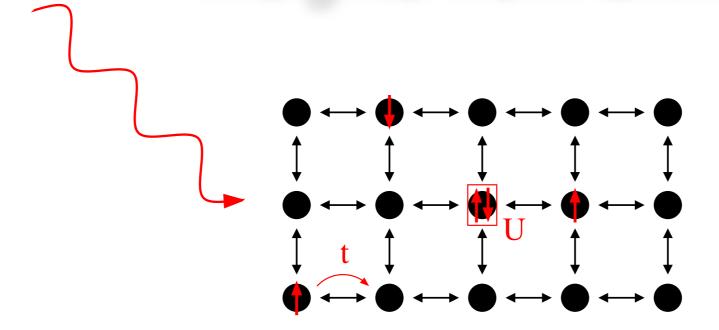
The Hubbard model out of equilibrium - Insights from DMFT -



Philipp Werner

University of Fribourg, Switzerland

The Hubbard model out of equilibrium - Insights from DMFT -

In collaboration with:

Naoto Tsuji (Fribourg / Tokyo)

Takashi Oka, Hideo Aoki (Tokyo University)

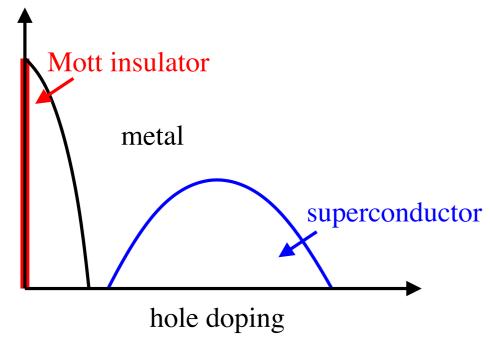
Martin Eckstein (Hamburg)

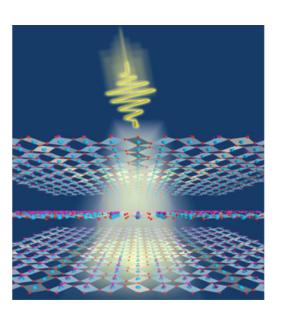
Motivation

Explore nonequilibrium properties of correlated electron systems

- Tune material properties by external fields
 - → e. g. photo-doping S. Iwai et al. (2003), H. Okamoto et al. (2007), ...
- Create long-lived transient states with novel properties
 - -> e. g. light-induced room temperature superconductivity

temperature





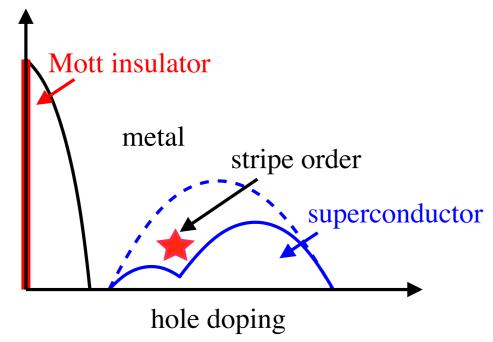
D. Fausti et al. (2010)

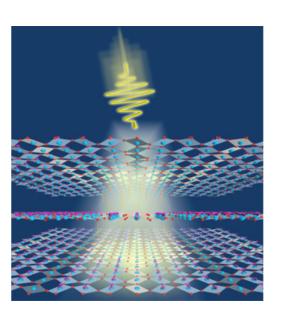
Motivation

Explore nonequilibrium properties of correlated electron systems

- Tune material properties by external fields
 - → e. g. photo-doping S. Iwai et al. (2003), H. Okamoto et al. (2007), ...
- Create long-lived transient states with novel properties
 - -> e. g. light-induced room temperature superconductivity

temperature

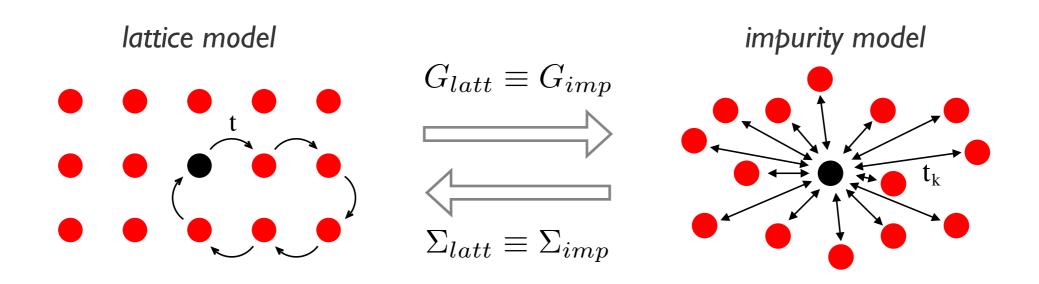




D. Fausti et al. (2010)

Dynamical mean field theory DMFT: mapping to an impurity problem

Metzner & Vollhardt (1989); Georges & Kotliar (1992)



Impurity solver: computes the dynamics on the correlated site

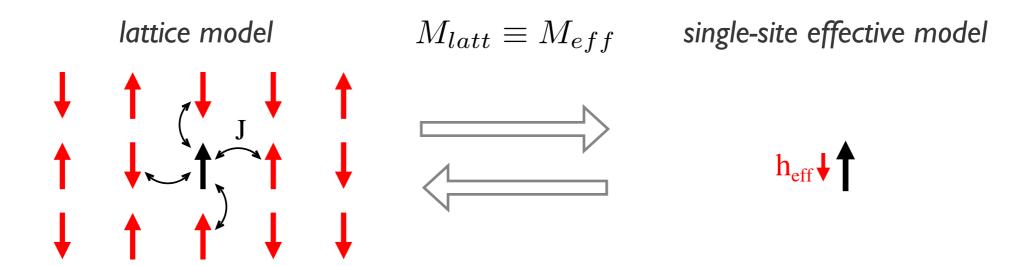
QMC:Werner et al. (2009), Perturbation theory: Eckstein et al. (2009, 2010)

Formalism can be extended to nonequilibrium systems

Schmidt & Monien (2002); Freericks et al. (2006)

Dynamical mean field theory DMFT: mapping to an impurity problem

Metzner & Vollhardt (1989); Georges & Kotliar (1992)



Impurity solver: computes the dynamics on the correlated site

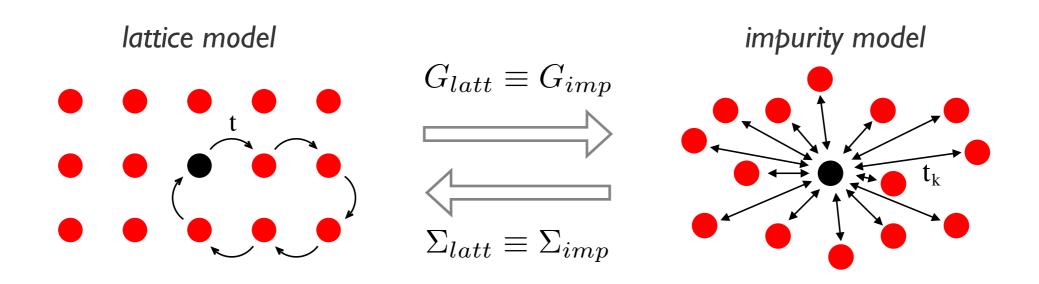
QMC:Werner et al. (2009), Perturbation theory: Eckstein et al. (2009, 2010)

Formalism can be extended to nonequilibrium systems

Schmidt & Monien (2002); Freericks et al. (2006)

Dynamical mean field theory DMFT: mapping to an impurity problem

Metzner & Vollhardt (1989); Georges & Kotliar (1992)



Impurity solver: computes the dynamics on the correlated site

QMC:Werner et al. (2009), Perturbation theory: Eckstein et al. (2009, 2010)

