
Entanglement negativity and 
quantum field theory

Pasquale Calabrese

KITP,  August 2012

Joint work with John Cardy and Erik Tonni, 1206.3092

University of Pisa

1



Entanglement entropy
     Consider a system in a quantum state |ψ〉 (ρ=|ψ〉〈ψ|) 

A

B

Entanglement: what is it?

Quantum system in a pure state |Ψ�
The density matrix is ρ = |Ψ��Ψ|
(Trρn = 1)

H = HA ⊗HB

Alice can measure only in A, while Bob in the remainder B
Alice measures are entangled with Bob’s ones: Schmidt deco

|Ψ� =
�

n

cn|Ψn�A|Ψn�B cn ≥ 0,
�

n

c2
n = 1

If c1 = 1 ⇒ |Ψ� unentangled
If ci all equal ⇒ |Ψ� maximally entangled

A natural measure is the entanglement entropy (ρA = TrBρ)

SA ≡ −TrρA log ρA = −
�

n

c2
n log c2

n = SB

Pasquale Calabrese Entanglement and CFT

Entanglement: what is it?

Quantum system in a pure state |Ψ�
The density matrix is ρ = |Ψ��Ψ|
(Trρn = 1)

H = HA ⊗HB

Alice can measure only in A, while Bob in the remainder B
Alice measures are entangled with Bob’s ones: Schmidt deco

|Ψ� =
�

n

cn|Ψn�A|Ψn�B cn ≥ 0,
�

n

c2
n = 1

If c1 = 1 ⇒ |Ψ� unentangled
If ci all equal ⇒ |Ψ� maximally entangled

A natural measure is the entanglement entropy (ρA = TrBρ)

SA ≡ −TrρA log ρA = −
�

n

c2
n log c2

n = SB

Pasquale Calabrese Entanglement and CFT

A natural measure is the entanglement entropy (ρA =TrB ρ)  

SA≡ -Tr ρA ln ρA = -∑cn 
 ln cn = SB

22

n

● If c1=1 ⇒ |ψ〉 unentagled
● If ci all equal ⇒ |ψ〉 maximally entangled
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Entanglement entropy

Area Law
SA∝ Area separating A and B

If the Hamiltonian has a gap

A

B [Srednicki ’93]

If |ψ〉 is the ground state of a local Hamiltonian

B BA

l

In a 1+1 D CFT Holzhey, Larsen, Wilczek ’94

This is the most effective way to determine the central charge

SA = c ln l  3
_
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Path integral and Riemann surfaces

For n integer, Tr ρA is 
the partition function 
on a n-sheeted 
Riemann surface

Path integral and Riemann surfaces PC and J Cardy ’04

�Φ1(x)|ρA|Φ2(x)� =

Trρn
A =

Trρn
A = for n integer is the partition function on a n-sheeted

Riemann surface Rn,1

Replica trick: SA = − lim
n→1

∂

∂n
Trρn

A
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[PC, Cardy 04]

〈ϕ1(x)|ρA|ϕ2(x)〉=

n

Tr ρA=n
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Riemann surfaces and CFT PC and J Cardy ’04

The Riemann surface Rn,1 is topological equivalent to the complex
plane on which is mapped by

w → ζ = w−u
w−v ; ζ → z = ζ1/n⇒ w → z =

�
w−u
w−v

�1/n

Trρn
A =

= cn|u − v |−
c
6 (n−1/n)

|u − v | = �

⇒ SA = − lim
n→1

∂

∂n
Trρn

A =
c

3
log �
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From (1.24) we get the trace norm

||ρTA ||1 = lim
p→ 1/2

Tr(ρTA)
2p

=

� �

r

|cr|
�2

(1.25)

By using that TrA ρA = 1 in (1.23) and (1.24), we find

Tr ρTA = lim
p→ 0

Tr(ρTA)
2p+1

= 1 Tr(ρTA)
2

= lim
p→ 1

Tr(ρTA)
2p

= 1 (1.26)

An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Trρn
A = �Tn(u) T̄n(v)� (3.1)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.2)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.3)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.4)

Thus we have

Tr(ρTA)
2p+1

=
c2p+1

�
c
6 (2p+1− 1

2p+1 )
Tr(ρTA)

2p
=

�
cp

�
c
6 (p− 1

p )

�2

(3.5)

where we recall that [12]

TrA ρn
A = �Tn(0) T̄n(�)� =

cn

�
c
6 (n− 1

n )
(3.6)

Taking the limit p → 1/2 in the second equation of (3.4), we obtain the trace norm and the

logarithmic negativity

||ρTA ||1 = c2
1/2 �

c
2 EN (ρ) =

c

2
log � + 2 log c1/2 (3.7)
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with scaling dimension

Riemann surfaces and CFT
This Riemann surface is mapped to the plane by 

Riemann surfaces and CFT PC and J Cardy ’04

The Riemann surface Rn,1 is topological equivalent to the complex
plane on which is mapped by

w → ζ = w−u
w−v ; ζ → z = ζ1/n⇒ w → z =
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A =
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|u-v|= l 

Tr ρA
n

Tr ρA=n
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Entanglement of non-complementary parts

B A1

A2

SA1∪A2 gives the entanglement between A and B

The mutual information SA1 + SA2 - SA1∪A2

gives an upper bound on the entanglement
between A1 and A2
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Entanglement of non-complementary parts

B A1

A2

gives an upper bound on the entanglement

A computable measure of entanglement exists: 
the logarithmic negativity

between A1 and A2

What is the entanglement between  the two 
non-complementary parts A1 and A2?

[Vidal-Werner 02]

SA1∪A2 gives the entanglement between A and B

The mutual information SA1 + SA2 - SA1∪A2
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Entanglement negativity

B
A1

A2

Let us denote with 

Entanglement negativity in quantum field theory

Pasquale Calabrese
1
, John Cardy
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Oxford OX1 3NP, UK, and All Souls College, Oxford,
3
SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

(Dated: July 11, 2012)

We develop a systematic method to extract the negativity in the ground state of a 1+1 dimensional
relativistic quantum field theory, using a path integral formalism to construct the partial transpose
ρT2

A of the reduced density matrix of a subsystem A = A1 ∪A2, and introducing a replica approach
to obtain its trace norm which gives the logarithmic negativity E = log ||ρT2

A ||. This is shown to
reproduce standard results for a pure state. We then apply this method to conformal field theories,
deriving the result E ∼ (c/4) ln

`
�1�2/(�1 + �2)

´
for the case of two adjacent intervals of lengths �1, �2

in an infinite system, where c is the central charge. For two disjoint intervals it depends only on the
harmonic ratio of the four end points and so is manifestly scale invariant. We check our findings
against exact numerical results in the harmonic chain.

PACS numbers: 03.67.Mn,11.25.Hf, 05.70.Jk

Recent years have witnessed a large effort to under-

stand and quantify the entanglement content of many-

body quantum systems (see [1] for reviews). This is

usually achieved by partitioning an extended quantum

system into two complementary subsystems and calcu-

lating the entanglement entropy SA, defined as the von

Neumann entropy of the reduced density matrix ρA of

one subsystem. However, this procedure does not give

information about the entanglement between two non-

complementary parts A1 and A2 of a larger system be-

cause generically their union is in a mixed state. The

mutual information SA1 + SA2 − SA1∪A2 measures the

correlations between the two parts, but gives only an up-

per bound on the entanglement between them.

A more useful measure of entanglement in this case is

the negativity [2], defined as follows. Denoting by |e(1)
i �

and |e(2)
j � two bases in the Hilbert spaces H1 and H2 of

each part, one first defines the partial transpose of ρ as

�e(1)
i e(2)

j |ρT2 |e(1)
k e(2)

l � = �e(1)
i e(2)

l |ρ|e(1)
k e(2)

j � and then the

logarithmic negativity as

E ≡ ln ||ρT2 || = lnTr|ρT2 | , (1)

where the trace norm ||ρT2 || is the sum of the absolute

values of the eigenvalues λi of ρT2 . When the two parts

are two microscopic degrees of freedom (e.g. spins), the

negativity coincides with other commonly used entangle-

ment estimators [1, 3], but its definition is more appeal-

ing because it is basis independent and so calculable by

quantum field theory (QFT).

