Taming the non-equilibrium:

Equilibration, thermalization and the predictions of quantum simulations

Jens Eisert

Freie Universität Berlin

KITP, Santa Barbara, August 2012
Dynamics and thermodynamics in isolated quantum systems
Mentions joint work with I. Bloch, S. Trotzky, I. McCulloch, A. Flesch, Y.-U. Chen, C. Gogolin, M. P. Mueller, M. Kliesch, A. Riera

Overview: 1. Equilibration

- How do quantum systems come to equilibrium?
- Non-equilibrium dynamics after a sudden quench

$$
\rho(t)=e^{-i H t} \rho(0) e^{i H t}, \quad H=\sum_{i} h_{i}
$$

Overview: 2. Thermalization and integrability

- How does temperature dynamically emerge?
- Relationship to integrability?

Overview: 3. Quantum simulations

- Quantum simulation with cold atoms

Overview: 3. Quantum simulations

- "A quantum device that outperforms classical computers"

1. Notions of equilibration

Sudden quenches

- Initial state (clustering correlations, e.g., product state)
- Then many-body free unitary time evolution

$$
\rho(t)=e^{-i H t} \rho(0) e^{i H t}, \quad H=\sum_{i} h_{i}
$$

Sudden quenches

- What happens? Equilibration?

"Strong equilibration"

- Free bosons (but non-Gaussian states): $H=\sum_{\langle i, j\rangle}\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right)$

- Observation 1: Strong equilibration

For algebraically clustering correlations (...), for any $\varepsilon>0$ and any recurrence time t_{2} one finds a system size and a relaxation time t_{1} such that

$$
\left\|\rho_{S}(t)-\rho_{G}\right\|_{1}<\varepsilon, \quad \forall t \in\left[t_{1}, t_{2}\right]
$$

ρ_{G} is maximum entropy state for fixed covariance matrix (linearly many consts of motion, "generalized Gibbs ensemble")

Lieb-Robinson bounds and speeds of information propagation

- Finite speed of information propagation (bosonic version of Lieb-Robinson bounds)
(see also Immanuel's talk)

Quantum central limit theorems

Characteristic function of reduced state

$$
\chi_{\rho_{S}(t)}(\beta)=\operatorname{tr}\left[\rho_{S}(t) D(\beta)\right]
$$

Chuck lattice into "rooms" and "corridors" (Bernstein-Spohn-blocking)

Formulate non-commutative Lindeberg central limit theorem

Maximum entropy state

$$
\left\|\rho_{S}(t)-\rho_{G}\right\|_{1}<\varepsilon
$$

"Weak equilibration"

S

- Observation 2: Weak equilibration (true for all Hamiltonians with degenerate energy gaps)

$$
\mathbb{E}\left(\left\|\rho_{S}(t)-\rho_{G}\right\|_{1}\right) \leq \frac{1}{2} \sqrt{\frac{d_{S}^{2}}{d^{\mathrm{eff}}}}, \quad d^{\mathrm{eff}}=\frac{1}{\sum_{k}\left|\left\langle E_{k} \mid \psi_{0}\right\rangle\right|^{4}}
$$

ρ_{G} is maximum entropy state given all constants of motion
Linden, Popescu, Short, Winter, Phys Rev E 79, 061103 (2009) Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

Lessons

- Lesson: Systems generically locally "appear relaxed", although the dynamics is entirely unitary
- Proven in strong sense for general states in integrable limit of Bose-Hubbard model
- True in slightly weaker sense for most times
- Generalized Gibbs ensembles, what conserved quantities?

2. Integrability and thermalization

Thermalization?

-When do systems thermalize?
(See talks by Marcos, Jean-Sebastian, Fabian, ...)
(Progress on thermalization question, ask if interested)

Notions of integrability

- Notions of integrability

(A) Exist n independent (local) conserved mutually commuting linearly independent operators (n no. of degrees of freedom)
(B) Like (A) but with linear replaced by algebraic independence
(C) The system is integrable by the Bethe ansatz
(D) The system exhibits non-diffractive scattering
(E) The quantum many-body system is exactly solvable

- Common intuition: "Non-integrable models thermalize"

Notions of integrability

$\sim \operatorname{tr}_{B}\left(e^{-\beta H}\right)$

$$
H=H_{S}+H_{B}+H_{I}
$$

- Natural candidates?