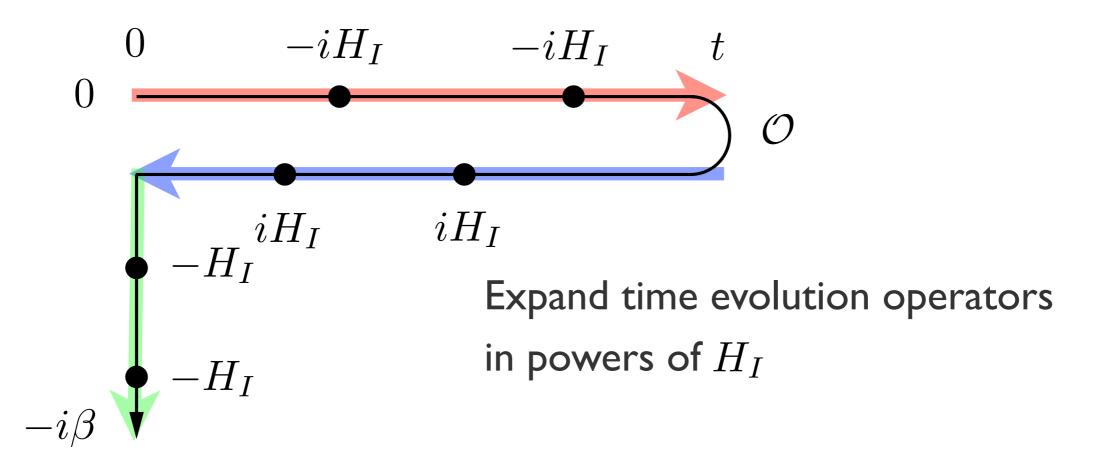
Formalism can be extended to nonequilibrium systems

Schmidt & Monien (2002); Freericks et al. (2006)

Continuous-time QMC

$$\langle \mathcal{O} \rangle(t) = Tr \left[\frac{1}{Z} e^{-\beta H} U(0, t) \mathcal{O} U(t, 0) \right]$$

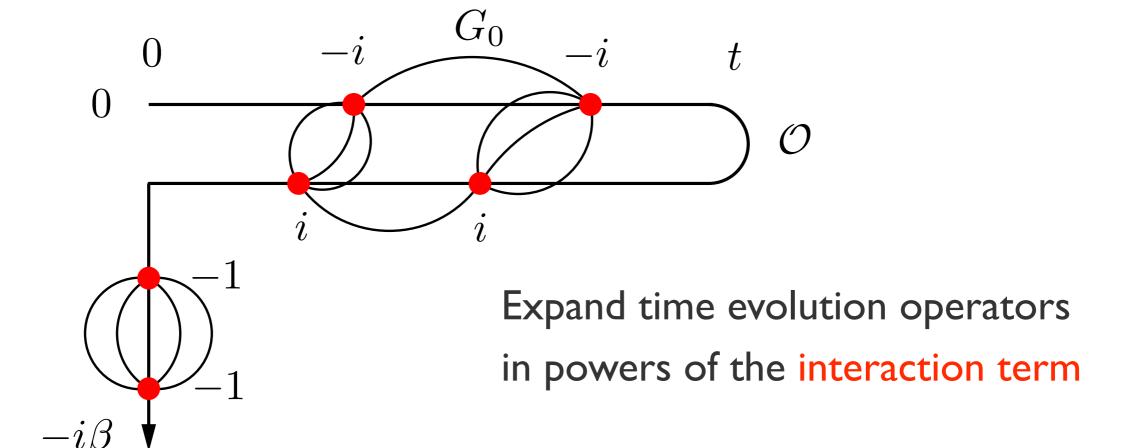
$$= Tr \left[\frac{1}{Z} e^{-\beta H_0} \left(T_{\tau} e^{-\int_0^{\beta} d\tau H_I(\tau)} \right) \left(\tilde{T} e^{i \int_0^t ds H_I(s)} \right) \mathcal{O}(t) \left(T e^{-i \int_0^t ds H_I(s)} \right) \right]$$



Continuous-time QMC: weak-coupling formalism

$$\langle \mathcal{O} \rangle(t) = Tr \left[\frac{1}{Z} e^{-\beta H} U(0, t) \mathcal{O} U(t, 0) \right]$$

$$= Tr \left[\frac{1}{Z} e^{-\beta H_0} \left(T_{\tau} e^{-\int_0^{\beta} d\tau H_I(\tau)} \right) \left(\tilde{T} e^{i \int_0^t ds H_I(s)} \right) \mathcal{O}(t) \left(T e^{-i \int_0^t ds H_I(s)} \right) \right]$$



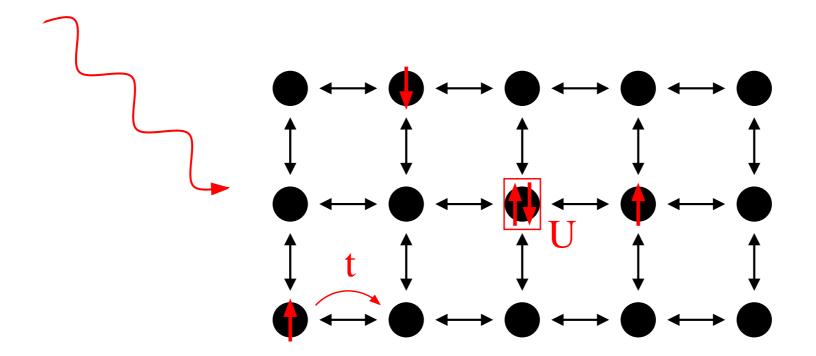
- Perturbative weak-coupling formalism: Generate a subset of all weakcoupling diagrams by approximating the self-energy
- Truncation at second order: Iterated Perturbation Theory (IPT)

$$\Sigma = \bigcup_{t \to t'} U$$

$$G =$$
 G_0

$$G = G_0 + G_0 \star \Sigma \star G$$

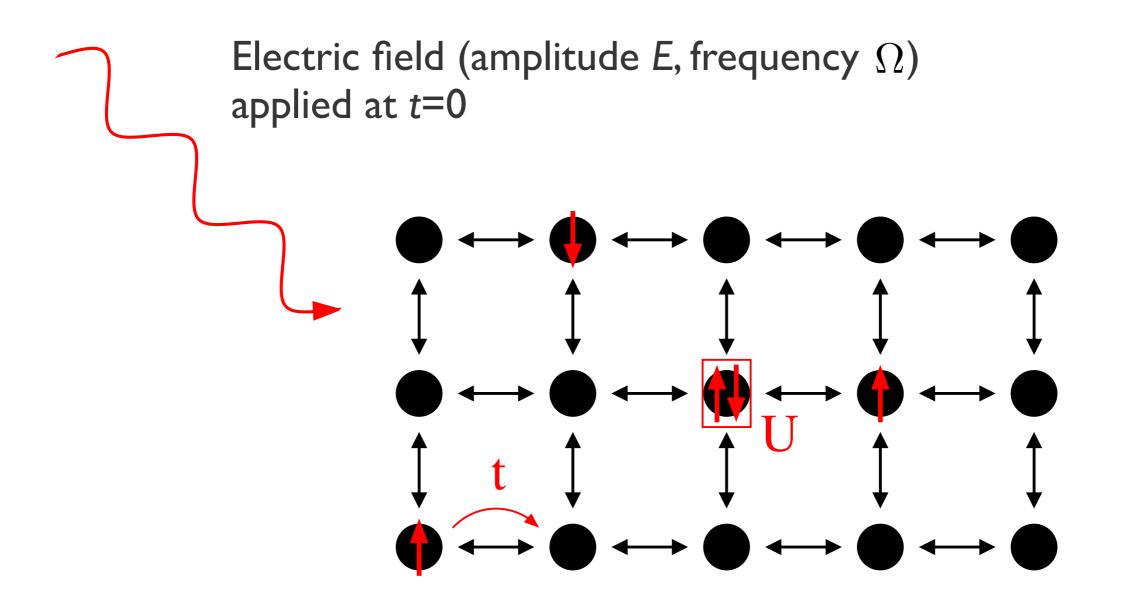
- Field E(t) in the body diagonal, applied at t=0
- Choose gauge with pure vector potential: $E(t) = -\partial_t A(t)$



