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Definition and implications of

quantum chaos?

How to assign statistical weight to 

quantum superpositions that are 

not allowed classically?

Energy shell in 

the phase space
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Outline:

1. Regression relation for pure quantum states and its implication for efficient computing.

2. Properties of Lyapunov instabilities in classical spin systems.

3. Implications of microscopic chaos for the relaxation behavior in quantum spin  systems.

4. Quantum ensemble with fixed energy expectation value and unrestricted participation

of eigenstates



Regression relation for pure quantum states and its implications 

for efficient computing [T. A. Elsayed and B. F., arXiv:1208.4652 ]

Onsager’s regression hypothesis (1931):

“the average regression of fluctuations will obey the same laws as the corresponding 

macroscopic irreversible process”

Today’s view: ORH = high-temperature limit of the fluctuation-dissipation theorem.

Quantum typicality:  

One quantum superposition is enough to represent the entire ensemble.

microcanonical

ensemble

relaxation

equilibrium  fluctuations

quantum 

parallelism

Felix Israilev:

What is the practicality of typicality? 



Relaxation of QM expectation value 

in  a pure state:

Onsager’s regression hypothesis:

Fluctuations of QM expectation value 

in  a pure state:

[T. A. Elsayed and B. F., arXiv:1208.4652 ] :

with random phases



Regression relation for pure states:

Equilibrium magnetization  noise 

in a system of  n classical spins
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Equilibrium noise of the 

magnetization expectation value

in a random pure state for

a system of  n spins 1/2
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Direct sampling of the trace:

Intermediate dynamic structure factor               for the Heisenberg chain of 20 spins 1/2)(tI




Direct integration of the Schrödinger equation – 4th order Runge-Kutta

Memory requirement:  

~ N log N for short-range interactions 

~ N log2 N for long-range interactions

Complete diagonalization:  ~ N 2

=

Calculations of time correlation functions 

require propagating two pure states:

Tests:
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Part 2:  Properties of  Lyapunov instabilities in classical spin systems
[A. de Wijn, B. Hess,  and  B. F., Phys. Rev. Lett. 109, 034101 (2012)]
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Interaction constants are randomly sampled 

on a “sphere”

Lessons learned:

 No integrable cases for large spin lattices besides the case of

Jx = Jy = 0;  Jz = 1.

 The largest Lyapunov exponent is mostly controlled by 

 The dependence on  Jmax is mostly universal . 

For Jmax < 0.85, it is nearly  flat.

 Near the integrable limit   Jmax = 1 ,  the scaling is universal :  
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Survey of the largest Lyapunov exponents

A. de Wijn, B. Hess,  and  B. F., 

Phys. Rev. Lett. 109, 034101 (2012)



Lyapunov spectra
[A. de Wijn, B. Hess,  and  B. F.,  in preparation]

Four different lattices Same lattice, different number of spins

Size dependence of the largest Lyapunov exponent



Part 3:   Implications of microscopic chaos for the 

observable behavior of many-spin  systems.

Level spacing statistics in not observable in many-body quantum systems

Lyapunov instabilities are not observable in many-body classical systems

Can the notion of chaos be used as a quantitative resource for solving

non-perturbative relaxation problems?

In this part:

•     manifestations of chaos in the long-time behavior 

of nuclear spin decays in solids 



Formulation of NMR free induction decay problem
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magnetic dipolar interaction:

t = 0 t ~ T2



Generic long-time behavior of nuclear spin decays:
[B. F., Int. J. Mod. Phys. B 18, 1119 (2004)]
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Expansion-contraction picture in the phase space:

Markovian behavior on non-Markovian time scale is a manifestation of chaos.
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Correlated diffusion equation for one-spin distribution function: Asymptotic behavior of many-spin

density matrices:
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Chaotic eigenmodes of the time evolution operator:

Pollicott-Ruelle resonances  [D. Ruelle, PRL 56, 405 (1986)]



Quantitative relations between  NMR free induction 

decays and spin echoes [B.F. PRL 94, 247601 (2005)]

S. W. Morgan et al, PRL 101, 067601 (2008)

Experimental results for solid xenon:

Experimental results for CaF2:

E. G. Sorte et al,  

PRB 83, 064302  (2011)

B. Meier et al,

Univ. of Leipzig, in preparation

Identical constants  γ and  ω in )   ( cos  
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Experimental observation of the second slowest  relaxational eigenmode
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B. Meier et al., Phys. Rev. Lett.  108, 177602 (2012).



Part 4: Quantum ensemble with fixed energy expectation value and unrestricted   

participation of eigenstates

Esubsystem0

0

Eenvironment0

e(E)

Etotal

tot(E)

Around   E = 0

e(E) e(0)  e  E

Psubsystem (E)      e(-E)~  e - E

Boltzmann-Gibbs

Why?

boiling

water

?  ...                      

snow

D. C. Brody and L. P. Hughston, (1998).

G. Aarts, G. F. Bonini, and C. Wetterich, (2000).

J. Naudts and E. Van der Straeten, (2006)

G. Jona-Lasinio and C. Presilla,  (2006)

B.V. Fine, (2009).

B. Fresch and G. J. Moro, (2009).

M. Müller, D. Gross, and J. Eisert, (2011).



(t) =  Ci e-i Ei t
i

| Ci e-i Ei t | do not depend on time.

Microcanonical ensemble



Quantum micro-canonical  (QMC) ensemble:

unrestricted 

participation of 

eigenstates

W. K. Wootters, Found. Phys. 20, 1365 (1990).

D. C. Brody and L. P. Hughston, J. Math. Phys. 39, 

6502 (1998).

C. M. Bender, D. C. Brody, and D. W. Hook, J. Phys. A 

38, L607 (2005).

B.V. Fine, Phys. Rev. E 80, 051130 (2009).

B. Fresch and G. J. Moro, J. Phys. Chem. A 113, 14 502 

(2009).

M. Müller, D. Gross, and J. Eisert, Commun. Math. 

Phys. 303, 785 (2011).



small-pk approximation

Results: QMC-based statistics for an isolated system with N>>1
B.F., PRE 80, 051130 (2009)
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confirmed by the 

direct  Monte-Carlo 

sampling in 

B.F. and F. Hantschel, 

arXiv:1010.4673
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Density matrix  elements for a small subsystem

Not Boltzmann-Gibbs!

Condensation  for macroscopic systems



Implications of the QMC result:

For macroscopic systems:

It implies the existence of a new fundamental limit for the applicability of conventional 

thermodynamics associated with the energy window for the eigenstates participating 

in statistical ensembles.

- Where is this limit located?

- What enforces it under everyday conditions?

For non-macroscopic systems with large number of quantum levels:

The QMC ensemble might be realizable under generic non-adiabatic perturbations.

Two remarks:

1. Isolated quantum systems do not explore energy shells in the Hilbert space dynamically.

2.  Energy shells in the Hilbert space grow with Eav exponentially faster  than energy shells

in the classical phase space 



Ensembles emerging in thermally isolated clusters of spins ½ under 

multiple non-adiabatic perturbations [K. Ji & B.F., PRL 107, 050401 (2011)]

Emergence of the QMC-like statistics Evidence of dynamical localization?

16  spins ½    ~   65 000 quantum states 


