Regression relation for pure quantum states and its implications for efficient computing

Boris Fine

Institute for Theoretical Physics Heidelberg Graduate School of Fundamental Physics University of Heidelberg

fine@uni-heidelberg.de

Innovationsfonds FRONTIER/DFG

Motivation:

Energy shell in the phase space

Definition and implications of quantum chaos?

How to assign statistical weight to quantum superpositions that are not allowed classically?

Outline:

- 1. Regression relation for pure quantum states and its implication for efficient computing.
- 2. Properties of Lyapunov instabilities in classical spin systems.
- 3. Implications of microscopic chaos for the relaxation behavior in quantum spin systems.
- 4. Quantum ensemble with fixed energy expectation value and unrestricted participation of eigenstates

Regression relation for pure quantum states and its implications for efficient computing [T. A. Elsayed and B. F., arXiv:1208.4652]

Onsager's regression hypothesis (1931):

"the average regression of fluctuations will obey the same laws as the corresponding macroscopic irreversible process"

<u>Today's view</u>: ORH = high-temperature limit of the fluctuation-dissipation theorem.

 $\mathrm{Tr}\left\{ \hat{A}(t)\rho_{\mathrm{neq}}\right\} = \frac{\alpha}{N}\mathrm{Tr}\left\{ \hat{A}(t)\hat{A}(0)\right\}$

 $\rho_{\text{neq}} = \frac{1}{N} \exp(\alpha \hat{A})$

Felix Israilev: What is the practicality of typicality?

Quantum typicality:

One quantum superposition is enough to represent the entire ensemble.

microcanonical ensemble	 J. Gemmer, M. Michel, and G. Mahler, <i>Quantum Thermodynamics</i> S. Goldstein, J. L. Leibowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006) S. Popescu, A. J. Short, and A. Winter, Nature Physics 2, 754 (2006)
relaxation	C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102 , 110403 (2009)
equilibrium fluctuations	C. Bartsch and J. Gemmer, Europhys. Lett. 96, 60008 (2011)
quantum parallelism	lvarez, E. P. Danieli, P. R. Levstein, and H. M. Pastawski, Phys. Rev. Lett. 101, 120503 (2008)

Onsager's regression hypothesis:

$$\operatorname{Tr}\left\{\hat{A}(t)\rho_{\mathrm{neq}}\right\} = \frac{\alpha}{N}\operatorname{Tr}\left\{\hat{A}(t)\hat{A}(0)\right\}$$

Relaxation of QM expectation value in a pure state:

$$\langle \Psi_{\rm neq} | \hat{A}(t) | \Psi_{\rm neq} \rangle = \operatorname{Tr} \left\{ \hat{A}(t) \rho_{\rm neq} \right\} \left[1 + O\left(\frac{1}{\alpha \sqrt{N}}\right) \right]$$

C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009)

Fluctuations of QM expectation value in a pure state: [T. A. Elsayed and B. F., arXiv:1208.4652]:

$$C(t,T) = \frac{1}{N^2} \operatorname{Tr}\left\{\hat{A}(t)\hat{A}(0)\right\} + \Delta_1$$

$$C(t,T) \equiv \frac{1}{2T} \int_{-T}^{T} dt' \langle \Psi_{\rm eq} | \hat{A}(t+t') | \Psi_{\rm eq} \rangle \langle \Psi_{\rm eq} | \hat{A}(t') | \Psi_{\rm eq} \rangle$$

$$|\Psi_{\mathrm{eq}}
angle = \sum_{k=1}^{N} a_k |\phi_k
angle$$

$$P(|a_k|^2) = N \exp(-N|a_k|^2)$$

with random phases

$$\overline{\Delta_1^2} \approx \frac{1}{2\sqrt{2} T N^4} \int_{-T\sqrt{2}}^{T\sqrt{2}} dt_2 \left(\left[\text{Tr} \left\{ \hat{A}(t_2) \hat{A}(0) \right\} \right]^2 + \text{Tr} \left\{ \hat{A}(t-t_2) \hat{A}(0) \right\} \text{Tr} \left\{ \hat{A}(t+t_2) \hat{A}(0) \right\} \right)$$

