

Lonsdaleite structure with electric dipolarization: wurtzite

Site symmetry $C_{i\theta}$ allows local electric octupoles; with different atoms on red/green sites \Rightarrow dipolarization.

Rashba term is associated invariant (indicator).

Diamond structure with electric octupolarization: zincblende

Site symmetry T_d allows local electric octupoles; with different atoms on red/green sites \Rightarrow octupolarization.

Dresselhaus term is associated invariant (indicator).

Synopsis

- Multipole densities (polariations) couple to specific electronic degrees of freedom \Rightarrow identify unique indicators for each multipolar order.
- Electric dipolarization \Rightarrow Rashba term; magnetization \Rightarrow Zeeman term.

General and systematic study of polarized versions of lonsdaleite.

General and systematic study of polarized versions of diamond.

Magnetic octupolarization: Magnetopolar AFM

Lonsdaleite structure with magnetic octupolarization

- Local magnetic dipoles forming a centrosymmetric AFM.
- Octupolarization indicator $\propto \sigma k^4, \cdot g$-wave alternmagnet.

Diamond structure with magnetic octupolarization

- Local magnetic octupoles ordered ferroically.
- Octupolarization indicator $\propto \sigma k^2$ with cubic symmetry: "d-wave" alternmagnet w/o global spin-quantization axis.

Magnetic quadrupolarization: Antimagnetopolar AFM

Lonsdaleite structure with magnetic quadrupolarization

- Néel vector $\parallel c$: quadrupolarization indicator $\propto k^2$.
- Néel vector $\perp c$: quadrupolarization indicator $\propto k$.

Diamond structure with magnetic quadrupolarization

- Bulk diamond AFM: quadrupolarization indicator $\propto k$.
- With strain/quantum confinement \perp Néel vortex $\propto k$.

Read more details in our publication!

part of Collection in Honor of Emmanuel I. Rashba and His Fundamental Contributions to Solid-State Physics