The use of QFT naturally unveils universal features, in

particular close to a quantum critical point. For 1D crit-

ical theories, that at low energy are also Lorentz invari-

ant, the powerful tools of conformal field theory (CFT)

can be applied. As a matter of fact, the interest in en-

tanglement in extended systems has been considerably

boosted by the now classical CFT result that the entan-

glement entropy of a large block of length � is SA =
c
3 ln �,

with c the central charge [4–6]. When a subsystem con-

sists of two blocks, the entanglement entropy can also

be obtained from CFT [7–9], but this gives only the mu-

tual information, not the entanglement between the two

blocks.

For these reasons, and also motivated by recent results

in some 1D models [10–12], in this Letter we carry out

a systematic study of the logarithmic negativity in QFT

(in particular CFT) based on a new replica formalism.

A replica approach. We consider the traces of integer

powers of ρT2 which for n even (odd), let us say ne = 2m
(no = 2m + 1), read

Tr(ρT2)
ne =

�

i

λne
i =

�

λi>0

|λi|
ne +

�

λi<0

|λi|
ne , (2)

Tr(ρT2)
no =

�

i

λno
i =

�

λi>0

|λi|
no −

�

λi<0

|λi|
no .

The analytic continuations from even and odd n are dif-

ferent and the trace norm in which we are interested is

obtained by considering the analytic continuation of the

even sequence at ne → 1, i.e. E = lim
ne→1

ln Tr(ρT2)
ne ,

while the limit no → 1 gives the normalization TrρT2 = 1.

As a first example, let us consider the case in which

ρ = |Ψ��Ψ| corresponds to a pure state |Ψ�. Then, the

eigenvalues of ρT2 are related to the Schmidt decomposi-

tion coefficients [2, 13] and after simple algebra

Tr(ρT2)
ne = (Trρne/2

2 )
2 , Tr(ρT2)

no = Trρno
2 , (3)

FIG. 1: We consider the entanglement between two blocks A1

and A2 embedded in the ground-state of a larger system.
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And the logarithmic negativity

From (1.24) we get the trace norm

||ρTA ||1 = lim
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Tr(ρTA)
2p

=
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r

|cr|
�2

(1.25)
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2
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entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Trρn
A = �Tn(u) T̄n(v)� Tn T̄n (3.1)

Tr|ρT2 | =

�

i

|λi| =

�

λi>0

λi −
�

λi<0

λi (3.2)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.3)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.4)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.5)

Thus we have

Tr(ρTA)
2p+1

=
c2p+1

�
c
6 (2p+1− 1

2p+1 )
Tr(ρTA)

2p
=

�
cp

�
c
6 (p− 1

p )

�2

(3.6)

4

It measures “how much” the 
eigenvalues of  ρT2 are negative 
because Tr (ρT2)=1

ℰ is an entanglement monotone (does not decrease under LOCC) 
It is also additive 

ρ is the density matrix of A1∪A2 , not pure

ℰ≡ ln|| ρT2 ||= ln Tr |ρT2|
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A replica approach

    Let us consider traces of integer powers of ρT2
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Recent years have witnessed a large effort to under-

stand and quantify the entanglement content of many-

body quantum systems (see [1] for reviews). This is

usually achieved by partitioning an extended quantum

system into two complementary subsystems and calcu-

lating the entanglement entropy SA, defined as the von

Neumann entropy of the reduced density matrix ρA of

one subsystem. However, this procedure does not give

information about the entanglement between two non-

complementary parts A1 and A2 of a larger system be-

cause generically their union is in a mixed state. The

mutual information SA1 + SA2 − SA1∪A2 measures the

correlations between the two parts, but gives only an up-

per bound on the entanglement between them.

A more useful measure of entanglement in this case is

the negativity [2], defined as follows. Denoting by |e(1)
i �

and |e(2)
j � two bases in the Hilbert spaces H1 and H2 of

each part, one first defines the partial transpose of ρ as

�e(1)
i e(2)

j |ρT2 |e(1)
k e(2)

l � = �e(1)
i e(2)

l |ρ|e(1)
k e(2)

j � and then the

logarithmic negativity as

E ≡ ln ||ρT2 || = lnTr|ρT2 | , (1)

where the trace norm ||ρT2 || is the sum of the absolute

values of the eigenvalues λi of ρT2 . When the two parts

are two microscopic degrees of freedom (e.g. spins), the

negativity coincides with other commonly used entangle-

ment estimators [1, 3], but its definition is more appeal-

ing because it is basis independent and so calculable by

quantum field theory (QFT).

The use of QFT naturally unveils universal features, in

particular close to a quantum critical point. For 1D crit-

ical theories, that at low energy are also Lorentz invari-

ant, the powerful tools of conformal field theory (CFT)

can be applied. As a matter of fact, the interest in en-

tanglement in extended systems has been considerably

boosted by the now classical CFT result that the entan-

glement entropy of a large block of length � is SA =
c
3 ln �,

with c the central charge [4–6]. When a subsystem con-

sists of two blocks, the entanglement entropy can also

be obtained from CFT [7–9], but this gives only the mu-

tual information, not the entanglement between the two

blocks.

For these reasons, and also motivated by recent results

in some 1D models [10–12], in this Letter we carry out

a systematic study of the logarithmic negativity in QFT

(in particular CFT) based on a new replica formalism.

A replica approach. We consider the traces of integer

powers of ρT2 which for n even (odd), let us say ne = 2m
(no = 2m + 1), read

Tr(ρT2)
ne =

�

i

λne
i =

�

λi>0

|λi|
ne +

�

λi<0

|λi|
ne , (2)

Tr(ρT2)
no =

�

i

λno
i =

�

λi>0

|λi|
no −

�

λi<0

|λi|
no .

The analytic continuations from even and odd n are dif-

ferent and the trace norm in which we are interested is

obtained by considering the analytic continuation of the

even sequence at ne → 1, i.e. E = lim
ne→1

ln Tr(ρT2)
ne ,

while the limit no → 1 gives the normalization TrρT2 = 1.

As a first example, let us consider the case in which

ρ = |Ψ��Ψ| corresponds to a pure state |Ψ�. Then, the

eigenvalues of ρT2 are related to the Schmidt decomposi-

tion coefficients [2, 13] and after simple algebra

Tr(ρT2)
ne = (Trρne/2

2 )
2 , Tr(ρT2)

no = Trρno
2 , (3)

FIG. 1: We consider the entanglement between two blocks A1

and A2 embedded in the ground-state of a larger system.

The analytic continuations from ne and no are different
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can be applied. As a matter of fact, the interest in en-
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     For a pure state ρ=|ψ〉〈ψ|                   

From (1.24) we get the trace norm

||ρTA ||1 = lim
p→ 1/2

Tr(ρTA)
2p

=

� �

r

|cr|
�2

(1.25)

By using that TrA ρA = 1 in (1.23) and (1.24), we find

Tr ρTA = lim
p→ 0

Tr(ρTA)
2p+1

= 1 Tr(ρTA)
2

= lim
p→ 1

Tr(ρTA)
2p

= 1 (1.26)

An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Trρn
A = �Tn(u) T̄n(v)� (3.1)

lim
no→1

Tr(ρT2)
no = TrρT2 = 1 (3.2)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.3)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.4)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.5)

Thus we have

Tr(ρTA)
2p+1

=
c2p+1

�
c
6 (2p+1− 1

2p+1 )
Tr(ρTA)

2p
=

�
cp

�
c
6 (p− 1

p )

�2

(3.6)

where we recall that [12]

TrA ρn
A = �Tn(0) T̄n(�)� =

cn

�
c
6 (n− 1

n )
(3.7)

4

For ne →1, we recover
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|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Trρn
A = �Tn(u) T̄n(v)� (3.1)

E = 2 ln Trρ1/2
2 (3.2)

Can we say that T 2
n =
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k=1 T2k/n? NO, otherwise ∆T 2
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=
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Tr(ρTA)
n
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From (1.24) we get the trace norm

||ρTA ||1 = lim
p→ 1/2

Tr(ρTA)
2p

=

� �
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|cr|
�2

(1.25)

By using that TrA ρA = 1 in (1.23) and (1.24), we find

Tr ρTA = lim
p→ 0

Tr(ρTA)
2p+1

= 1 Tr(ρTA)
2

= lim
p→ 1

Tr(ρTA)
2p

= 1 (1.26)

An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Tr(ρT2) = 1 �Tn(u) T̄n(v)� Tn T̄n (3.1)

rn = ln
Tr(ρ

TA2=�

A )n

Tr(ρ
TA2=L/4

A )n
(3.2)

Tr (ρT2)
n

=

�
Tr ρn

2 n = no odd

(Tr ρn/2
2 )2 n = ne even

(3.3)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.4)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.5)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.6)

4

Renyi entropy 1/2

ne  even

no  odd
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Negativity and QFT
A1 A2B B B

u1 v1 u2 v2
Tripartion:

2

FIG. 2: Top: The reduced density matrix ρA of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval ρT2

A . Bottom: Reversed partial transpose ρC2
A .

where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose ρC2

A . This is related to the par-
tial transpose as ρC2

A = CρT2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(ρT2

A )n = Tr(ρC2
A )n and so Tr(ρT2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above ρC2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].

