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Motivation 

Explore nonequilibrium properties of correlated electron systems
Tune material properties by external fields 

         e. g. photo-doping

Create long-lived transient states with novel properties
      e. g. light-induced room temperature superconductivity   

D. Fausti et al. (2010)

S. Iwai et al. (2003), H. Okamoto et al. (2007), ...
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Model and method 

Dynamical mean field theory DMFT: mapping to an impurity problem

Impurity solver: computes the dynamics on the correlated site

Formalism can be extended to nonequilibrium systems
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Schmidt & Monien (2002); Freericks et al. (2006) 

Metzner & Vollhardt (1989); Georges & Kotliar (1992)
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QMC: Werner et al. (2009), Perturbation theory: Eckstein et al. (2009, 2010) 
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Continuous-time QMC 

Model and method
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Continuous-time QMC: weak-coupling formalism

Model and method
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Perturbative weak-coupling formalism: Generate a subset of all weak-
coupling diagrams by approximating the self-energy
Truncation at second order: Iterated Perturbation Theory (IPT)  

Model and method 
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Field E(t) in the body diagonal, applied at t=0 

Choose gauge with pure vector potential: 

Peierls substitution: 

Lattice: hybercubic, infinite-d limit

Model and method 
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AC-field quench in the Hubbard model 

Periodic fields 

U
t

Electric field (amplitude E, frequency    ) 
applied at t=0

�

Tsuji, Oka, Werner & Aoki (2011)



AC-field quench in the Hubbard model  

Periodic fields 

attractive (>0.25)

repulsive (<0.25)
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AC-field quench in the Hubbard model
Sign inversion of the interaction: repulsive      attractive
Dynamically generated high-Tc superconductivity?   

Periodic fields 

temperature

hole doping

superconductor
(repulsive interaction)

superconductor
(attractive interaction)metal

Tsuji, Oka, Werner & Aoki (2011)



Periodic E-field leads to a population inversion

Gauge with pure vector potential

Peierls substitution

Renormalized dispersion

Origin of the attractive interaction 
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Periodic E-field leads to a population inversion

Renormalized dispersion

Origin of the attractive interaction 
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Periodic E-field leads to a population inversion

Renormalized dispersion

Origin of the attractive interaction 
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Periodic E-field leads to a population inversion

Renormalized dispersion

Origin of the attractive interaction 
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Periodic E-field leads to a population inversion

Renormalized dispersion

Origin of the attractive interaction 
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Inverted population = negative temperature

State with                      is equivalent to state with  

Effective interaction of the               state 

Origin of the attractive interaction 
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Controlling the Coulomb interaction by ac fields

Advantages  
Interaction continuously tunable

Reversible

Disadvantages
Need high frequency ac field (interband transitions?)
Effect lasts only during irradiation
Strong heating effect 

Summary I 

Ue� =
U

J0(E/�)

Tsuji, Oka, Werner & Aoki (2011)



Shift the population using an asymmetric mono-cycle pulse

Consider a physical pulse with 

Interacting electrons:                (depends sensitively on pulse-shape)

By combining fast and slow half-cycle pulses
can achieve

Pulsed field Tsuji, Oka, Aoki & Werner (2012)
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Shift the population using an asymmetric mono-cycle pulse

Pulsed field 

pulse asymmetry

Tsuji, Oka, Aoki & Werner (2012)



Shift the population using an asymmetric mono-cycle pulse

Pulsed field 

pulse asymmetry

Tsuji, Oka, Aoki & Werner (2012)

example of a realistic pulse
Christoph Hauri (PSI)



Shift the population using an asymmetric mono-cycle pulse

Desired material properties:
Metallic system with weak to moderate correlations
Single band crossing the Fermi level
Large gaps to other bands 

Desired properties of the field pulse:
~10 fs monocycle pulse
peak asymmetry ~7:3
field strength                 V/m

Proposed measurements:
Time-resolved ARPES
(negative) optical conductivity

Pulsed field Tsuji, Oka, Aoki & Werner (2012)

108 � 109



Shift the population using an asymmetric mono-cycle pulse

Potentially interesting material: Sn doped In2O3

Transparent conductor
Single s-band crossing the Fermi level

Pulsed field Tsuji, Oka, Aoki & Werner (2012)

band structure by Bernard Delley (PSI)



“Photo-excitation” of carriers across the Mott gap

Question: How quickly does the electronic system thermalize?