- Peierls substitution: $\varepsilon(k) \to \varepsilon(k eA(t))$
- Lattice: hybercubic, infinite-d limit $\rho(\varepsilon) = \frac{1}{\sqrt{\pi}W} \exp(-\varepsilon^2/W^2)$

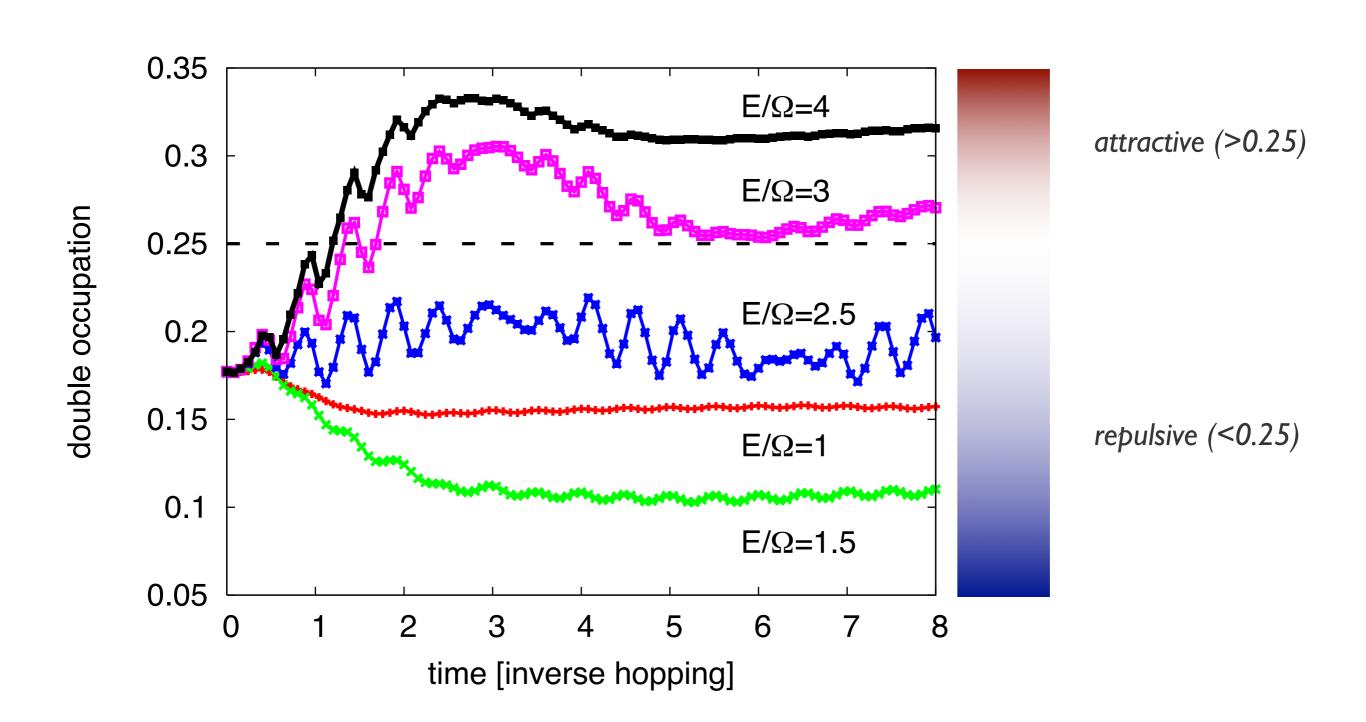
Periodic fields

AC-field quench in the Hubbard model



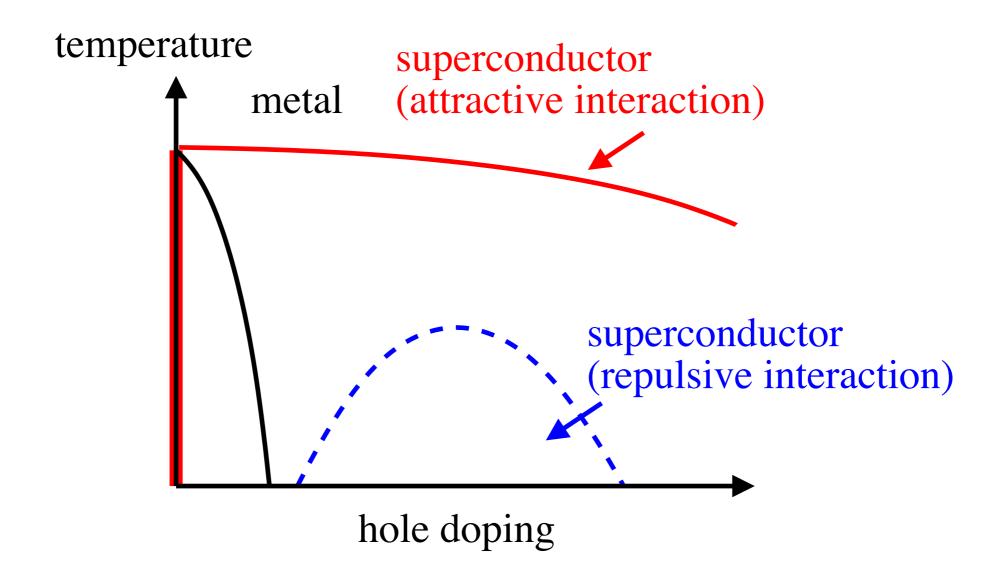
Periodic fields

AC-field quench in the Hubbard model

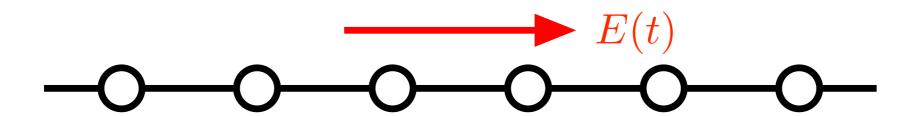


Periodic fields

- AC-field quench in the Hubbard model
 - Sign inversion of the interaction: repulsive attractive
 - Dynamically generated high-Tc superconductivity?