FIG. 3: Path integral representation of Trρn
A (top) and

Tr(ρT2
A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Trρ2
A = Tr(ρT2

A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as

Tr(ρT2
A )n = �T 2

n (u2)T̄ 2
n (v2)� . (6)

This expression depends on the parity of n because T 2
n

connects the j-th sheet with the (j + 2)-th one. For n =
ne even, the ne-sheeted Riemann surface decouples in
two independent (ne/2)-sheeted surfaces. Conversely for
n = no odd, the surface remains a no-sheeted Riemann
surface. Thus we have

Tr(ρT2
A )ne = (�Tne/2(u2)T̄ne/2(v2)�)2 = (Trρne/2

A2
)2 ,

Tr(ρT2
A )no = �Tno(u2)T̄no(v2)� = Trρno

A2
, (7)

which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
∆Tn = c(n− 1/n)/12 [6]. Thus when A2 is embedded in
an infinite system we have (� = u2 − v2)

Tr(ρT2
A )ne ∝ �−

c
3 ( ne

2 −
2

ne
), Tr(ρT2

A )no ∝ �−
c
6 (no− 1

no
). (8)

Despite of the simplicity of the above calculation, it
shows one important point of the CFT analysis: for
n = ne even, T 2

ne
has dimension ∆T 2

ne
= c(ne/2−2/ne)/6,

while for n = no odd, T 2
no

has dimension ∆T 2
no

=
c(no − 1/no)/12, the same as Tno . We finally have

||ρT2
A || = lim

ne→1
Tr(ρT2

A )ne ∝ �
c
2 ⇒ E =

c

2
ln � + cnst . (9)

ρA=
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A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as

Tr(ρT2
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This expression depends on the parity of n because T 2
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which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
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an infinite system we have (� = u2 − v2)

Tr(ρT2
A )ne ∝ �−

c
3 ( ne

2 −
2

ne
), Tr(ρT2

A )no ∝ �−
c
6 (no− 1

no
). (8)

Despite of the simplicity of the above calculation, it
shows one important point of the CFT analysis: for
n = ne even, T 2

ne
has dimension ∆T 2

ne
= c(ne/2−2/ne)/6,

while for n = no odd, T 2
no

has dimension ∆T 2
no

=
c(no − 1/no)/12, the same as Tno . We finally have

||ρT2
A || = lim

ne→1
Tr(ρT2

A )ne ∝ �
c
2 ⇒ E =

c

2
ln � + cnst . (9)

The partial transposition exchanges two twist operators

2

FIG. 2: Top: The reduced density matrix ρA of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval ρT2

A . Bottom: Reversed partial transpose ρC2
A .

where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2
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system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)
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terval A2 corresponds to the exchange of row and column
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is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose ρC2

A . This is related to the par-
tial transpose as ρC2

A = CρT2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(ρT2

A )n = Tr(ρC2
A )n and so Tr(ρT2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above ρC2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].
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This expression depends on the parity of n because T 2
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which are the results for pure states in Eq. (3), recovered
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We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
∆Tn = c(n− 1/n)/12 [6]. Thus when A2 is embedded in
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where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2
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system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]
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A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
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A . This is related to the par-
tial transpose as ρC2
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A C, where C reverses the
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It is then straightforward to see that
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A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].
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A )n can be worked out in full generality as
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This expression depends on the parity of n because T 2
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two independent (ne/2)-sheeted surfaces. Conversely for
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surface. Thus we have
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)2 ,

Tr(ρT2
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which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
∆Tn = c(n− 1/n)/12 [6]. Thus when A2 is embedded in
an infinite system we have (� = u2 − v2)
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=
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where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose ρC2

A . This is related to the par-
tial transpose as ρC2

A = CρT2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(ρT2

A )n = Tr(ρC2
A )n and so Tr(ρT2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above ρC2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].
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A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Trρ2
A = Tr(ρT2

A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as

Tr(ρT2
A )n = �T 2

n (u2)T̄ 2
n (v2)� . (6)

This expression depends on the parity of n because T 2
n

connects the j-th sheet with the (j + 2)-th one. For n =
ne even, the ne-sheeted Riemann surface decouples in
two independent (ne/2)-sheeted surfaces. Conversely for
n = no odd, the surface remains a no-sheeted Riemann
surface. Thus we have

Tr(ρT2
A )ne = (�Tne/2(u2)T̄ne/2(v2)�)2 = (Trρne/2

A2
)2 ,

Tr(ρT2
A )no = �Tno(u2)T̄no(v2)� = Trρno

A2
, (7)

which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
∆Tn = c(n− 1/n)/12 [6]. Thus when A2 is embedded in
an infinite system we have (� = u2 − v2)

Tr(ρT2
A )ne ∝ �−
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Despite of the simplicity of the above calculation, it
shows one important point of the CFT analysis: for
n = ne even, T 2

ne
has dimension ∆T 2
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= c(ne/2−2/ne)/6,

while for n = no odd, T 2
no
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=
c(no − 1/no)/12, the same as Tno . We finally have
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where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose ρC2

A . This is related to the par-
tial transpose as ρC2

A = CρT2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(ρT2

A )n = Tr(ρC2
A )n and so Tr(ρT2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above ρC2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].

FIG. 3: Path integral representation of Trρn
A (top) and

Tr(ρT2
A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Trρ2
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A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as
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n (v2)� . (6)

This expression depends on the parity of n because T 2
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ne even, the ne-sheeted Riemann surface decouples in
two independent (ne/2)-sheeted surfaces. Conversely for
n = no odd, the surface remains a no-sheeted Riemann
surface. Thus we have
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A2
)2 ,

Tr(ρT2
A )no = �Tno(u2)T̄no(v2)� = Trρno
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, (7)

which are the results for pure states in Eq. (3), recovered
here purely from QFT.

We now specialize to the case of a CFT, for which the
twist fields transform like primary operators of dimension
∆Tn = c(n− 1/n)/12 [6]. Thus when A2 is embedded in
an infinite system we have (� = u2 − v2)
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[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
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integral representation in Fig. 2 (top) [6]. The two open
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A for
integer n can be obtained by joining cyclically n of the
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A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
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terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
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i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
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A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
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We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as

Tr(ρT2
A )n = �T 2

n (u2)T̄ 2
n (v2)� . (6)

This expression depends on the parity of n because T 2
n

connects the j-th sheet with the (j + 2)-th one. For n =
ne even, the ne-sheeted Riemann surface decouples in
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n = ne even, T 2

ne
has dimension ∆T 2

ne
= c(ne/2−2/ne)/6,

while for n = no odd, T 2
no

has dimension ∆T 2
no

=
c(no − 1/no)/12, the same as Tno . We finally have

||ρT2
A || = lim
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From (1.24) we get the trace norm
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An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows
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FIG. 2: Top: The reduced density matrix ρA of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval ρT2

A . Bottom: Reversed partial transpose ρC2
A .

where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
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ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].