$$C(t,T) \equiv \frac{1}{2T} \int_{-T}^{T} dt' \langle \Psi_{\rm eq} | \hat{A}(t+t') | \Psi_{\rm eq} \rangle \langle \Psi_{\rm eq} | \hat{A}(t') | \Psi_{\rm eq} \rangle$$

$$\mathrm{Tr}\left\{\hat{A}(t)\rho_{\mathrm{neq}}\right\} = \frac{\alpha}{N}\mathrm{Tr}\left\{\hat{A}(t)\hat{A}(0)\right\}$$

$$\langle \Psi_{\rm neq} | \hat{A}(t) | \Psi_{\rm neq} \rangle = \operatorname{Tr} \left\{ \hat{A}(t) \rho_{\rm neq} \right\} \left[1 + O\left(\frac{1}{\alpha \sqrt{N}}\right) \right]$$

$$C(t,T) = \frac{1}{N^2} \operatorname{Tr} \left\{ \hat{A}(t) \hat{A}(0) \right\} + \Delta_1$$

Regression relation for pure states:

$$\lim_{N \to \infty} \langle \Psi_{\rm neq} | \hat{A}(t) | \Psi_{\rm neq} \rangle = \alpha \lim_{T \to \infty, N \to \infty} NC(t,T)$$

Equilibrium magnetization noise in a system of n classical spins

Equilibrium noise of <u>monitored</u> magnetization in a system of

n <u>spins 1/2</u>

Equilibrium noise of the <u>magnetization expectation value</u> in a random pure state for a system of $n \frac{\text{spins 1/2}}{\text{spins 1/2}}$

$$\sqrt{n\left\langle S_{iz}^{2}\right\rangle}$$

Direct sampling of the trace:

$$\langle \Psi_{\rm eq} | \hat{A}(t) \hat{A}(0) | \Psi_{\rm eq} \rangle = \frac{1}{N} \operatorname{Tr} \left\{ \hat{A}(t) \hat{A}(0) \right\} + \Delta_2$$

$$\overline{\Delta_2^2} = \frac{1}{N^2} \operatorname{Tr} \left\{ \hat{A}(t) \hat{A}(0) \hat{A}(t) \hat{A}(0) \right\}$$

Intermediate dynamic structure factor $I_{\pi}(t)$ for the Heisenberg chain of 20 spins 1/2

Direct integration of the Schrödinger equation – 4th order Runge-Kutta

$$\begin{aligned} |\Psi(t + \Delta t)\rangle &= |\Psi(t)\rangle + |v_1\rangle + |v_2\rangle + |v_3\rangle + |v_4\rangle \\ |v_1\rangle &= -i\mathcal{H}|\Psi(t)\rangle\Delta t \\ |v_2\rangle &= -\frac{1}{2}i\mathcal{H}|v_1\rangle\Delta t \\ |v_3\rangle &= -\frac{1}{3}i\mathcal{H}|v_2\rangle\Delta t \\ |v_4\rangle &= -\frac{1}{4}i\mathcal{H}|v_3\rangle\Delta t \end{aligned}$$

Calculations of time correlation functions require propagating <u>two pure states</u>:

 $\begin{aligned} \langle \Psi_{\rm eq} | \hat{A}(t) \hat{A}(0) | \Psi_{\rm eq} \rangle &= \langle \Psi_{\rm eq}(t) | \hat{A} | \Phi(t) \rangle \\ | \Psi_{\rm eq}(t) \rangle &= \exp(-i\mathcal{H}t) | \Psi_{\rm eq}(0) \rangle \\ | \Phi(t) \rangle &= \exp(-i\mathcal{H}t) | \Phi(0) \rangle \\ | \Phi(0) \rangle &= \hat{A} | \Psi_{\rm eq}(0) \rangle \end{aligned}$