Periodic E-field leads to a population inversion



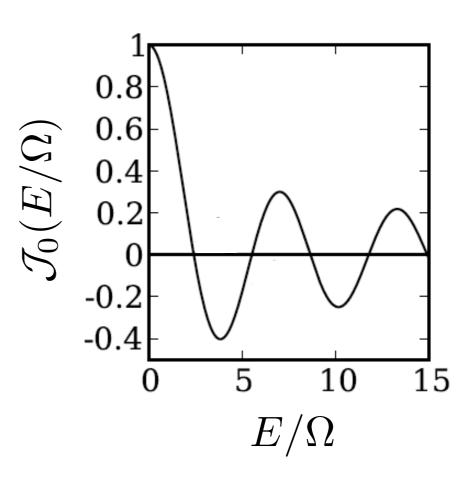
Gauge with pure vector potential

$$E(t) = E\cos(\Omega t) = -\partial_t A(t)$$

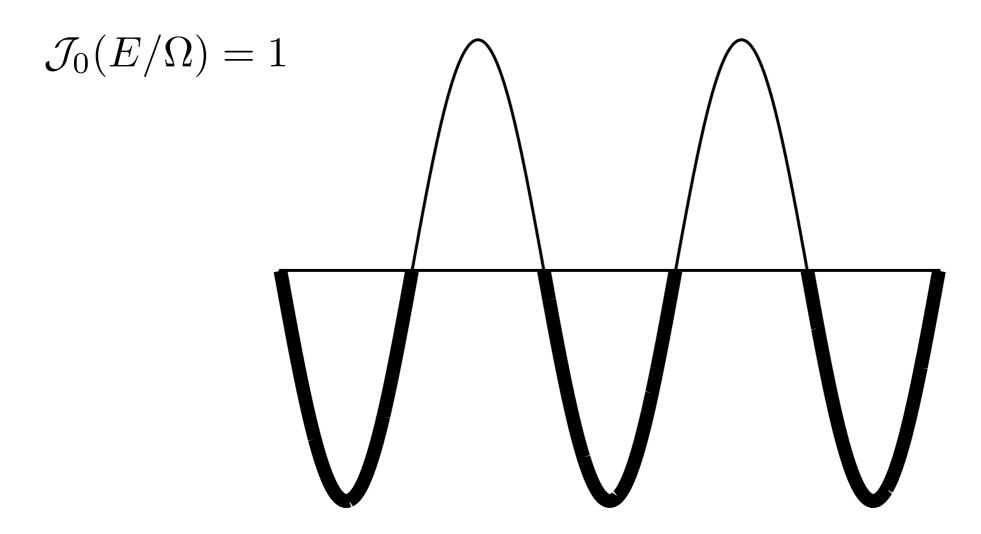
$$\Rightarrow A(t) = -(E/\Omega)\sin(\Omega t)$$

- Peierls substitution $\epsilon_k \to \epsilon_{k-A(t)}$
- Renormalized dispersion

$$\overline{\epsilon_k} = \frac{\Omega}{2\pi} \int_0^{2\pi/\Omega} dt \epsilon_{k-A(t)} = \mathcal{J}_0(E/\Omega) \epsilon_k$$

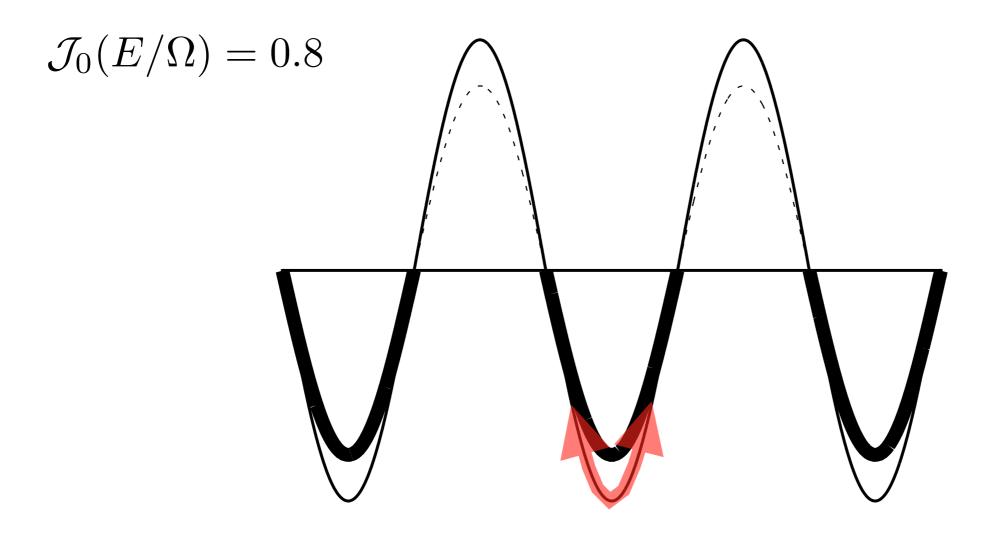


Periodic E-field leads to a population inversion



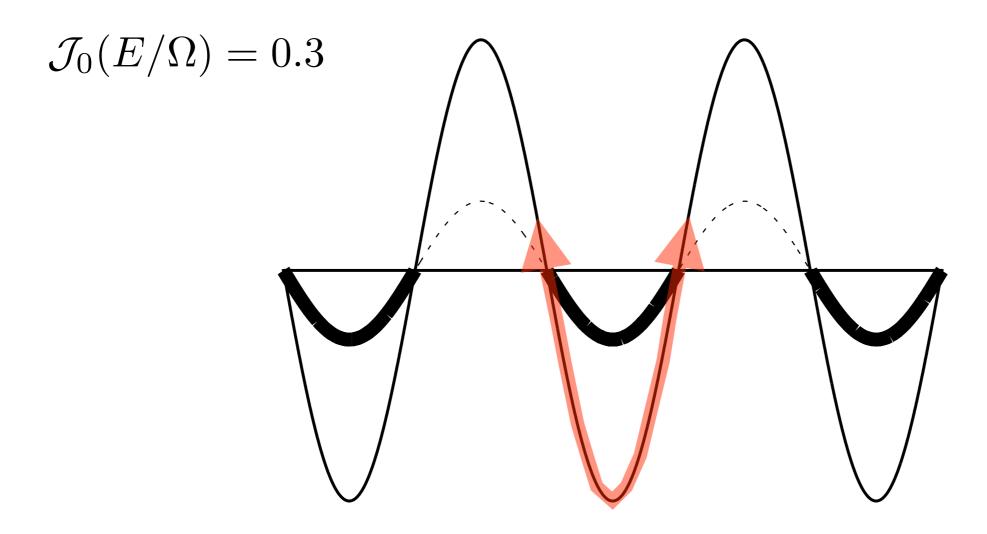
$$\overline{\epsilon_k} = \frac{\Omega}{2\pi} \int_0^{2\pi/\Omega} dt \epsilon_{k-A(t)} = \mathcal{J}_0(E/\Omega) \epsilon_k$$

Periodic E-field leads to a population inversion



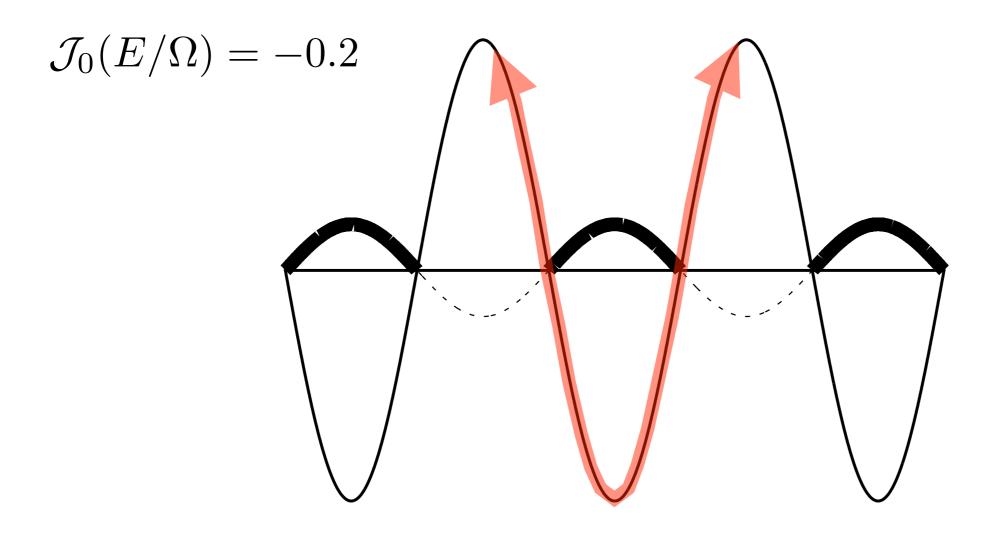
$$\overline{\epsilon_k} = \frac{\Omega}{2\pi} \int_0^{2\pi/\Omega} dt \epsilon_{k-A(t)} = \mathcal{J}_0(E/\Omega) \epsilon_k$$