FIG. 3: Path integral representation of Trρn
A (top) and

Tr(ρT2
A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Trρ2
A = Tr(ρT2
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an infinite system we have (� = u2 − v2)
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while for n = no odd, T 2
no

has dimension ∆T 2
no

=
c(no − 1/no)/12, the same as Tno . We finally have

||ρT2
A || = lim

ne→1
Tr(ρT2

A )ne ∝ �
c
2 ⇒ E =

c

2
ln � + cnst . (9)

and

16



Two adjacent intervals

-l1 0 l2

3-point function:

3

Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)

− c
6 ( ne

2 + 1
ne

)
, (11)

that in the limit ne → 1 gives

||ρT2
A || ∝

�
�1�2

�1 + �2

� c
4

⇒ E =
c

4
ln

�1�2
�1 + �2

+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]

R
CFT
n (y) =
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(1− y)

2
3 (n− 1

n )
�n−1

k=1 F k
n
(y)F k
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�n−1
k=1 Re

�
F k

n
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y
y−1 )F̄ k

n
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1−y )

�

� 1
2

,

(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.
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highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]
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(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.

3

Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)

− c
6 ( ne

2 + 1
ne

)
, (11)

that in the limit ne → 1 gives

||ρT2
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⇒ E =
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�1�2
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+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]
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(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.
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Compactified boson PC Cardy Tonni ’09

Using old results of CFT

on orbifolds Dixon et al 86
Fn(x) =

Θ
�
0|ηΓ

�
Θ

�
0|Γ/η

�

[Θ
�
0|Γ

�
]2

Γ is an (n − 1)× (n − 1) matrix

Γrs =
2i
n

n−1X

k = 1

sin

„
π

k

n

«
β k

n
cos

»
2π

k

n
(r − s)

–

with βy =
Hy (1− x)

Hy (x)
, Hy (x) = 2F1(y , 1− y ; 1; x)

Riemann theta function Θ(z |Γ) ≡
X

m∈ Zn−1

exp
ˆ
iπ m · Γ · m + 2πim · z

˜

• Fn(x) invariant under x → 1− x and η → 1/η
• We are unable to analytic continue to real n for general x and η
• Only for η � 1 and for x � 1

Pasquale Calabrese Entanglement and CFT

A1 A2

u1 v1 u2 v2

The XX model Fagotti PC ’10

The RDM of two intervals is not trivial because of JW string Igloi-Peschel

F lat
n (x) = FCFT

n (x) + (−)��−δn fn(x) + . . . CFT OK and δn = 2/n

Pasquale Calabrese Entanglement and CFT

Fn(x) is a calculable function depending on the full operator content

Disjoint intervals: History

A = [u1, v1] ∪ [u2, v2]

In 2004 we obtained

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Tested for free fermions in different ways Casini-Huerta, Florio et al.

For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and
Caraglio-Gliozzi showed that it is incorrect!

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Fn(x)

x = (u1−v1)(u2−v2)

(u1−u2)(v1−v2)
= 4− point ratio

Pasquale Calabrese Entanglement and CFT

Disjoint intervals: History

A = [u1, v1] ∪ [u2, v2]

In 2004 we obtained

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Tested for free fermions in different ways Casini-Huerta, Florio et al.

For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and
Caraglio-Gliozzi showed that it is incorrect!

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Fn(x)

x = (u1−v1)(u2−v2)

(u1−u2)(v1−v2)
= 4− point ratio

Pasquale Calabrese Entanglement and CFT

E.g. for Luttinger CFT:

Two disjoint intervals      
Prelude: The entanglement entropy 

[PC, Cardy Tonni 09/11]
[Furukawa et al 09] 
[Caraglio, Gliozzi 09]

[PC, Fagotti 11]

4-point ratio
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A1 A2

u1 v1 u2 v2

Fn(x) is a calculable function depending on the full operator content

Disjoint intervals: History

A = [u1, v1] ∪ [u2, v2]

In 2004 we obtained

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Tested for free fermions in different ways Casini-Huerta, Florio et al.

For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and
Caraglio-Gliozzi showed that it is incorrect!

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Fn(x)

x = (u1−v1)(u2−v2)

(u1−u2)(v1−v2)
= 4− point ratio

Pasquale Calabrese Entanglement and CFT

Disjoint intervals: History

A = [u1, v1] ∪ [u2, v2]

In 2004 we obtained

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Tested for free fermions in different ways Casini-Huerta, Florio et al.

For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and
Caraglio-Gliozzi showed that it is incorrect!

Trρn
A = c2

n

„
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

« c
6
(n−1/n)

Fn(x)

x = (u1−v1)(u2−v2)

(u1−u2)(v1−v2)
= 4− point ratio

Pasquale Calabrese Entanglement and CFT

It admits the universal expansion

Short length expansion II PC Cardy Tonni ’10

For two intervals

Tr ρn
A = �I1I2�

Inserting the SLE

Tr ρn
A = c2

n(�1�2)
− c

6 (n− 1
n )

�

{kj}

�
�1�2

n2r2

�P
j (∆j+∆j )

�
n�

j=1

φkj

�
e2πij/n

�
�2C

It can be turned in an expansion in x for Fn(x)

Leading contribution in Fn(x) = 1 + sk(n)x2xk : two kj = k �= 0

sk(n) =
n

2

n−1�

j=1

1

(sin πj/n)4xk
,

Higher order contributions from multi-point correlations,

non-primaries, etc...

Pasquale Calabrese Entanglement and CFT

Trivial, but important for the following: At n=1 all coefficients are 
vanishing, since Tr ρA=1 

Two disjoint intervals      
Prelude: The entanglement entropy 

[PC, Cardy Tonni 09/11]
[Furukawa et al 09] 
[Caraglio, Gliozzi 09]
.............
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Two disjoint intervals

3

Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)

− c
6 ( ne

2 + 1
ne

)
, (11)

that in the limit ne → 1 gives

||ρT2
A || ∝

�
�1�2

�1 + �2

� c
4

⇒ E =
c

4
ln

�1�2
�1 + �2

+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]

R
CFT
n (y) =

�
(1− y)

2
3 (n− 1

n )
�n−1

k=1 F k
n
(y)F k

n
(1− y)

�n−1
k=1 Re

�
F k

n
(

y
y−1 )F̄ k

n
(

1
1−y )

�

� 1
2

,

(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.

A1 A2

u1 v1 u2 v2

2

FIG. 2: Top: The reduced density matrix ρA of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval ρT2

A . Bottom: Reversed partial transpose ρC2
A .

where ρ2 is the reduced density matrix on H2. Taking
the limit ne → 1, we recover the result [2] that for a
pure state the logarithmic negativity is the Rényi entropy
S1/2 = 2 ln Trρ1/2

2 .
Negativity and QFT. For concreteness we refer to a 1D

system and we consider the tripartition depicted in Fig. 1
with A composed of two parts A = A1 ∪ A2 = [u1, v1] ∪
[u2, v2] and B the remainder, but most of the following
ideas apply to more general cases. In the ground-state
of a QFT, the reduced density matrix ρA has the path
integral representation in Fig. 2 (top) [6]. The two open
cuts correspond to the rows and columns of ρA. Trρn

A for
integer n can be obtained by joining cyclically n of the
above density matrices as in Fig. 3 (top). Thus Trρn

A is
(proportional to) the partition function on this n-sheeted
Riemann surface which is equivalent to the correlation
function of the twist fields Tn(z) constructed exploiting
the cyclic permutation symmetry of the sheets, i.e. [6, 7]

Trρn
A = �Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)� . (4)

The partial transposition with respect to the second in-
terval A2 corresponds to the exchange of row and column
indices in A2. In the path integral representation, this
is equivalent to interchange the upper and lower edges
of the second cut in ρA as in the middle of Fig. 2. It is
convenient to reverse the order of the column and row
indices in A2 as in the bottom of Fig. 2, to obtain the
reversed partial transpose ρC2

A . This is related to the par-
tial transpose as ρC2

A = CρT2
A C, where C reverses the

order of indices either on the lower or on the upper cut.
Clearly Tr(ρT2

A )n = Tr(ρC2
A )n and so Tr(ρT2

A )n is the parti-
tion function on the n-sheeted surface obtained by joining
cyclically n of the above ρC2

A as in the bottom of Fig. 3.
It is then straightforward to see that

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)� , (5)

i.e. the partial transposition has the net effect to ex-
change two twist operators compared to Eq. (4). To
replace ρT2

A with ρC2
A it has been fundamental to consider

integer cyclical traces. The operator C enters in quanti-
ties like Tr(ρAρT2

A ) which is in fact the partition function
on a non-orientable surface with the topology of a Klein
bottle. This can be computed using CFT methods [14].

FIG. 3: Path integral representation of Trρn
A (top) and

Tr(ρT2
A )n (bottom) for n = 3.

