Entanglement negativity and quantum field theory

Pasquale Calabrese

University of Pisa

KITP, August 2012

Joint work with John Cardy and Erik Tonni, I206.3092

Entanglement entropy

Consider a system in a quantum state $|\psi\rangle(\rho=|\psi\rangle\langle\psi|)$

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

Alice can measure only in A, while Bob in the remainder B
Alice measures are entangled with Bob's ones: Schmidt deco

$$
|\Psi\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle_{A}\left|\Psi_{n}\right\rangle_{B} \quad c_{n} \geq 0, \sum_{n} c_{n}^{2}=1
$$

- If $c_{1}=1 \Rightarrow|\psi\rangle$ unentagled
- If c_{i} all equal $\Rightarrow|\psi\rangle$ maximally entangled

A natural measure is the entanglement entropy ($\rho_{\mathrm{A}}=\operatorname{Tr}_{\mathrm{B}} \rho$)

$$
S_{\mathrm{A}} \equiv-\operatorname{Tr} \rho_{\mathrm{A}} \ln \rho_{\mathrm{A}}=-\sum_{n} c_{n}^{2} \ln c_{n}^{2}=S_{\mathrm{B}}
$$

Entanglement entropy

If $|\psi\rangle$ is the ground state of a local Hamiltonian

Area Law

$S_{A} \propto$ Area separating A and B
[Srednicki '93]
If the Hamiltonian has a gap
B

In a $1+1$ D CFT Holzhey, Larsen, Wilczek '94

$$
S_{A}=\frac{c}{3} \ln \ell
$$

This is the most effective way to determine the central charge

Path integral and Riemann surfaces

For n integer, $\operatorname{Tr} \rho_{A}^{n}$ is the partition function on a n-sheeted Riemann surface

Replica trick: $S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}$

Riemann surfaces and CFT

This Riemann surface is mapped to the plane by

$$
w \rightarrow \zeta=\frac{w-u}{w-v} ; \zeta \rightarrow z=\zeta^{1 / n} \Rightarrow w \rightarrow z=\left(\frac{w-u}{w-v}\right)^{1 / n}
$$

$\operatorname{Tr} \rho_{A}^{n}$ is equivalent to the 2-point function of twist fields
$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{I}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle$ with scaling dimension

$$
\Delta_{\mathcal{T}_{n}}=\frac{c}{12}\left(n-\frac{1}{n}\right)
$$

Entanglement of non-complementary parts

$S_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}$ gives the entanglement between A and B
The mutual information $S_{\mathrm{A}_{1}}+S_{\mathrm{A}_{2}}-S_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}$ gives an upper bound on the entanglement between A_{1} and A_{2}

Entanglement of non-complementary parts

$S_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}$ gives the entanglement between A and B

The mutual information $S_{\mathrm{A}_{1}}+S_{\mathrm{A}_{2}}-S_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}$ gives an upper bound on the entanglement between A_{1} and A_{2}

What is the entanglement between the two non-complementary parts A_{1} and A_{2} ?

A computable measure of entanglement exists: the logarithmic negativity [Vidal-Werner 02]

Entanglement negativity

Let us denote with $\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ two bases in A_{1} and A_{2}
ρ is the density matrix of $\mathrm{A}_{1} \cup \mathrm{~A}_{2}$, not pure The partial transpose is

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

And the logarithmic negativity

$$
\mathscr{E} \equiv \ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

It measures "how much" the eigenvalues of $\rho^{T_{2}}$ are negative because $\operatorname{Tr}\left(\rho^{T_{2}}\right)=1$
\mathscr{E} is an entanglement monotone (does not decrease under LOCC)
It is also additive

A replica approach

O Let us consider traces of integer powers of $\rho^{T_{2}}$

$$
\begin{aligned}
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \quad n_{e} \text { even } \\
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}} & =\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}} \quad n_{o} \text { odd }
\end{aligned}
$$

O The analytic continuations from n_{e} and n_{o} are different
$\mathcal{E}=\lim _{n_{e} \rightarrow 1} \ln \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1$
O For a pure state $\rho=|\psi\rangle\langle\psi| \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}= \begin{cases}\operatorname{Tr} \rho_{2}^{n} & n=n_{o} \text { odd } \\ \left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} \text { even }\end{cases}$
O For $n_{e} \rightarrow 1$, we recover

$$
\mathcal{E}=2 \ln \operatorname{Tr} \rho_{2}^{1 / 2}
$$

Renyi entropy $1 / 2$

Negativity and QFT

$\begin{array}{lllll}\mathrm{B} & \mathrm{A}_{1} & \mathrm{~B} & \mathrm{~A}_{2} & \mathrm{~B}\end{array}$