- Nearest-neighbor interactions
- Translationally invariant (no disorder)
- No exactly conserved local quantities

Effective entanglement in the eigenbasis

$$
\sim \operatorname{tr}_{B}\left(e^{-\beta H}\right) \circlearrowleft
$$

$$
H=H_{S}+H_{B}+H_{I}
$$

- Effective entanglement in the eigenbasis

$$
R\left(\psi_{0}\right)=\sum_{k}\left|c_{k}\right|^{2} \| \operatorname{tr}_{B}\left|E_{k}\right\rangle\left\langle E_{k}\right|-\psi_{0}^{S} \|_{1}, \quad c_{k}=\left\langle E_{k} \mid \psi_{0}\right\rangle
$$

- Observation 3 (non-thermalization): The physical distinguishability of two local time averaged states $\omega^{S(1)}$ and $\omega^{S(2)}$ of two pure initial product states

$$
\psi_{0}^{(i)}=\psi_{0}^{S(i)} \otimes \phi_{0}^{B(i)}
$$

and non-degenerate Hamiltonians is large in that

$$
\left.\left\|\omega^{S(1)}-\omega^{S(2)}\right\|_{1} \geq\left\|\psi_{0}^{S(1)}-\psi_{0}^{S(2)}\right\|_{1}\right)-R\left(\psi_{0}^{(1)}\right)-R\left(\psi_{0}^{(2)}\right)
$$

Non-integrable non-thermalizing models

- Non-thermalization

- Observation 4: Ex. non-integrable models for which the memory of the initial condition remains large for all times

Proof related to Matt Hastings' and Spiros Michalakis' ideas

- So, what is precise relationship? Role of disorder?
- Eigenstate thermalization? Refined concepts of integrability?

Non-integrable non-thermalizing models

- Lesson: Connection between integrability and thermalization may be more intricate than often assumed

3. Dynamical quantum simulation and "quantum supremacy"

An experiment

- Quench to full strongly-correlated Bose-Hubbard Hamiltonian...
(see also Immanuel's talk)

An experiment

- Quench to full strongly-correlated Bose-Hubbard Hamiltonian...
- ... but use optical superlattices to circumvent readout problem

$$
|\psi(t)\rangle=e^{-i H t}|1,0,1,0, \ldots, 1,0\rangle
$$

read out with period 2: Densities, correlators, currents...

nature physics

- Bias superlattice
- Unload to higher band
- Time-of-flight measurement: mapping to different Brillouin zones

An experiment

- Densities of odd sites as function of time

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

An experiment

- Visibility proportional to nearest-neighbor correlations

- Current measurements: Measure double well oscillations

Matrix-product state classical simulation

- For short times:

Classical simulation (up to bond dim. of 5000)

- Observation 5: Short times matrix-product state (MPS) simulation
...practically to machine precision with t-DMRG (exponential blow-up of bond dimension in time)

Matrix-product state classical simulation

- For short times: "Check correctness"
- Observation 6: Short times matrix-product state (MPS) simulation

Short time evolution can be efficiently described MPS: Rigorously using quantum cellular automata and Lieb-Robinson bounds

"Quantum simulator"

- Observation 7: Long time dynamics of many-body dynamics in experiment

Can accurately probe dynamics for longer times (exp vs poly decay, ...)

Devil's advocate

- Great! Hmm, easier explanation...?

- Some Mah : iftrawes?
- In fact, stronger reduction holds true

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012) Wolf, Eisert, Cubitt, Cirac, Phys Rev Lett 101, 150402 (2008)

Boson sampling problem

Word of photon numbers, length N

Description of optical network V $\left(b_{1}, \ldots, b_{N}\right)^{T} \mapsto V\left(b_{1}, \ldots, b_{N}\right)^{T}$

Sample from output number distribution up to error ε

- Claim: Not believed to be universal for quantum computing - but, solves sampling problem, classically intractable* under plausible assumptions

[^0]- Obvious problems: • Difficult do this optically for large number of modes
- Arbitrary linear optical networks?

Polynomial reduction to boson sampling

Translationally invariant, fixed natural dynamics (free dynamics and use of optical superlattices)

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle, H=-J_{\mathrm{e}}(t) \sum_{\langle j, k\rangle_{\mathrm{r}}} b_{j}^{\dagger} b_{k}-J_{\mathrm{o}}(t) \sum_{\langle j, k\rangle_{\circ}} b_{j}^{\dagger} b_{k}-\mu \sum_{k} b_{k}^{\dagger} b_{k}
$$

- Observation 8: Reduction to boson sampling problem using period-2

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian + superlattices
- Measurement of boson number
poly overhead, giving rise to same distribution (up to exponentially small) errors

Polynomial reduction to boson sampling

- Observation 9: Reduction to boson sampling problem

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian
- Measurement of boson number
poly overhead, giving rise to same distribution (up to poly small) errors

Quantum dynamical simulator

- Hardness of Bose-Hubbard simulation
... is (in the above sense) classically a hard problem

Quantum dynamical simulator

- Hardness of Bose-Hubbard simulation

... is (in the above sense) classically a hard problem

Proposed "quantum supremacy" for controlled quantum systems surpassing classical ones. Please suggest alternatives. .quantumfrontiers.com/2012/07/22/sup.....

```
4 Reply 4% Retweet Favorite
```


Summary and outlook

- Equilibration of many-body systems

- An experiment

- Thermalization and integrability
- A "dynamical quantum simulator"

Thanks for your attention!

[^0]: * Efficient sampling up to exponentially small errors leads to collapse of polynomial hierarchy to third order, with poly accuracy also true, under reasonable conjectures