For n = 2, T2 = T̄2 and so Trρ2
A = Tr(ρT2

A )2 which
follows from the properties of the trace.

We first specialize to a pure state by letting B → ∅ for
which Tr(ρT2

A )n can be worked out in full generality as

Tr(ρT2
A )n = �T 2

n (u2)T̄ 2
n (v2)� . (6)

This expression depends on the parity of n because T 2
n

connects the j-th sheet with the (j + 2)-th one. For n =
ne even, the ne-sheeted Riemann surface decouples in
two independent (ne/2)-sheeted surfaces. Conversely for
n = no odd, the surface remains a no-sheeted Riemann
surface. Thus we have

Tr(ρT2
A )ne = (�Tne/2(u2)T̄ne/2(v2)�)2 = (Trρne/2

A2
)2 ,

Tr(ρT2
A )no = �Tno(u2)T̄no(v2)� = Trρno

A2
, (7)

which are the results for pure states in Eq. (3), recovered
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FIG. 2: Top: The reduced density matrix ρA of two disjoint
intervals. Middle: Partial transpose with respect to the sec-
ond interval ρT2

A . Bottom: Reversed partial transpose ρC2
A .
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Two disjoint intervals
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Consequences:
The Negativity is a scale invariant quantity!

Since                              ,          vanishes in y=0 faster than any 
power
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For u1   v2, y   1 and we recover the result for adjacent intervals 

times possible log corrections

i.e. the negativity diverges for y →1
G(y) → (1-y)-c/4
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Finite Systems
A finite system of length L with PBC can be obtained  mapping 
the the plane to the cylinder with the conformal mapping 
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This has the net effect to replace any length with 
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An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement
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The entanglement of many intervals thus depends on

the details of the CFT and should be calculated case by

case [16]. The simplest and most studied CFT is the

critical Ising model that in the continuum is a free Ma-

jorana fermion and has central charge c = 1/2. The

corresponding 1D quantum spin chain is the Ising model

in transverse field described by the Hamiltonian

H = −
L�

j=1

[σx
j σx

j+1 + hσz
j ] , (2)

where σx,z
j are Pauli matrices acting on the spin at site j

and we use periodic boundary conditions. The model has

a quantum critical point at h = 1. The correspondence

with a free fermion could erroneously lead to the conclu-

sion that SA for the Ising chain is the incorrect result of

Ref. [9], valid for free fermion theories [11]. This is not

the case when the block A involves more than one inter-

val since the unitary transformation that maps the spin

degrees of freedom to the fermionic ones is not anymore

contained inside A, as it is easily checked by direct cal-

culation [17]. SA for two intervals has been calculated in

the Ising chain [18], but for the fermion degrees of free-

dom and it agrees with Ref. [9]. The breaking of the

equivalence of fermions and spins makes any lattice ex-

act computation hard, and a representation of ρA for two

blocks is not yet known. For this reason, we analyze the

problem with numerical methods. We use a tree tensor

network (TTN) algorithm [19] for the quantum 1D Ising

model [20] and MonteCarlo simulations of the classical

2D one as in Ref. [12]. Using the mapping to the torus

partition function for n = 2, we provide the CFT pre-

diction for Trρ2
A. The generalization of this result to all

integer n requires a more detailed analysis (as for the LL

[14], but more difficult because of the complexity of the

target space [21, 22]) that we are currently studying and

will be reported elsewhere [23].

We consider the case of two disjoint intervals A =

[u1, u2] ∪ [u3, u4]. By global conformal invariance Trρn
A

can always be written as [13, 14]

Trρn
A = c

2
n

�
u31u42

u21u32u43u41

� c
6 (n− 1

n )

Fn(x) , (3)

where uij = ui−uj and x = u21u43/(u31u42) is the four-

point ratio. Fn(x) is the universal scaling function that

depends on the theory, and cn the non-universal factor

of the single block. The normalization is Fn(0) = 1.

The incorrect result of Ref. [9] is Fn(x) = 1 identically.

For a chain of finite length L, one replaces uij by the

chord distance L/π sin(πuij/L). Fn(x) is symmetric for

x→ 1− x [13].

The TTN (as the better known DMRG) gives the full

spectrum of the reduced density matrix. From this SA

and the moments of ρA can be extracted and analyzed.

The scaling functions Fn(x) (for the entropy FV N (x) =

FIG. 1: TTN scaling function F2(x) vs the conformal ratio x
for different block sizes �. The upper points are the extrap-
olation to � → ∞ from Eq. (5). Data for L �= 512 are not
shown in the legend. The full line is the CFT prediction (6).

−F
�
1(x)) are obtained as ratios (difference) of Trρn

A (SA)

with the prefactor in Eq. (3). We consider two blocks of

length � at distance r. The four-point ratio x is obtained

by substituting in its definition the chord distance:

x =

�
sin π�/L

sin π(� + r)/L

�2

. (4)

In the x variable, we would expect that data with dif-

ferent �, r and L would collapse onto a single curve thus

revealing the scaling functions Fn(x).

We start our analysis from the data for the function

F2(x) reported in Fig. 1 for � between 2 and 128 and

L from 64 to 512. The finite � results do not display

the symmetry x → 1 − x and the data present large

corrections to their leading scaling behavior. To extract

the asymptotic behavior we perform a finite-size analysis.

For any x, general RG arguments give the scaling

F
lat
2 (x, �) = F

CFT
2 (x) + �−δcf2(x) + . . . , (5)

where δc is an unknown exponent, f2(x) is the scaling

function of the first sub-leading correction, and the dots

indicate further ones. The data are well described by

δc = 1/2. The evidence of this scaling for different x is

shown in Fig. 2. It is easy to extrapolate to � → ∞
(the points where the straight lines cross the vertical

axis) and the results are reported in Fig. 1. The ex-

trapolation restores the symmetry x → 1 − x. It is pos-

sible to calculate this quantity from CFT. In fact, the

2-sheeted Riemann surface has the topology of the torus,

on which it can be mapped by a conformal transforma-

tion. The torus partition function for the Ising model

is 2Z
2
torus = (

�4
ν=2 |θν(τ)/η(τ)|)2 [1], where η(τ) is the

Dedekin function, θν(τ) are the Jacobi elliptic functions

and τ is the modular parameter. In our case, τ is given

by the solution of x = [θ2(τ)/θ3(τ)]
4

[21]. For this value

of τ , major simplifications occur (as for η = 1/2 in the

with        y
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limit). We begin with the critical regime where we take
α = 1 − 10−12 (deep in the critical limit). In figure 1 we
present lnELN as a function of r. For r > 0.5 the linear
approximation practically coincides with the computed
values, ELN (r > 0.5) = E0 ∼ e−βcr, where the obtained
constant is βc ∼ 2

√
2 to 1% accuracy.

In the upper inset we observe on a log-log scale the
power law correction to the exponential approximation.
Assuming ELN = E1 ∼ r−α e−βcr, we find ln(E1/E0) ∼
−α ln r. For r < 0.25 (ln r < −1.4) we obtain numeri-
cally α = 1

3 to 1% accuracy (this number was also nu-
merically observed for critical spin systems in [23]). Note
that α is identical to the prefactor of the entanglement
entropy S(l) in the critical field.

In the lower inset we confirm that ELN is scale invari-
ant, depending only on d/l in the critical limit. We plot
lnELN as a function of L, the number of oscillators in
each of the blocks, such that the ratio r ≡ D/L is kept
constant. The plots are given for different values of r.
The curves are approximately constant for L sufficiently
large to correspond to the continuum limit. We have also
verified the same scale invariance for the mutual informa-
tion.

FIG. 1: (Color online). Critical HC: ln ELN as a function of
r ≡ d/l. For r > 0.5 the linear approximation practically coin-
cides with the computed values, βc ∼ 2

√
2. The dotted line is

the the overall estimation, (Eq. 12). Upper inset: ln(E1/E0)
as a function of ln r. Lower inset: ln ELN as a function of
L for different values of r (D, the number of oscillators that
separate the blocks, increases with L).

For arbitrary values of r we find

Ecritical
LN ∼

(

ar−α + f(r)
)

e−βcr, (12)

where f(r) ∼ e−γ/r. Note that as expected f(r % 1) → 1
and f(r → 0) → 0. (Numerically we obtain γ ∼ 3/2
and a ∼ 4/3.) The dotted line in figure 1 shows Eq.
(12) (on logarithmic scale), and provides a very good
approximation.