Periodic E-field leads to a population inversion



$$\overline{\epsilon_k} = \frac{\Omega}{2\pi} \int_0^{2\pi/\Omega} dt \epsilon_{k-A(t)} = \mathcal{J}_0(E/\Omega) \epsilon_k$$

Periodic E-field leads to a population inversion



$$\overline{\epsilon_k} = \frac{\Omega}{2\pi} \int_0^{2\pi/\Omega} dt \epsilon_{k-A(t)} = \mathcal{J}_0(E/\Omega) \epsilon_k$$

- Inverted population = negative temperature
- ullet State with U>0, T<0 is equivalent to state with U<0, T>0

$$\tilde{T} < 0, \mathcal{J}_0 < 0 \qquad \rho \propto \exp\left(-\frac{1}{\tilde{T}} \left[\sum_{k\sigma} \mathcal{J}_0 \epsilon_k n_{k\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \right] \right)$$

$$T_{\text{eff}} = \frac{\tilde{T}}{\mathcal{J}_0} > 0 \qquad = \exp\left(-\frac{1}{T_{\text{eff}}} \left[\sum_{k\sigma} \epsilon_k n_{k\sigma} + \frac{U}{\mathcal{J}_0} \sum_{i} n_{i\uparrow} n_{i\downarrow} \right] \right)$$

• Effective interaction of the $T_{\rm eff}>0$ state

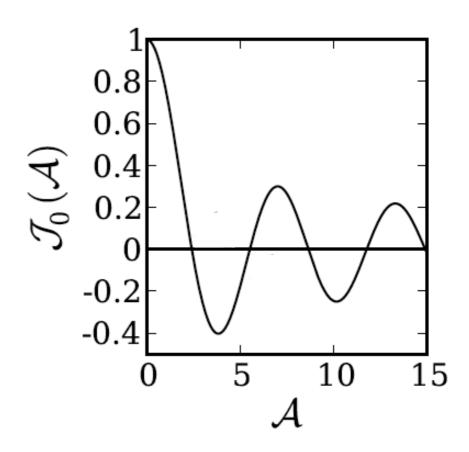
$$U_{\mathrm{eff}} = \frac{U}{\mathcal{J}_0(E/\Omega)}$$

Summary I

- Controlling the Coulomb interaction by ac fields
- Advantages
 - Interaction continuously tunable

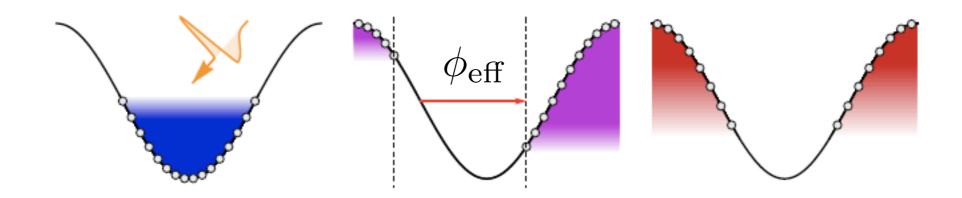
$$U_{\text{eff}} = \frac{U}{\mathcal{J}_0(E/\Omega)}$$

Reversible

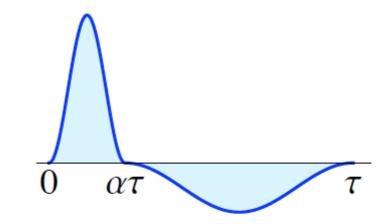


- Disadvantages
 - Need high frequency ac field (interband transitions?)
 - Effect lasts only during irradiation
 - Strong heating effect

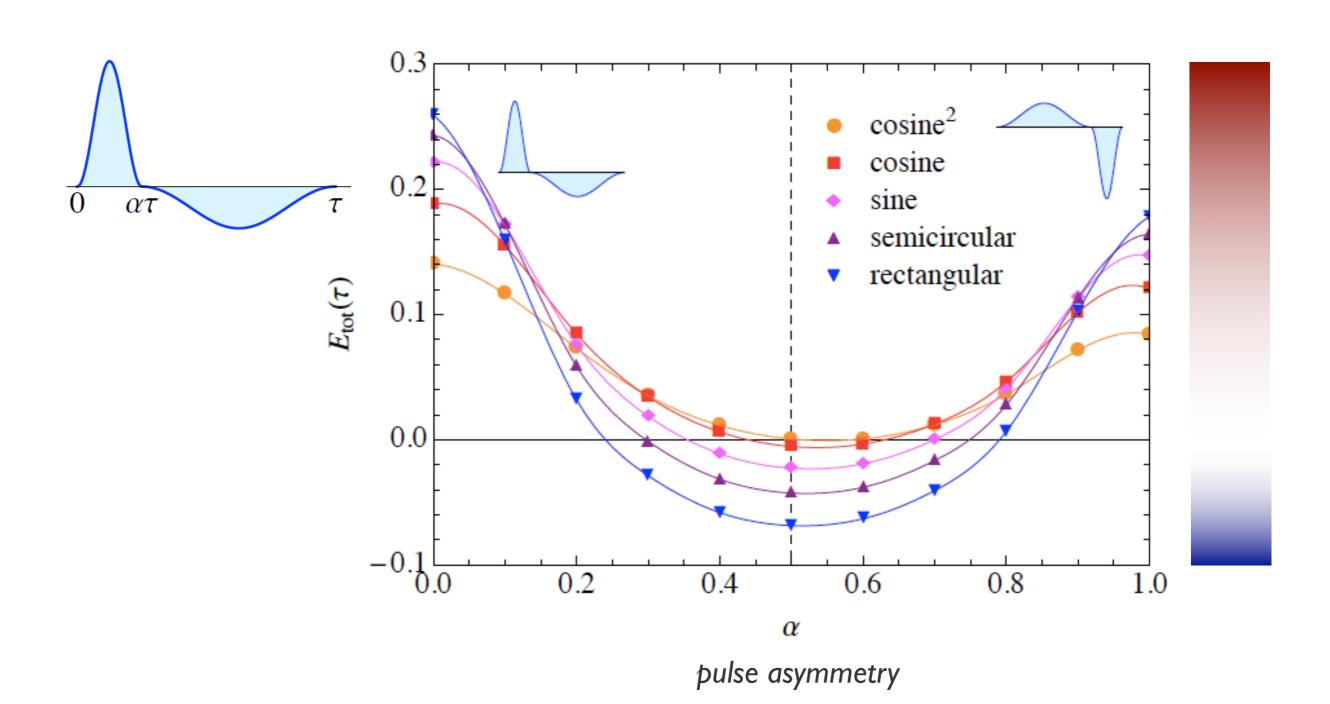
Shift the population using an asymmetric mono-cycle pulse