<u>Memory requirement</u>:

- ~ $N \log N$ for short-range interactions
- ~ $N \log^2 N$ for long-range interactions

Complete diagonalization: ~ N^2

Part 2: Properties of Lyapunov instabilities in classical spin systems [A. de Wijn, B. Hess, and B. F., Phys. Rev. Lett. **109**, 034101 (2012)]

$$H = \sum_{i < j}^{\text{NN}} J_x S_{ix} S_{jx} + J_y S_{iy} S_{jy} + J_z S_{iz} S_{jz}$$

Survey of the largest Lyapunov exponents

$$\mathcal{H} = \sum_{m < n}^{NN} J_{x} S_{m}^{x} S_{n}^{x} + J_{y} S_{m}^{y} S_{n}^{y} + J_{z} S_{m}^{z} S_{n}^{z}$$

Interaction constants are randomly sampled

on a "sphere" $J_x^2 + J_y^2 + J_z^2 = 1$

Lessons learned:

- No integrable cases for large spin lattices besides the case of $J_x = J_y = 0$; $J_z = 1$.
- The largest Lyapunov exponent is mostly controlled by $J_{\text{max}} = \max \left[|J_x|, |J_y|, |J_z| \right]$
- The dependence on $J_{\rm max}\,$ is mostly universal . For $J_{\rm max} < 0.85,\,$ it is nearly flat.
- Near the integrable limit $J_{\max} = 1$, the scaling is universal :

A. de Wijn, B. Hess, and B. F., Phys. Rev. Lett. **109**, 034101 (2012)

Lyapunov spectra [A. de Wijn, B. Hess, and B. F., in preparation]

Same lattice, different number of spins

Size dependence of the largest Lyapunov exponent

Part 3: Implications of microscopic chaos for the observable behavior of many-spin systems.

Level spacing statistics in not observable in many-body quantum systems

Lyapunov instabilities are not observable in many-body classical systems

Can the notion of chaos be used as a quantitative resource for solving non-perturbative relaxation problems?

In this part:

 manifestations of chaos in the long-time behavior of nuclear spin decays in solids

Formulation of NMR free induction decay problem

$$\mathcal{H} = \sum_{m < n} J_{mn}^{z} S_{m}^{z} S_{n}^{z} + J_{mn}^{\perp} \left(S_{m}^{x} S_{n}^{x} + S_{m}^{y} S_{n}^{y} \right)$$

magnetic dipolar interaction:

$$J_{mn}^{z} = -2 J_{mn}^{\perp} = \frac{g^{2} \hbar^{2} (1 - 3 \cos^{2} \theta_{mn})}{r_{mn}^{3}}$$

Generic long-time behavior of nuclear spin decays: [*B. F.*, Int. J. Mod. Phys. B **18**, 1119 (2004)]

$$G(t) \sim e^{-\gamma t} \cos (\omega t + \phi)$$
, where $\gamma, \omega \sim J \sqrt{N_{nn}}$

Markovian behavior on non-Markovian time scale is a manifestation of chaos.

Chaotic eigenmodes of the time evolution operator: Pollicott-Ruelle resonances [D. Ruelle, PRL **56**, 405 (1986)]

Expansion-contraction picture in the phase space:

Correlated diffusion equation for one-spin distribution function:Asymptotic behavior of many-spin
density matrices:
$$\frac{\partial f(t, \mathbf{x})}{\partial t} = \frac{\partial}{\partial \mathbf{x}} \left\{ D(\mathbf{x}) \frac{\partial f(t, \mathbf{x})}{\partial \mathbf{x}} - \int_{V_{v}} K(\mathbf{x}, \mathbf{x}') f(t, \mathbf{x}') d\mathbf{x}' \right\}$$
 $Asymptotic behavior of many-spindensity matrices:$