Let us now analyze Eq. (12) with respect to the
blocks’ size L, keeping their separation D0 constant.
First we note that the first order exponential term
E0(l) ∼ exp(−βcd0/l) has a saddle point d2E0/dl2 = 0
at l = βcd0/2, in which the scaling turns from exponen-
tial at l → 0 to a power of 2. At l ∼ βcd0, E0(l) already
scales logarithmically and for l/d0 % 1, E0(l) saturates.
However, at this limit the power law correction becomes
the dominant factor, where ELN ∼ l1/3. As the power
law is obtained from the slope in a log-log plot, we show
in figure 2, d(lnELN )/d(lnL) as a function of lnL for
several values of the separations D0. We also add the
saddle points at L ∼

√
2D0 for each of the curves, which

indicate the power of 2. In addition, asymptotically the
plots tend to the 1/3 power.
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FIG. 2: (Color online). Critical HC: d(ln ELN)/d(ln L) as
a function of L for several values of the separation D0:
20, 100, 200, 1000, 2000. The dots indicate the saddle points
where the power is ∼ 2. ELN (L/D0 → 0) ∼ eL, where
ELN(L/D0 % 1) ∼ L1/3 (seen for D0 = 20).
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FIG. 3: (Color online). Noncritical chain. ln ELN as a func-
tion of l for various values of d0. The points ELN (l = d0) fit
a linear curve (broken red) with slope ∼ −2.1.

We now turn to investigate long-range entanglement in

Numerical data: previous results
DMRG results for Ising and XX chain. Two disjoint intervals

Wichterich et al
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FIG. 3: Negativity N as a function of the ratio µ = x

∆
, for the

critical XX at vanishing field (diamonds), critical XY (open
circles) and critical Ising (filled circles) models. The data
for the critical XX model are fitted according to our ansatz,
revealing the parameters h = 0.47, α = 0.96 (dashed line).
The critical Ising model is fitted accordingly, with parameters
h = 0.38, α = 1.68. All data correspond to selected subsets
of possible ratios µ, in favour of visibility.

Naturally, one might ask why we use a numerical
method when the considered models are exactly solvable
by a transformation to free fermions, with the ground
states being fully specified by second moments. In the
case of their bosonic counterparts powerful methods have
been established [13] to compute the negativity of sep-
arated blocks in terms of the second moments, yielding
numerically exact results. However, this method does
not readily generalize to fermions. Thus with current
knowledge, the only option would be to explicitly con-
struct ρSE in the standard (spin) basis. Even after ex-
actly knowing the second moments it is practically unfea-
sible to write down (store for computation) ρSE for large
chains. Hence, we exploit the convenient and effective
representation {|wS〉 ⊗ |wE〉} of ρSE arising in DMRG.

Turning to our results shown in Fig. 2, we see that for a
fixed ratio µ the negativity N (ρSE) shows the distinctive
feature of scale invariance at the critical point λ = λc = 1
of the transverse Ising model. A similar behaviour can
be observed for the other critical models considered here
and for other ratios µ.

Most important and interesting is to enquire how
N (ρSE) depends on different ratios µ in the scale free
point (once data have properly converged with system
size N). From Fig.3 we see that for µ ! 2.5 the data
for the two models γ = 1 and γ = 0.5 match near per-
fectly signalling universality. One further recognises a
generic shape of N (ρSE) as a function of µ for all three
models under consideration, its decay exhibiting a poly-
nomial onset and an exponential tail for µ " 0.2. Given
the polynomial decay of the correlation functions with
spatial separation, it seems plausible that quantum cor-
relations will inherit signatures thereof. However unlike
correlation functions, entanglement is also monogamous
[22]: the entanglement of one block with another can only

be a fraction of its total entanglement with the rest of the
chain. This is another way in which the bipartite entan-
glement between blocks captures the multipartite nature
of entanglement in a system (i.e. between the blocks in a
three block system). At the limit of individual spins this
leads the concurrence to decay very fast with separation.
Generalizing this trend, one may expect an exponential
decay of the entanglement of blocks with separation. In
view of these considerations, we make the ansatz

N (ρSE) ∼ µ−h e−αµ (2)

with real parameters h and α. This ansatz is vindicated
by providing an excellent fit for our data, though the
precise values for α and h inferred from the fitting are
somewhat sensitive (in the second decimal place) to the
chosen fitting interval. One of the intriguing open ques-
tions is how the exponents α and h are related to known
critical exponents. Our fit suggests, in the case of the
XX-model, α = 0.96, h = 0.47 and for the XY mod-
els α = 1.68, h = 0.38. Instead, if one fitted the loga-
rithmic negativity[12], in the present notation defined by
ELN ≡ log2(N+1) , to the same ansatz this would lead to
h = 0.33 ∼ 1/3. The same number was also numerically
observed[23] for finite blocks in infinite harmonic oscilla-
tor chains. This is further confirmation of the correctness
of our work as both models map to the same massless
bosonic field theory in the continuum limit. Note that
in the limit of vanishing separation to block length ra-
tio (vanishing µ) N (ρSE) ∼ µ−h and thus diverges as
∆h for fixed separation (the logarithmic negativity di-
verges as h log2 ∆). Thereby qualitatively it reproduces
the features of block entropy (similar divergent behaviour
was reported[24] for other measures, also including multi-
partite settings[25]), though the negativity and block en-
tropy are not related by any known simple formula in gen-
eral – thus one would not exactly coincide with the other
in any limit. In the limit of large µ, i.e., small blocks of
very distant spins the exponential part will severely dom-
inate and ensure that their entanglement is nearly zero.
This is expected because of the limited entangling capac-
ity of small blocks. This capacity is exhausted by being
entangled to their close neighbors which are granted a
larger share of the entanglement because of the nearest
neighbor nature of interactions.

Summarizing, we have investigated the entanglement
between separated blocks of spins at critical points of spin
chains. We have conjectured an ansatz for the functional
form of the scaling of this entanglement with separation
and size of the blocks and shown it to be an excellent fit
for our data. This functional form involves only a ratio of
length scales and therefore exhibits an interesting scale
invariance, as may be expected for models which can be
mapped to a scale free CFT. It further qualitatively en-
compasses two known limits of entanglement of adjacent
blocks and that of pairs of spins. We further exemplified
invariant features of this entanglement to microscopic
changes within the same universality class. Interesting
open questions are relating the numerically inferred co-

=l/r
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method when the considered models are exactly solvable
by a transformation to free fermions, with the ground
states being fully specified by second moments. In the
case of their bosonic counterparts powerful methods have
been established [13] to compute the negativity of sep-
arated blocks in terms of the second moments, yielding
numerically exact results. However, this method does
not readily generalize to fermions. Thus with current
knowledge, the only option would be to explicitly con-
struct ρSE in the standard (spin) basis. Even after ex-
actly knowing the second moments it is practically unfea-
sible to write down (store for computation) ρSE for large
chains. Hence, we exploit the convenient and effective
representation {|wS〉 ⊗ |wE〉} of ρSE arising in DMRG.

Turning to our results shown in Fig. 2, we see that for a
fixed ratio µ the negativity N (ρSE) shows the distinctive
feature of scale invariance at the critical point λ = λc = 1
of the transverse Ising model. A similar behaviour can
be observed for the other critical models considered here
and for other ratios µ.