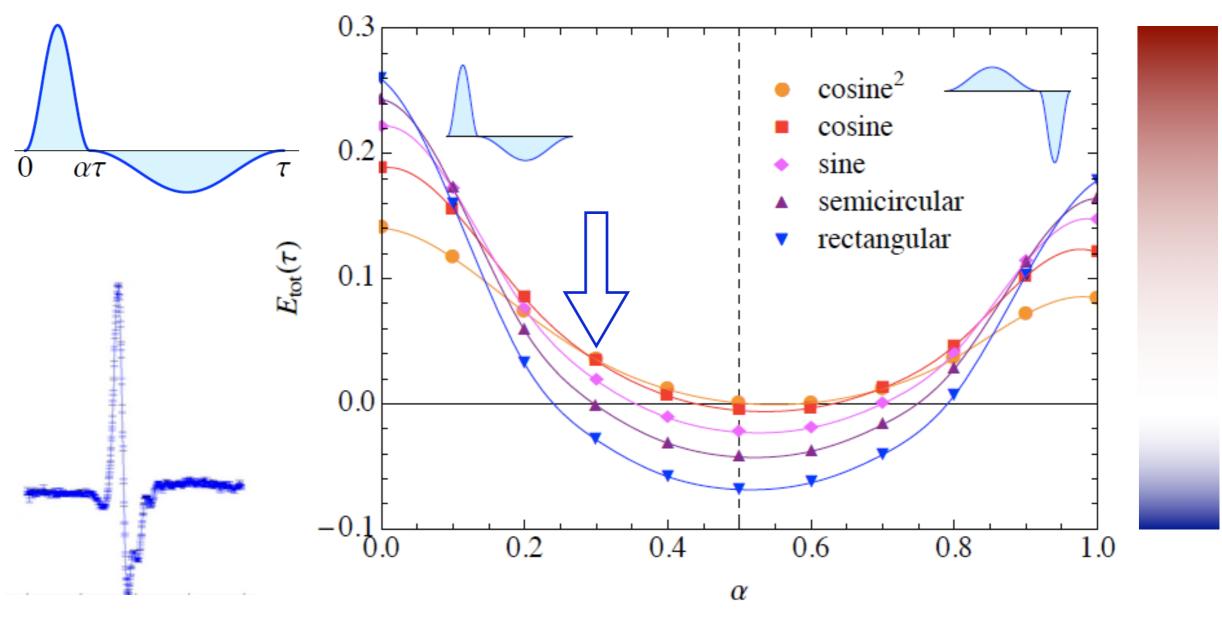
- \bullet Consider a physical pulse with $\,\phi = \int E(t) dt = 0\,$
- Interacting electrons: $\phi_{\text{eff}} \neq \phi$ (depends sensitively on pulse-shape)
- By combining fast and slow half-cycle pulses can achieve $\phi=0,~\phi_{\mathrm{eff}}\approx\pi$



Shift the population using an asymmetric mono-cycle pulse



Shift the population using an asymmetric mono-cycle pulse

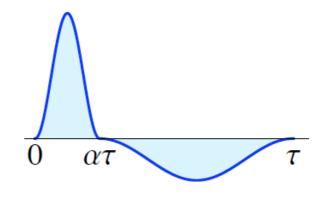


example of a realistic pulse Christoph Hauri (PSI)

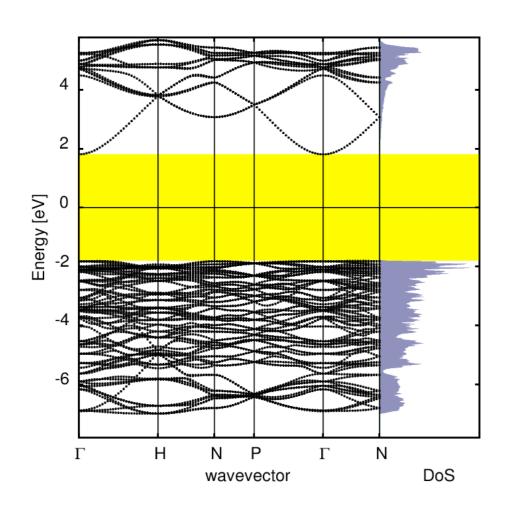
pulse asymmetry

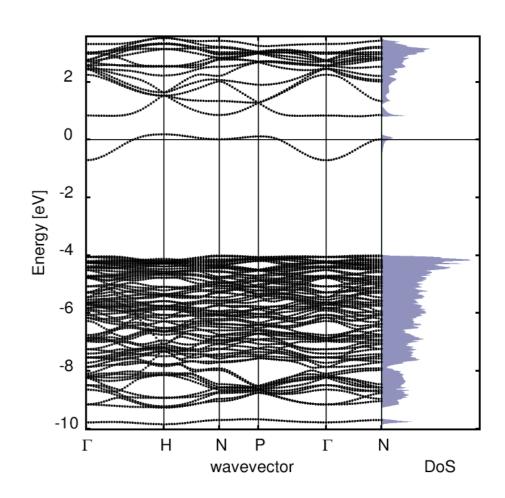
- Shift the population using an asymmetric mono-cycle pulse
- Desired material properties:
 - Metallic system with weak to moderate correlations
 - Single band crossing the Fermi level
 - Large gaps to other bands
- Desired properties of the field pulse:
 - ~10 fs monocycle pulse
 - peak asymmetry ~7:3
 - \bullet field strength $10^8 10^9 \, \text{V/m}$

- Time-resolved ARPES
- (negative) optical conductivity



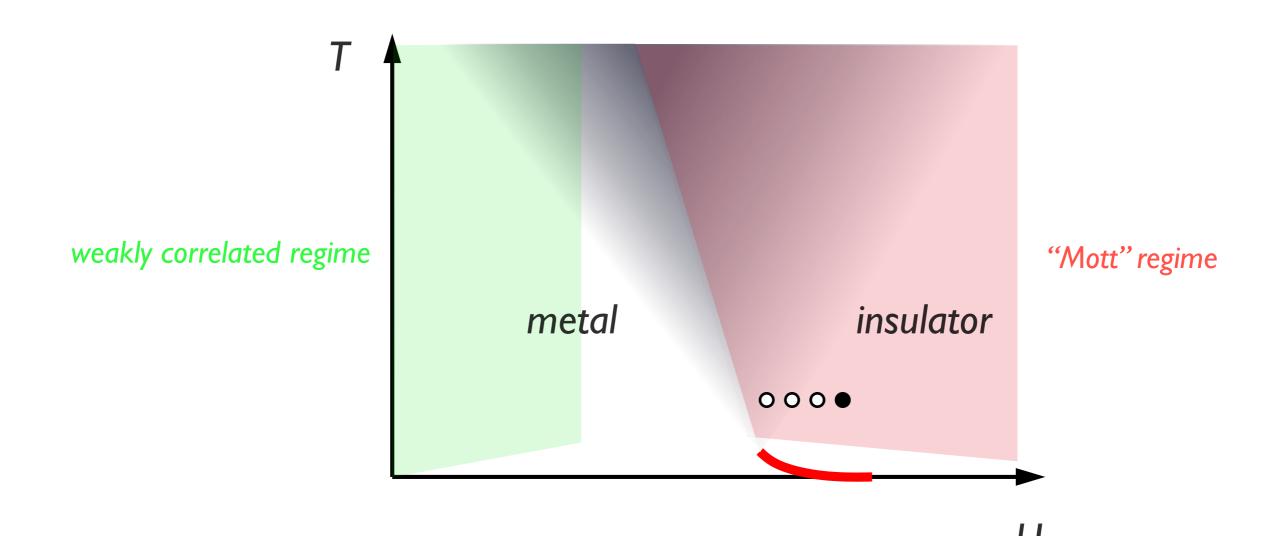
- Shift the population using an asymmetric mono-cycle pulse
- Potentially interesting material: Sn doped In_2O_3
 - Transparent conductor
 - Single s-band crossing the Fermi level band structure by Bernard Delley (PSI)





"Photo-excitation" of carriers across the Mott gap
 Eckstein & Werner (2011)

