Taming the non-equilibrium:

Equilibration, thermalization and the predictions of quantum simulations

Jens Eisert

Freie Universität Berlin

KITP, Santa Barbara, August 2012 Dynamics and thermodynamics in isolated quantum systems

Mentions joint work with I. Bloch, S. Trotzky, I. McCulloch, A. Flesch, Y.-U. Chen, C. Gogolin, M. P. Mueller, M. Kliesch, A. Riera

Overview: 1. Equilibration

- How do quantum systems come to equilibrium?
- Non-equilibrium dynamics after a sudden quench

$$\rho(t) = e^{-iHt}\rho(0)e^{iHt}, \quad H = \sum_i h_i$$

Gogolin, Mueller, Eisert, *Phys Rev Lett* **106**, 040401 (2011) Cramer, Eisert, *New J Phys* **12**, 055020 (2010) Cramer, Dawson, Eisert, Osborne, *Phys Rev Lett* **100**, 030602 (2008)

Overview: 2. Thermalization and integrability

- How does **temperature** dynamically emerge?
- Relationship to integrability?

Riera, Gogolin, Eisert, *Phys Rev Lett* **108**, 080402 (2012) Eisert, Friesdorf, Gogolin, in preparation (2012) Gogolin, Mueller, Eisert, *Phys Rev Lett* **106**, 040401 (2011)

Overview: 3. Quantum simulations

• Quantum simulation with cold atoms

$$H = -J \sum_{\langle j,k \rangle} b_{j}^{\dagger} b_{k} + \frac{U}{2} \sum_{k} b_{k}^{\dagger} b_{k} (b_{k}^{\dagger} b_{k} - 1) - \mu \sum_{k} b_{k}^{\dagger} b_{k}$$

-101 -101 -101

Overview: 3. Quantum simulations

1. Notions of equilibration

Sudden quenches

- Initial state (clustering correlations, e.g., product state)
- Then many-body free unitary time evolution

$$\rho(t) = e^{-iHt}\rho(0)e^{iHt}, \quad H = \sum_i h_i$$

Sudden quenches

• What happens? Equilibration?

"Strong equilibration"

• Free bosons (but non-Gaussian states): $H = \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i)$

Observation 1: Strong equilibration

For algebraically clustering correlations (...), for any $\varepsilon > 0$ and any recurrence time t_2 one finds a system size and a relaxation time t_1 such that

$$\|\rho_S(t) - \rho_G\|_1 < \varepsilon, \quad \forall t \in [t_1, t_2]$$

PG is *maximum entropy state* for fixed covariance matrix (linearly many consts of motion, "generalized Gibbs ensemble")

Lieb-Robinson bounds and speeds of information propagation

• Finite speed of information propagation (bosonic version of Lieb-Robinson bounds)

(see also Immanuel's talk)

Lieb, Robinson, *Commun Math Phys* 28, 251 (1972) Eisert, Osborne, *Phys Rev Lett* 97, 150404 (2006) Cramer, Dawson, Eisert, Osborne, *Phys Rev Lett* 100, 030602 (2008) Cheneau, Barmettler, Poletti, Endes, Schauss, Fukuhara, Gross, Bloch, Kollath, Kuhr, *Nature* 484, 481 (2012)

Quantum central limit theorems

Cramer, Eisert, New J Phys 12, 055020 (2010) Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100, 030602 (2008) Dudnikova, Komech, Spohn, J Math Phys 44, 2596 (2003)

"Weak equilibration"

• Observation 2: Weak equilibration (true for all Hamiltonians with degenerate energy gaps)

$$\mathbb{E}(\|\rho_S(t) - \rho_G\|_1) \le \frac{1}{2} \sqrt{\frac{d_S^2}{d^{\text{eff}}}}, \quad d^{\text{eff}} = \frac{1}{\sum_k |\langle E_k | \psi_0 \rangle|^4}$$

 ρ_G is maximum entropy state given all constants of motion

Linden, Popescu, Short, Winter, Phys Rev E 79, 061103 (2009) Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

t

$$\|\rho_S(t) - \rho_G\|_1 \qquad \varepsilon$$

Lessons

- Lesson: Systems generically locally "appear relaxed", although the dynamics is entirely unitary
- Proven in strong sense for general states in integrable limit of Bose-Hubbard model
- True in slightly weaker sense for most times
- Generalized Gibbs ensembles, what conserved quantities?

2. Integrability and thermalization

• When do systems thermalize?

(See talks by Marcos, Jean-Sebastian, Fabian, ...)