Tripartion:

u_{1}	$\mathrm{~V}_{1}$	u_{2}	$\mathrm{~V}_{2}$

$$
\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle
$$

Negativity and QFT

The partial transposition with respect to A_{2} corresponds to exchange row and column indices in A_{2}

Negativity and QFT

The partial transposition with respect to A_{2} corresponds to exchange row and column indices in A_{2}

It is convenient to reverse the order of indices

$$
\begin{aligned}
\rho_{A}^{C_{2}}=C & \rho_{A}^{T_{2}} C=\longleftrightarrow \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\operatorname{Tr}\left(\rho_{A}^{C_{2}}\right)^{n}
\end{aligned}
$$

Negativity and QFT

Gluing together n of the above
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=$

$$
=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle
$$

The partial transposition exchanges two twist operators
$\operatorname{Tr}\left(\rho_{A} \rho_{A}^{T_{2}}\right)$ is the partition function on a Klein bottle

Negativity and QFT

Pure States in QFT

τ_{n}^{2} connects the j-th sheet with the $(j+2)$-th one:

- For $n=n_{e}$ even, the R-surface decouples in two $n_{e} / 2$ surface

0For $n=n_{o}$ odd, the n_{o}-sheeted surface remains n_{o}-sheeted

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr}_{\rho_{A_{2}}}^{n_{e} / 2}\right)^{2}$
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n=4} n_{e} / 2.2\right.$
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{I}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}$,

Pure States in CFT

From $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle$ and

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} & =\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2} \\
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} & =\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}},
\end{aligned}
$$

$\mathcal{T}_{n_{o}}^{2}$ has dimension $\Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)$, the same as $\mathcal{T}_{n_{o}}$
$\mathcal{T}_{n_{e}}^{2}$ has dimension $\Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)$

$$
\left\|\rho_{A}^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto \ell^{\frac{c}{2}} \Rightarrow \mathcal{E}=\frac{c}{2} \ln \ell+\mathrm{cnst}
$$

Two adjacent intervals

$-\ell_{1}$
 0
 ℓ_{2}

3-point function:

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n e}{2}+\frac{1}{n_{e}}\right)}$

$$
\left\|\rho_{A}^{T_{2}}\right\| \propto\left(\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\right)^{\frac{c}{4}} \Rightarrow \mathcal{E}=\frac{c}{4} \ln \frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}+\text { cnst }
$$

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}$

Two disjoint intervals

 Prelude: The entanglement entropy$$
\begin{array}{r}
\frac{\mathrm{A}_{1}}{\mathrm{u}_{1}} \mathrm{~V}_{1} \\
\mathrm{u}_{2} \\
\operatorname{Tr}_{A}^{n}=c_{n}^{2}\left(\frac{\left|u_{1}-u_{2}\right|\left|v_{1}-v_{2}\right|}{\left|u_{1}-v_{1}\right|\left|u_{2}-v_{2}\right|\left|u_{1}-v_{2}\right|\left|u_{2}-v_{1}\right|}\right)^{\frac{c}{6}(n-1 / n)} \\
F_{n}(x)
\end{array} \quad x=\frac{\mathrm{V}_{2}}{\left(u_{1}-v_{1}\right)\left(u_{2}-v_{2}\right)}\left(u_{1}-u_{2}\right)\left(v_{1}-v_{2}\right) .
$$

$F_{n}(x)$ is a calculable function depending on the full operator content
E.g. for Luttinger CFT:

$$
F_{n}(x)=\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)}{[\Theta(0 \mid \Gamma)]^{2}}
$$

Two disjoint intervals Prelude: The [Caragio, Gliozzi 09]
 Prelude: The entanglement entropy

$$
\begin{gathered}
\frac{\mathrm{A}_{1}}{\mathrm{u}_{1}} \mathrm{~V}_{1} \mathrm{~A}_{2} \\
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\frac{\mathrm{u}_{2}}{\left|u_{1}-v_{1}\right|\left|u_{2}-v_{2}\right|\left|u_{1}-v_{2}\right|\left|u_{2}-v_{1}\right|}\right)^{\frac{c}{6}(n-1 / n)} F_{n}(x) \quad x=\frac{\left(u_{1}-v_{1}\right)\left(u_{2}-v_{2}\right)}{\left(u_{1}-u_{2}\right)\left(v_{1}-v_{2}\right)}=4-\text { point ratio }
\end{gathered}
$$