U

T

weakly correlated regime

Pulse excited Mott insulator 

Eckstein & Werner (2011)

“Mott” regime

insulatormetal



“Photo-excitation” of carriers across the Mott gap

Question: How quickly does the electronic system thermalize?

Pulse excited Mott insulator 

Eckstein & Werner (2011)
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“Photo-excitation” of carriers across the Mott gap

Question: How quickly does the electronic system thermalize?

Pulse excited Mott insulator 

Eckstein & Werner (2011)
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“Photo-excitation” of carriers across the Mott gap

Question: How quickly does the electronic system thermalize?

Pulse excited Mott insulator 

Eckstein & Werner (2011)

U=5  

-5

-4

-3

-2

-1

 0  5  10  15  20

lo
g 1

0 
|d

(t)
-d

(T
ef

f)|

t

U=3  

U=2.5  

U=2 U=1.5 



“Photo-excitation” of carriers across the Mott gap

Strong correlation regime: Relaxation time depends exponentially on U

Pulse excited Mott insulator 

Eckstein & Werner (2011)
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“Photo-excitation” of carriers across the Mott gap

Strong correlation regime: Relaxation time depends exponentially on U

Pulse excited Mott insulator 

Eckstein & Werner (2011)
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“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

U-quench into the strongly correlated regime freezes doublons / holes

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)
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“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

Magnetization does not vanish, even if thermal state PM

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)
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“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

Trapped state similar to chemically doped Mott insulator

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)

“trapped” 
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“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

Trapped state similar to chemically doped Mott insulator

Interpretation:

Trapped state is a “t-J model” state with fixed doublons / holes

This state is protected by the slow decay of doublons

Effective temperature below the Neel temperature of the t-J state

       entropy cooling due to AFM background

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)



“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

Cooling effect is evident from the time-evolution of the occupation

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)

occupied part of the
minority-spin
spectral function

initial reduction  
of the magnetization
(relaxation to trapped state)
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“Photo-doped” antiferromagnetic Mott insulator (U-quench) 

Cooling effect is evident from the time-evolution of the occupation

Nonthermal symmetry-broken states 

Werner, Tsuji & Eckstein (2012)
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Real photo-doping simulation  

Cooling effect is evident from the time-evolution of the occupation

Nonthermal symmetry-broken states 

antiferromagnet: occupation relaxes and 
accumulates at lower band edge
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Weak-coupling regime  

Slow ramp from (Slater-)Antiferromagnet to Paramagnet

Nonthermal symmetry-broken states 

Tsuji, Eckstein & Werner (2012)



Weak-coupling regime  

Time-evolution of the magnetization for different final U

Nonthermal symmetry-broken states 

Tsuji, Eckstein & Werner (2012)

arrows indicate thermal magnetization

U=1.4: Oscillations around a nonthermal value 
(thermal magnetization=0) 



Weak-coupling regime  

Evidence for a nonthermal critical point (GL-description fails)

Nonthermal symmetry-broken states 

Tsuji, Eckstein & Werner (2012)

diverging timescales (period of amplitude 
mode, dephasing time, ...)



Nonequilibrium dynamical mean field results for Hubbard model 

Metallic system: Population inversion by an asymmetric mono-cycle pulse

Interaction conversion: 

Dynamically generated superconductivity? 

Antiferromagnetic insulator: Nonthermal symmetry-broken states 

Thermalization delayed by slow decay of doublons

Similar effect expected in superconductors        

Trapped states also in the weak-coupling regime

Short-time dynamics controlled by nonthermal critical points 

Summary 

U ! �U

experiment by Fausti et al.?  