Most important and interesting is to enquire how
N (ρSE) depends on different ratios µ in the scale free
point (once data have properly converged with system
size N). From Fig.3 we see that for µ ! 2.5 the data
for the two models γ = 1 and γ = 0.5 match near per-
fectly signalling universality. One further recognises a
generic shape of N (ρSE) as a function of µ for all three
models under consideration, its decay exhibiting a poly-
nomial onset and an exponential tail for µ " 0.2. Given
the polynomial decay of the correlation functions with
spatial separation, it seems plausible that quantum cor-
relations will inherit signatures thereof. However unlike
correlation functions, entanglement is also monogamous
[22]: the entanglement of one block with another can only

be a fraction of its total entanglement with the rest of the
chain. This is another way in which the bipartite entan-
glement between blocks captures the multipartite nature
of entanglement in a system (i.e. between the blocks in a
three block system). At the limit of individual spins this
leads the concurrence to decay very fast with separation.
Generalizing this trend, one may expect an exponential
decay of the entanglement of blocks with separation. In
view of these considerations, we make the ansatz

N (ρSE) ∼ µ−h e−αµ (2)

with real parameters h and α. This ansatz is vindicated
by providing an excellent fit for our data, though the
precise values for α and h inferred from the fitting are
somewhat sensitive (in the second decimal place) to the
chosen fitting interval. One of the intriguing open ques-
tions is how the exponents α and h are related to known
critical exponents. Our fit suggests, in the case of the
XX-model, α = 0.96, h = 0.47 and for the XY mod-
els α = 1.68, h = 0.38. Instead, if one fitted the loga-
rithmic negativity[12], in the present notation defined by
ELN ≡ log2(N+1) , to the same ansatz this would lead to
h = 0.33 ∼ 1/3. The same number was also numerically
observed[23] for finite blocks in infinite harmonic oscilla-
tor chains. This is further confirmation of the correctness
of our work as both models map to the same massless
bosonic field theory in the continuum limit. Note that
in the limit of vanishing separation to block length ra-
tio (vanishing µ) N (ρSE) ∼ µ−h and thus diverges as
∆h for fixed separation (the logarithmic negativity di-
verges as h log2 ∆). Thereby qualitatively it reproduces
the features of block entropy (similar divergent behaviour
was reported[24] for other measures, also including multi-
partite settings[25]), though the negativity and block en-
tropy are not related by any known simple formula in gen-
eral – thus one would not exactly coincide with the other
in any limit. In the limit of large µ, i.e., small blocks of
very distant spins the exponential part will severely dom-
inate and ensure that their entanglement is nearly zero.
This is expected because of the limited entangling capac-
ity of small blocks. This capacity is exhausted by being
entangled to their close neighbors which are granted a
larger share of the entanglement because of the nearest
neighbor nature of interactions.

Summarizing, we have investigated the entanglement
between separated blocks of spins at critical points of spin
chains. We have conjectured an ansatz for the functional
form of the scaling of this entanglement with separation
and size of the blocks and shown it to be an excellent fit
for our data. This functional form involves only a ratio of
length scales and therefore exhibits an interesting scale
invariance, as may be expected for models which can be
mapped to a scale free CFT. It further qualitatively en-
compasses two known limits of entanglement of adjacent
blocks and that of pairs of spins. We further exemplified
invariant features of this entanglement to microscopic
changes within the same universality class. Interesting
open questions are relating the numerically inferred co-

Proposed scaling:

Good exponential, bad power law
Fit unstable

Semi-analytic results for harmonic chain. Two disjoint intervals
Marcovitch et al

l/r

3

limit). We begin with the critical regime where we take
α = 1 − 10−12 (deep in the critical limit). In figure 1 we
present lnELN as a function of r. For r > 0.5 the linear
approximation practically coincides with the computed
values, ELN (r > 0.5) = E0 ∼ e−βcr, where the obtained
constant is βc ∼ 2

√
2 to 1% accuracy.

In the upper inset we observe on a log-log scale the
power law correction to the exponential approximation.
Assuming ELN = E1 ∼ r−α e−βcr, we find ln(E1/E0) ∼
−α ln r. For r < 0.25 (ln r < −1.4) we obtain numeri-
cally α = 1

3 to 1% accuracy (this number was also nu-
merically observed for critical spin systems in [23]). Note
that α is identical to the prefactor of the entanglement
entropy S(l) in the critical field.

In the lower inset we confirm that ELN is scale invari-
ant, depending only on d/l in the critical limit. We plot
lnELN as a function of L, the number of oscillators in
each of the blocks, such that the ratio r ≡ D/L is kept
constant. The plots are given for different values of r.
The curves are approximately constant for L sufficiently
large to correspond to the continuum limit. We have also
verified the same scale invariance for the mutual informa-
tion.

FIG. 1: (Color online). Critical HC: ln ELN as a function of
r ≡ d/l. For r > 0.5 the linear approximation practically coin-
cides with the computed values, βc ∼ 2

√
2. The dotted line is

the the overall estimation, (Eq. 12). Upper inset: ln(E1/E0)
as a function of ln r. Lower inset: ln ELN as a function of
L for different values of r (D, the number of oscillators that
separate the blocks, increases with L).

For arbitrary values of r we find

Ecritical
LN ∼

(

ar−α + f(r)
)

e−βcr, (12)

where f(r) ∼ e−γ/r. Note that as expected f(r % 1) → 1
and f(r → 0) → 0. (Numerically we obtain γ ∼ 3/2
and a ∼ 4/3.) The dotted line in figure 1 shows Eq.
(12) (on logarithmic scale), and provides a very good
approximation.

Let us now analyze Eq. (12) with respect to the
blocks’ size L, keeping their separation D0 constant.
First we note that the first order exponential term
E0(l) ∼ exp(−βcd0/l) has a saddle point d2E0/dl2 = 0
at l = βcd0/2, in which the scaling turns from exponen-
tial at l → 0 to a power of 2. At l ∼ βcd0, E0(l) already
scales logarithmically and for l/d0 % 1, E0(l) saturates.
However, at this limit the power law correction becomes
the dominant factor, where ELN ∼ l1/3. As the power
law is obtained from the slope in a log-log plot, we show
in figure 2, d(lnELN )/d(lnL) as a function of lnL for
several values of the separations D0. We also add the
saddle points at L ∼

√
2D0 for each of the curves, which

indicate the power of 2. In addition, asymptotically the
plots tend to the 1/3 power.
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FIG. 2: (Color online). Critical HC: d(ln ELN)/d(ln L) as
a function of L for several values of the separation D0:
20, 100, 200, 1000, 2000. The dots indicate the saddle points
where the power is ∼ 2. ELN (L/D0 → 0) ∼ eL, where
ELN(L/D0 % 1) ∼ L1/3 (seen for D0 = 20).
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FIG. 3: (Color online). Noncritical chain. ln ELN as a func-
tion of l for various values of d0. The points ELN (l = d0) fit
a linear curve (broken red) with slope ∼ −2.1.

We now turn to investigate long-range entanglement in
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Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)

− c
6 ( ne

2 + 1
ne

)
, (11)

that in the limit ne → 1 gives

||ρT2
A || ∝

�
�1�2

�1 + �2

� c
4

⇒ E =
c

4
ln

�1�2
�1 + �2

+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]

R
CFT
n (y) =

�
(1− y)

2
3 (n− 1

n )
�n−1

k=1 F k
n
(y)F k

n
(1− y)

�n−1
k=1 Re

�
F k

n
(

y
y−1 )F̄ k

n
(

1
1−y )

�

� 1
2

,

(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.

critical for ω=0

Two adjacent intervals of length l: 

ε(y
)-

(ln
 L

)/4

From (1.24) we get the trace norm

||ρTA ||1 = lim
p→ 1/2

Tr(ρTA)
2p

=

� �

r

|cr|
�2

(1.25)

By using that TrA ρA = 1 in (1.23) and (1.24), we find

Tr ρTA = lim
p→ 0

Tr(ρTA)
2p+1

= 1 Tr(ρTA)
2

= lim
p→ 1

Tr(ρTA)
2p

= 1 (1.26)

An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Tr(ρT2
A )

n
= �Tn(u) T̄n(v)� Tn T̄n (3.1)

Tr|ρT2 | =

�

i

|λi| =

�

λi>0

λi −
�

λi<0

λi TrρA = 1 (3.2)

1

4
ln

sin(
π�1
L ) sin(

π�2
L )

sin
π(�1+�2)

L

+ cnst (3.3)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.4)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.5)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.6)

Thus we have

Tr(ρTA)
2p+1

=
c2p+1

�
c
6 (2p+1− 1

2p+1 )
Tr(ρTA)

2p
=

�
cp

�
c
6 (p− 1

p )

�2

(3.7)
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From (1.24) we get the trace norm

||ρTA ||1 = lim
p→ 1/2

Tr(ρTA)
2p

=

� �

r

|cr|
�2

(1.25)

By using that TrA ρA = 1 in (1.23) and (1.24), we find

Tr ρTA = lim
p→ 0

Tr(ρTA)
2p+1

= 1 Tr(ρTA)
2

= lim
p→ 1

Tr(ρTA)
2p

= 1 (1.26)

An important property of EN (ρ) is that for pure states it is an upper bound of the entanglement

entropy [2]. This comes from (1.14) and the concavity of the logarithm as follows

SA = 2

�

j

|cj |2 log |cj |−1 � 2 log

� �

j

|cj |
�

= log ||ρTA ||1 (1.27)

where (1.25) has been used.