$F_{n}(x)$ is a calculable function depending on the full operator content It admits the universal expansion

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(n-\frac{1}{n}\right)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

Trivial, but important for the following: At $n=1$ all coefficients are vanishing, since $\operatorname{Tr} \rho_{\mathrm{A}}=1$

Two disjoint intervals

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle
$$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n} \propto\left[\ell_{1} \ell_{2}(1-y)\right]^{-\frac{c}{6}\left(n-\frac{1}{n}\right)} \mathcal{G}_{n}(y)
$$

Being $\operatorname{Tr} \rho_{A}^{n}$ and $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ related by an exchange of twists:

$$
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right)
$$

$$
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \ln \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1} \ln \left[\mathcal{F}_{n_{e}}\left(\frac{y}{y-1}\right)\right]
$$

Two disjoint intervals

$$
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \ln \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1} \ln \left[\mathcal{F}_{n_{e}}\left(\frac{y}{y-1}\right)\right]
$$

Consequences:

O The Negativity is a scale invariant quantity!
O Since $\mathcal{F}_{n}(y)=\sum_{i} y^{2 \Delta_{i}} s_{n}(i), \mathcal{E}(y)$ vanishes in $y=0$ faster than any power

O For $u_{l} \rightarrow v_{2}, y \rightarrow 1$ and we recover the result for adjacent intervals

$\mathcal{G}(y) \rightarrow(1-y)^{-c / 4}$ times possible log corrections
i.e. the negativity diverges for $y \rightarrow 1$

Finite Systems

A finite system of length L with PBC can be obtained mapping the the plane to the cylinder with the conformal mapping

$$
z \rightarrow w=\frac{L}{2 \pi} \log z
$$

This has the net effect to replace any length with

$$
\ell \rightarrow \frac{L}{\pi} \sin \frac{\pi \ell}{L}
$$

Thus for two adjacent intervals we have

$$
\mathcal{E}(y)=\frac{c}{4} \ln \left(\frac{L}{\pi} \frac{\sin \left(\frac{\pi \ell_{1}}{L}\right) \sin \left(\frac{\pi \ell_{2}}{L}\right)}{\sin \frac{\pi\left(\ell_{1}+\ell_{2}\right)}{L}}\right)+\mathrm{cnst}
$$

while for two disjoint ones of the same length l at distance r

$$
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \ln \mathcal{G}_{n_{e}}(y) \text { with } \quad y=\left(\frac{\sin \pi \ell / L}{\sin \pi(\ell+r) / L}\right)^{2}
$$

Numerical data: previous results

O DMRG results for Ising and XX chain. Two disjoint intervals

Proposed scaling: $\mathcal{N}\left(\rho_{S E}\right) \sim \mu^{-h} e^{-\alpha \mu}$

$$
\begin{array}{ll}
\alpha=0.96, & h=0.47 \\
\alpha=1.68, & h=0.38 \\
\text { Ising }
\end{array}
$$

Good exponential, bad power law Fit unstable

- Semi-analytic results for harmonic chain. Two disjoint intervals

Proposed scaling:

$$
\begin{gathered}
E_{L N}^{\text {critical }} \sim\left(a r^{-\alpha}+f(r)\right) e^{-\beta_{c} r} \quad \mathrm{r}=\mathrm{l} / r \\
\alpha \sim 1 / 3
\end{gathered}
$$

Good exponential, bad power law

Numerical data: new results

Semi-analytic results for harmonic chain

$$
H=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right]
$$

critical for $\omega=0$
Two adjacent intervals of length ℓ :

Numerical data: new results

Two disjoint intervals of length ℓ :

Generalizations

Already worked out, to be published soon

- Systems with boundaries
- $\operatorname{Tr}\left(\rho_{\mathrm{A}}^{T_{2}}\right)^{n}$ for two intervals for compactified boson
- $\operatorname{Tr}\left(\rho_{\mathrm{A}}^{T_{2}}\right)^{n}$ for two intervals for the Ising CFT
- Finite temperature
- Massive theories

Open problems

- Work out the analytic continuation at $n_{e} \rightarrow 1$ at least in some limiting cases (even for the entanglement entropy)
- An approach for calculating the negativity for free fermions is still missing!
- Accurate numerical tests of the CFT predictions (in progress)
- Out of equilibrium?