(Progress on thermalization question, ask if interested)

Riera, Gogolin, Eisert, Phys Rev Lett 108, 080402 (2012)

Notions of integrability

- (A) Exist *n* independent (local) conserved mutually commuting linearly independent operators (*n* no. of degrees of freedom)
- $\,\,{}^{\,\,{}_{\!\!\!\!\!\!\!\!\!}}$ (B) Like (A) but with linear replaced by algebraic independence
 - (C) The system is integrable by the Bethe ansatz
 - (D) The system exhibits non-diffractive scattering
 - (E) The quantum many-body system is exactly solvable

• Common intuition: "Non-integrable models thermalize"

- Natural candidates?
- Nearest-neighbor interactions
- Translationally invariant (no disorder)
- No exactly conserved local quantities

Gogolin, Mueller, Eisert, Phys Rev Lett 106, 040401 (2011)

Compare also: Pal, Huse, arXiv:1103.2613 Canovi, Rossini, Fazio, Santoro, Silva, arXiv:1006.1634 Kollath, Lauchli, Altman, *Phys Rev Lett* **98**, 180601 (2007) Polkovnikov, Sengupta, Silva, Vengalattore, *Rev Mod Phys* **83**, 863 (2011) Rigol, Srednicki, *Phys Rev Lett* **108**, 110601 (2012)

Effective entanglement in the eigenbasis

• Effective entanglement in the eigenbasis

$$R(\psi_0) = \sum_k |c_k|^2 \|\mathrm{tr}_B |E_k\rangle \langle E_k| - \psi_0^S \|_1, \ c_k = \langle E_k |\psi_0\rangle$$

• Observation 3 (non-thermalization): The physical distinguishability of two local time averaged states $\omega^{S(1)}$ and $\omega^{S(2)}$ of two pure initial product states

$$\psi_0^{(i)} = \psi_0^{S(i)} \otimes \phi_0^{B(i)}$$

and non-degenerate Hamiltonians is large in that

$$\|\omega^{S(1)} - \omega^{S(2)}\|_{1} \ge \|\psi_{0}^{S(1)} - \psi_{0}^{S(2)}\|_{1}) - R(\psi_{0}^{(1)}) - R(\psi_{0}^{(2)})$$

Non-integrable non-thermalizing models

Non-thermalization

• **Observation 4:** Ex. non-integrable models for which the *memory of the initial condition* remains large for all times

Proof related to Matt Hastings' and Spiros Michalakis' ideas

- So, what is precise relationship? Role of disorder?
- Eigenstate thermalization? Refined concepts of integrability?

Eisert, Friesdorf, Gogolin, in preparation (2012) Gogolin, Mueller, Eisert, *Phys Rev Lett* **106**, 040401 (2011)

Non-integrable non-thermalizing models

• Lesson: Connection between integrability and thermalization may be more intricate than often assumed

3. Dynamical quantum simulation and "quantum supremacy"

• Quench to full strongly-correlated Bose-Hubbard Hamiltonian...

(see also Immanuel's talk)

- Quench to full strongly-correlated Bose-Hubbard Hamiltonian ...
- ... but use **optical superlattices** to circumvent readout problem

$$|\psi(t)\rangle = e^{-iHt}|1, 0, 1, 0, \dots, 1, 0\rangle$$

read out with period 2: Densities, correlators, currents...

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

• Densities of odd sites as function of time

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

• Visibility proportional to nearest-neighbor correlations

• Current measurements: Measure double well oscillations

• ...

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

Matrix-product state classical simulation

• Observation 5: Short times matrix-product state (MPS) simulation

...practically to machine precision with t-DMRG (exponential blow-up of bond dimension in time)

White, *Phys Rev Lett* **69**, 2863 (1992) Schollwoeck, *Rev Mod Phys* **77**, 259 (2005) Eisert, Cramer, Plenio, *Rev Mod Phys* **82**, 277 (2010)

Matrix-product state classical simulation

• Observation 6: Short times matrix-product state (MPS) simulation

Short time evolution can be efficiently described MPS: Rigorously using quantum cellular automata and Lieb-Robinson bounds

Eisert, Osborne, *Phys Rev Lett* **100**, 030602 (2008) Osborne, *Phys Rev Lett* **97**, 157202 (2006) "Quantum simulator"

• Observation 7: Long time dynamics of many-body dynamics in experiment

Can accurately probe dynamics for longer times (exp vs poly decay, ...)

Devil's advocate

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, *Nature Phys* 8, 325 (2012) Wolf, Eisert, Cubitt, Cirac, *Phys Rev Lett* 101, 150402 (2008)

Boson sampling problem

• Claim: Not believed to be universal for quantum computing - but, solves sampling problem, classically intractable* under plausible assumptions

* Efficient sampling up to exponentially small errors leads to collapse of polynomial hierarchy to third order, with poly accuracy also true, under reasonable conjectures

• Obvious problems: • Difficult do this optically for large number of modes

• Arbitrary linear optical networks?

Aaronson, Arkhipov, arXiv:1011.3245 Rohde, Ralph, *Phys Rev A* **85**, 022332 (2012) Scheel, quant-ph/0406127

Polynomial reduction to boson sampling

Observation 8: Reduction to boson sampling problem using period-2

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian + superlattices
- Measurement of boson number

poly overhead, giving rise to same distribution (up to exponentially small) errors

Polynomial reduction to boson sampling

Observation 9: Reduction to boson sampling problem

For any instance of the Boson sampling problem there exists an experiment with

- Initial product state in optical lattice
- Natural dynamics under free limit of Bose-Hubbard Hamiltonian
- Measurement of boson number

poly overhead, giving rise to same distribution (up to poly small) errors

Quantum dynamical simulator

Improved tensor network methods?

Quantum dynamical simulator

Summary and outlook

• Equilibration of many-body systems

• An experiment

• Thermalization and integrability

• A "dynamical quantum simulator"

Thanks for your attention!