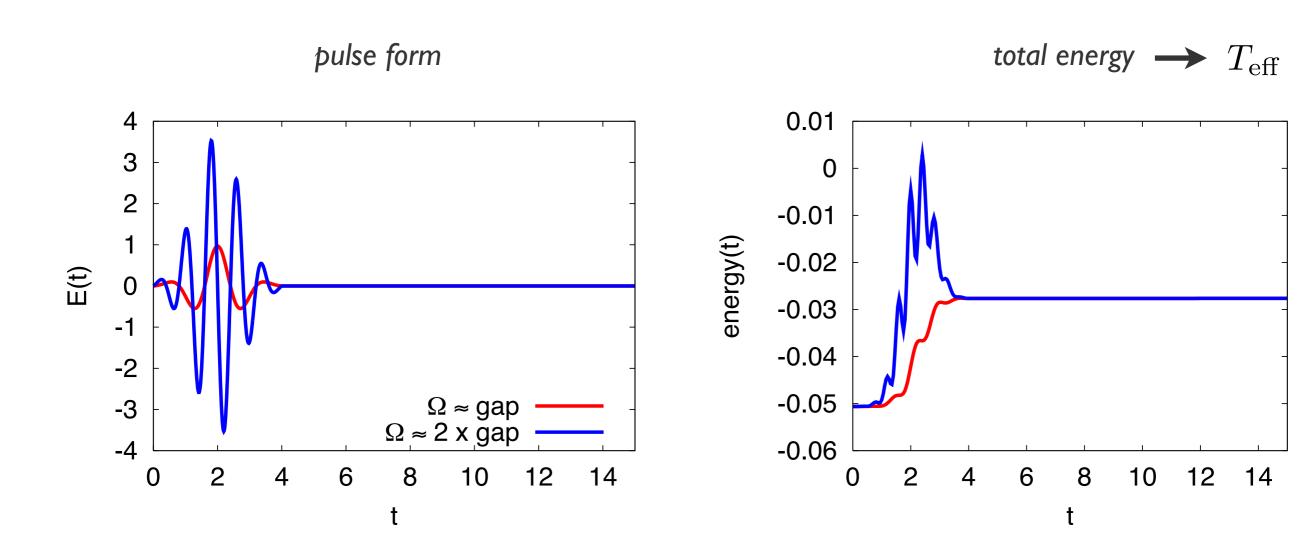
• Question: How quickly does the electronic system thermalize?



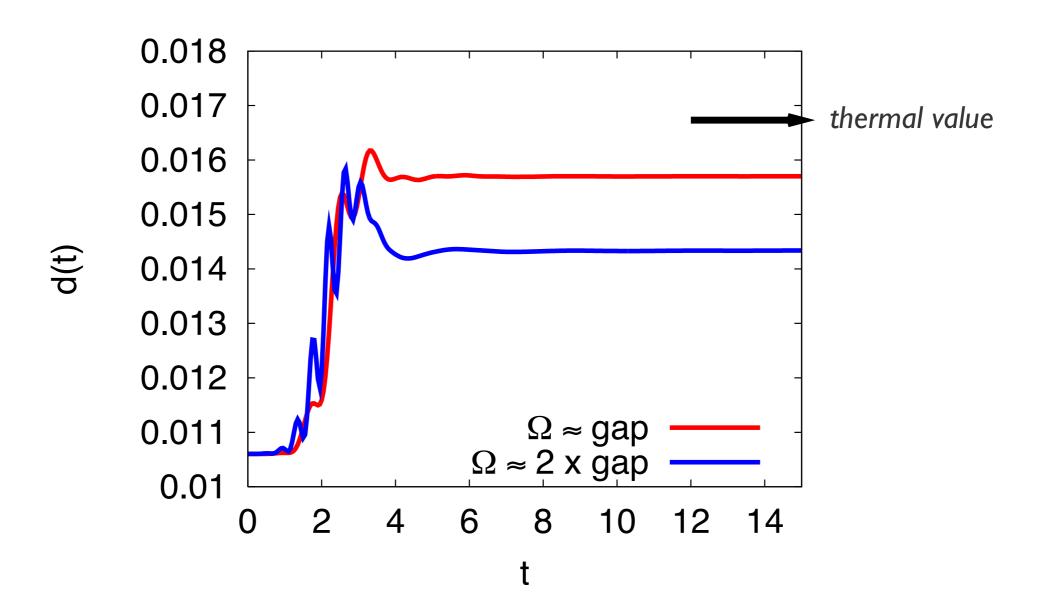
"Photo-excitation" of carriers across the Mott gap

Eckstein & Werner (2011)

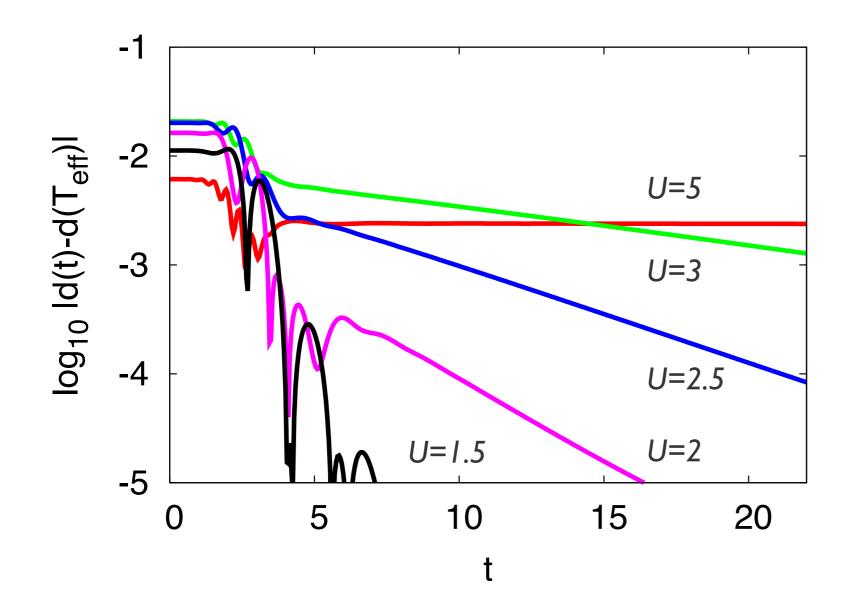
• Question: How quickly does the electronic system thermalize?



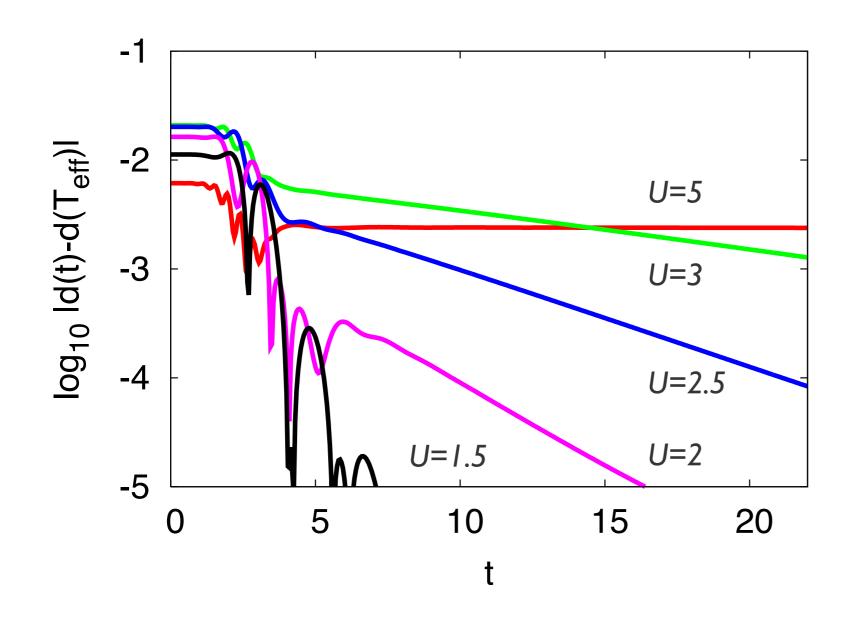
- "Photo-excitation" of carriers across the Mott gap
 Eckstein & Werner (2011)
- Question: How quickly does the electronic system thermalize?

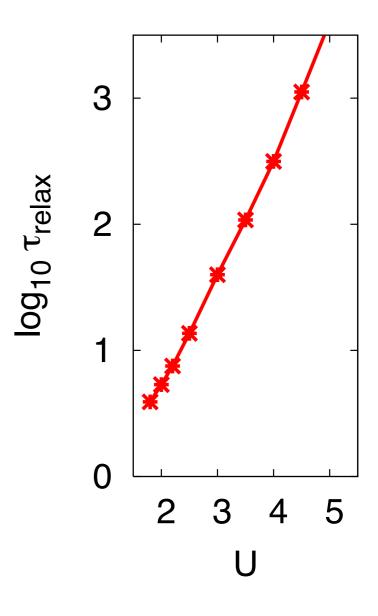


- "Photo-excitation" of carriers across the Mott gap
 Eckstein & Werner (2011)
- Question: How quickly does the electronic system thermalize?