2 Separability and transposition

3 Conformal field theory description

3.1 One interval in a pure state

Tr(ρAn = �Tn(u) T̄n(v)� Tn T̄n (3.1)

rn = ln
Tr(ρ

TA2=�

A )n

Tr(ρ
TA2=L/4

A )n
(3.2)

Can we say that T 2
n =

�n
k=1 T2k/n? NO, otherwise ∆T 2

n
=

�
k ∆T2k/n

We are going to use that (WHY?)

Tr(ρTA)
n

= �T 2
n (0) T̄ 2

n (�)� (3.3)

where ∆T 2
n

= ∆̄T 2
n
.

Now we employ the identities (1.23) and (1.24) distinguishing between the odd and even cases

Tr(ρTA)2p+1 = �T2p+1(0) T̄2p+1(�)� =⇒ ∆T 2
2p+1

= ∆T2p+1

Tr(ρTA)2p =
�
�Tp(0) T̄p(�)�

�2
=⇒ ∆T 2

2p
= 2∆Tp

(3.4)

where we recall that

∆Tn = ∆̄Tn =
c

12

�
n− 1

n

�
(3.5)

Thus we have

Tr(ρTA)
2p+1

=
c2p+1

�
c
6 (2p+1− 1

2p+1 )
Tr(ρTA)

2p
=

�
cp

�
c
6 (p− 1

p )

�2

(3.6)
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3

Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)

− c
6 ( ne

2 + 1
ne

)
, (11)

that in the limit ne → 1 gives

||ρT2
A || ∝

�
�1�2

�1 + �2

� c
4

⇒ E =
c

4
ln

�1�2
�1 + �2

+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]

R
CFT
n (y) =

�
(1− y)

2
3 (n− 1

n )
�n−1

k=1 F k
n
(y)F k

n
(1− y)

�n−1
k=1 Re

�
F k

n
(

y
y−1 )F̄ k

n
(

1
1−y )

�

� 1
2

,

(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.
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Two adjacent intervals. Let us now consider the non-

trivial configuration in which two intervals A1 and A2 of

length �1 and �2 share a common boundary (let us say at

the origin) which is described by the 3-point function

Tr(ρT2
A )

n
= �Tn(−�1)T̄ 2

n (0)Tn(�2)� . (10)

whose form is determined by conformal symmetry [15].

For n = ne even, using the dimensions of the twist oper-

ators calculated above, we find

Tr(ρT2
A )

ne ∝ (�1�2)
− c

6 ( ne
2 −

2
ne

)
(�1 + �2)
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6 ( ne

2 + 1
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)
, (11)

that in the limit ne → 1 gives

||ρT2
A || ∝
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�1 + �2
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⇒ E =
c

4
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+ cnst. (12)

For n = no odd, Tr(ρT2
A )

no ∝ (�1�2(�1 + �2))
− c

12 (no− 1
no

)

that for no → 1 gives again TrρT2
A = 1.

All the previous results may be generalized to the case

of a finite system by using a conformal mapping from the

cylinder to the plane. This results in replacing � with the

chord length (L/π) sin(π�/L).

Two disjoint intervals. For the more interesting and

complicated situation of two disjoint intervals of Fig. 1,

global conformal invariance gives (�i = |vi − ui|)

Tr(ρT2
A )

n ∝ [�1�2(1− y)]
− c

6 (n− 1
n )Gn(y) , (13)

where y =
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

is the four-point ratio (0 < y <

1) and Gn(y) a function depending on the full operator

content of the theory. Trρn
A in Eq. (4) admits the same

scaling form, but with a different scaling function Fn(y)

which has been calculated for the free compactified boson

and for the Ising model [7–9]. Since Eqs. (4) and (5)

are related by an exchange of two twist fields, these two

functions are related as

Gn(y) = (1− y)
c
3 (n− 1

n )Fn

�
y/(y − 1)

�
. (14)

Taking the replica limit ne → 1, we obtain

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln
�
Fne

�
y/(y − 1)

��
. (15)

Then for conformal invariant systems, the negativity is a

scale invariant quantity (i.e. a function only of y) because

all the dimensional prefactors cancel in the replica limit.

This has been argued already in the literature on the

basis of numerical data [10, 11], but never proved.

In Refs. [7, 8] the function Fn(x) has been obtained

for some CFTs only for 0 < x < 1 and it is a non-trivial

technical problem to extend it to the domain x < 0 in

which we are now interested. It is a hard open problem

to find the analytic continuation to ne → 1. We will

report these technicalities for few specific cases elsewhere

[16] and we limit here to discussing the main physical

consequences of Eqs. (13), (14), and (15). These are

highlighted by considering the limit y → 1 and y → 0, i.e.

close and far intervals respectively. If u2 → v1 then y → 1

and we should recover the previous result for adjacent

intervals. Comparing Eqs. (11) and (13) we have Gn(y) ∝
(1 − y)

α
(apart from possible multiplicative logarithmic

corrections) with α equal to ∆T 2
n

the dimension of T 2
n , i.e.

αne = c(ne/2− 2/ne)/6 and αno = c(no− 1/no)/12. For

ne → 1 we have αne→1 = −c/4, i.e. the scaling function

diverges approaching y = 1. The opposite limit of far

intervals y → 0 is worked out from the small y expansion

of Fn(y) carried out in full generality in Ref. [8]. This is a

sum over all intermediate operators of the form Fn(y) =�
i y

2∆isn(i). The coefficients sn(i) have been explicitly

calculated [8] and they do not depend on the parity of

n. Thus, in the limit n → 1 all these coefficients vanish,

because the analytic continuation for even and odd n is

the same (as the direct computation shows) and E(y)

vanishes in y = 0 faster than any power.

The harmonic chain. We check the CFT results

against exact computations in the harmonic chain with

Hamiltonian

H =
1

2

L�

j=1

�
p
2
j + ω2

q
2
j +

�
qj+1 − qj

�2
�

, (16)

and periodic boundary conditions. For ω = 0 the chain

is critical and its continuum limit is the c = 1 free boson.

The construction of the partial transpose is detailed in

[17] and here we limit to presenting numerical checks of

our CFT predictions. For ω = 0, the zero mode leads to

divergent expressions, thus we work at finite but small ω
such that ωL � 1.

We first consider the case of two adjacent intervals of

equal length �. The results for Tr(ρT2
A )

n
for n = 3, 4, as

well as the results for the negativity E are reported in

Fig. 4 where they are compared with the finite size CFT

predictions finding excellent agreement.

The negativity of two disjoint intervals has been al-

ready considered numerically [11]. We consider here the

ratio

Rn(y) ≡ Tr(ρT2
A )

n

Trρn
A

, (17)

in which the non-universal parts due to the zero mode

cancel and we are left with a universal function of y.

The CFT prediction for this ratio is [16]

R
CFT
n (y) =

�
(1− y)

2
3 (n− 1

n )
�n−1

k=1 F k
n
(y)F k

n
(1− y)

�n−1
k=1 Re

�
F k

n
(

y
y−1 )F̄ k

n
(

1
1−y )

�

� 1
2

,

(18)

where Fq(x) ≡2F1(q, 1− q, 1, x). This prediction is com-

pared to the numerical data in Fig. 5. As L increases,

the data approach the CFT result. The differences with

the asymptotic formula are due to the presence of un-

usual corrections to the scaling [18] of the form L
−2/n

.

Problem:
No analytic continuation 

ℰ(y) → (1-y)-1/4 ln (1-y) 
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Generalizations

 for two intervals for compactified boson
for two intervals for the Ising CFT

Finite temperature

Massive theories

Systems with boundaries

Already worked out, to be published soon 

Tr (ρT2)n
A

Tr (ρT2)n
A
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Open problems

at least in some limiting cases

fermions is still missing!

Out of equilibrium?

Work out the analytic continuation at ne →1  

An approach for calculating the negativity for free

Accurate numerical tests of the CFT predictions
(in progress)

(even for the entanglement entropy)

27