Quantitative relations between NMR free induction decays and spin echoes [B.F. PRL 94, 247601 (2005)]

Identical constants γ and ω in $e^{-\gamma t} \cos (\omega t + \phi)$

Experimental results for solid xenon:

S. W. Morgan et al, PRL 101, 067601 (2008)

Experimental results for CaF₂:

E. G. Sorte et al, PRB **83**, 064302 (2011)

$$\rho_{kl}(t) = \rho_{0,kl} e^{-(\gamma + i\omega)t} + \rho_{0,kl}^{+} e^{-(\gamma - i\omega)t}$$

Experimental observation of the second slowest relaxational eigenmode

$$\frac{\partial f(t,\mathbf{x})}{\partial t} = \frac{\partial}{\partial \mathbf{x}} \left\{ D(\mathbf{x}) \frac{\partial f(t,\mathbf{x})}{\partial \mathbf{x}} - \int_{V_{\mathbf{x}'}} K(\mathbf{x},\mathbf{x}') f(t,\mathbf{x}') d\mathbf{x}' \right\}$$

B. Meier et al., Phys. Rev. Lett. 108, 177602 (2012).

Part 4: Quantum ensemble with fixed energy expectation value and unrestricted participation of eigenstates

Microcanonical ensemble

Quantum micro-canonical (QMC) ensemble:

$$\Psi = \sum_{i=1}^{N} C_i \phi_i$$

$$p_i = |C_i|^2$$

$$\sum_{i=1}^{N} E_i p_i = E_{\rm av}$$

unrestricted participation of eigenstates

$$p_i \ge 0, \quad \forall i$$

W. K. Wootters, Found. Phys. 20, 1365 (1990).

D. C. Brody and L. P. Hughston, J. Math. Phys. **39**, 6502 (1998).

C. M. Bender, D. C. Brody, and D. W. Hook, J. Phys. A **38**, L607 (2005).

B.V. Fine, Phys. Rev. E **80**, 051130 (2009).

B. Fresch and G. J. Moro, J. Phys. Chem. A **113**, 14 502 (2009).

M. Müller, D. Gross, and J. Eisert, Commun. Math. Phys. **303**, 785 (2011).

Results: **QMC-based statistics for an isolated system with** *N>>1* B.F., PRE <u>80</u>, 051130 (2009)

$$V_k(p_k) = V_k(0) \exp\left\{ (N-3) \left[\log(1-p_k) + \int_{E_{av}}^{E_{av} - \frac{(E_k - E_{av})p_k}{1-p_k}} \lambda[E] dE \right] \right\}$$

small- p_k approximation

$$V_k(p_k) = V_k(0)e^{-Np_k[1+\lambda(E_k-E_{\rm av})]}$$
$$\langle p_k \rangle = \frac{1}{N[1+\lambda(E_k-E_{\rm av})]}$$

confirmed by the direct Monte-Carlo sampling in B.F. and F. Hantschel, arXiv:1010.4673

Condensation for macroscopic systems

Density matrix elements for a small subsystem

Not Boltzmann-Gibbs!

For macroscopic systems:

It implies the existence of a new fundamental limit for the applicability of conventional thermodynamics associated with the energy window for the eigenstates participating in statistical ensembles.

- Where is this limit located?
- What enforces it under everyday conditions?

For non-macroscopic systems with large number of quantum levels:

The QMC ensemble might be realizable under generic non-adiabatic perturbations.

Two remarks:

- 1. Isolated quantum systems do not explore energy shells in the Hilbert space dynamically.
- 2. Energy shells in the Hilbert space grow with E_{av} exponentially faster than energy shells in the classical phase space

Ensembles emerging in thermally isolated clusters of spins ¹/₂ under multiple non-adiabatic perturbations [K. Ji & B.F., PRL <u>107</u>, 050401 (2011)]

Emergence of the QMC-like statistics

Evidence of dynamical localization?