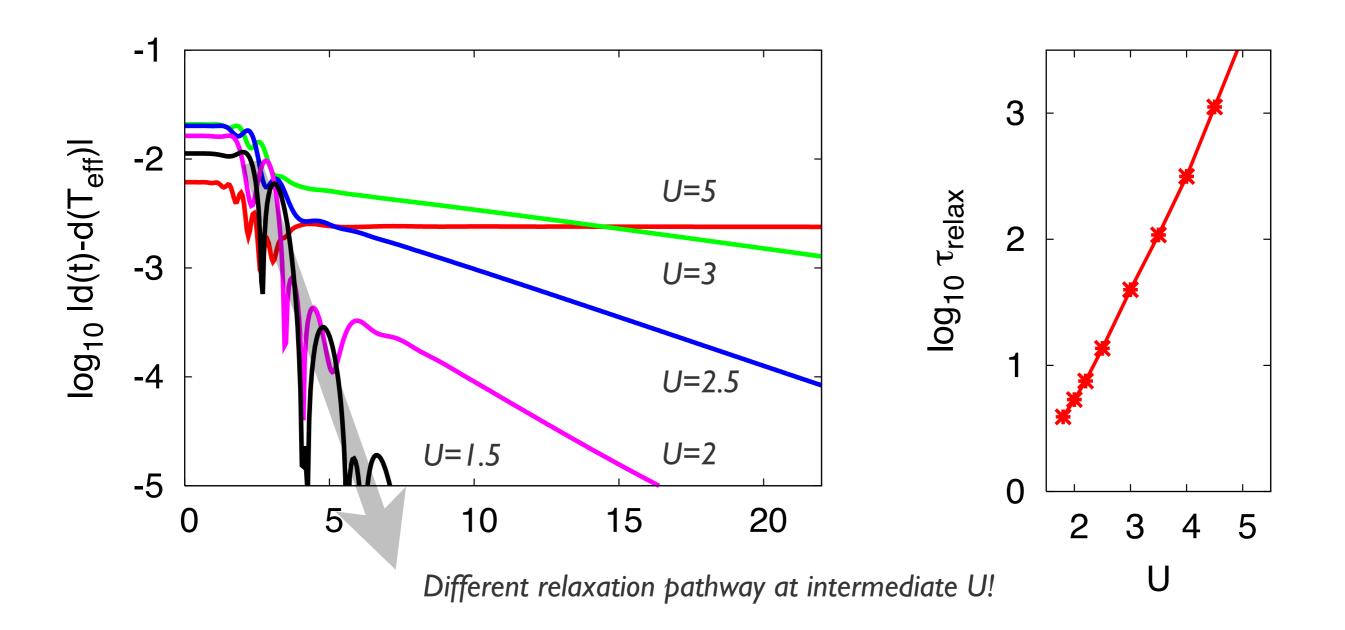


- "Photo-excitation" of carriers across the Mott gap
 Eckstein & Werner (2011)
- Strong correlation regime: Relaxation time depends exponentially on U

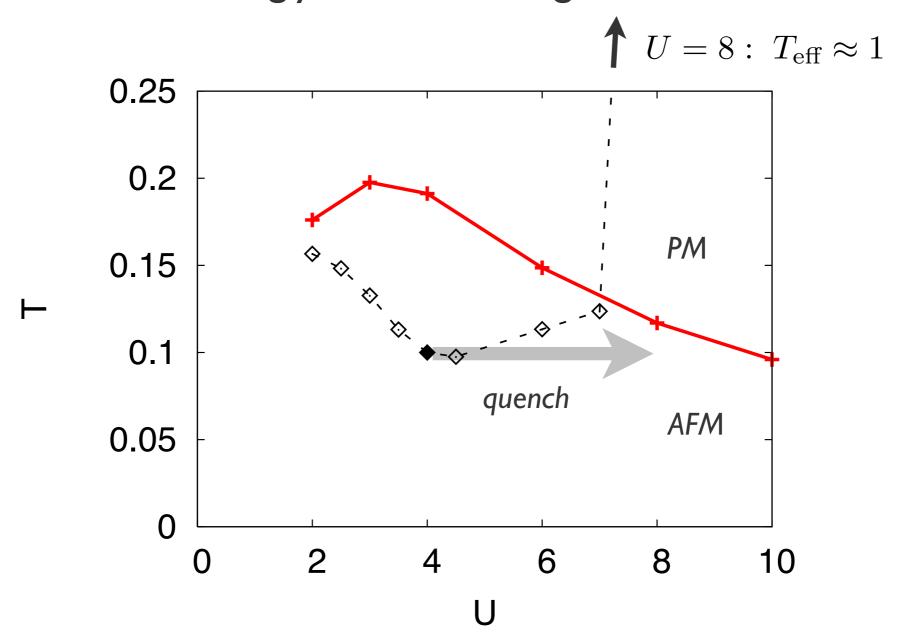




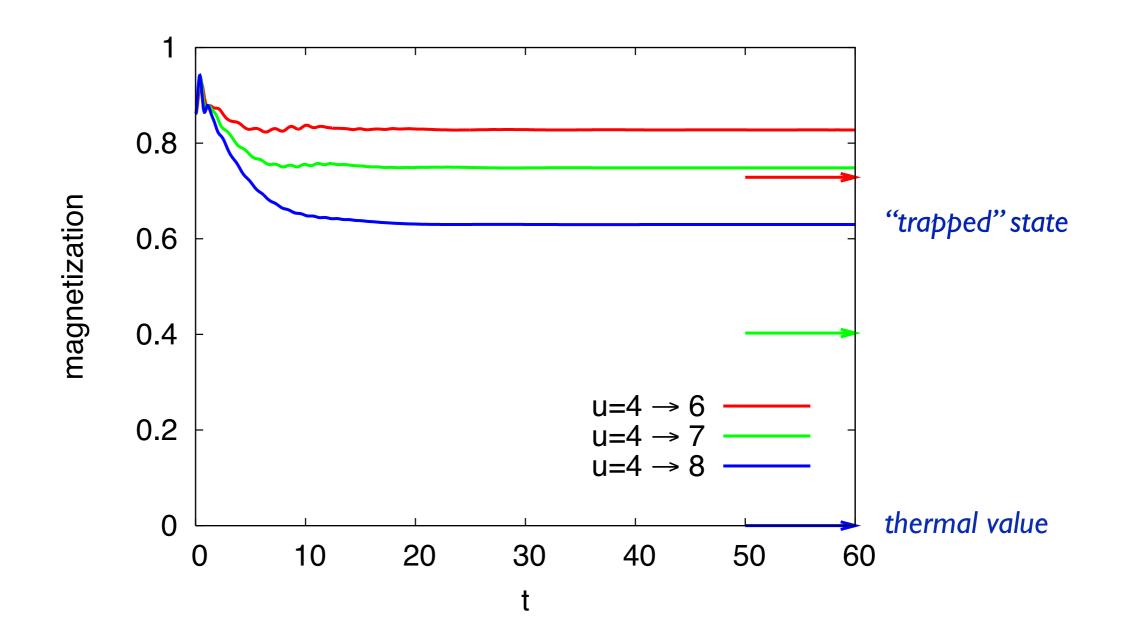
- "Photo-excitation" of carriers across the Mott gap
 Eckstein & Werner (2011)
- Strong correlation regime: Relaxation time depends exponentially on U



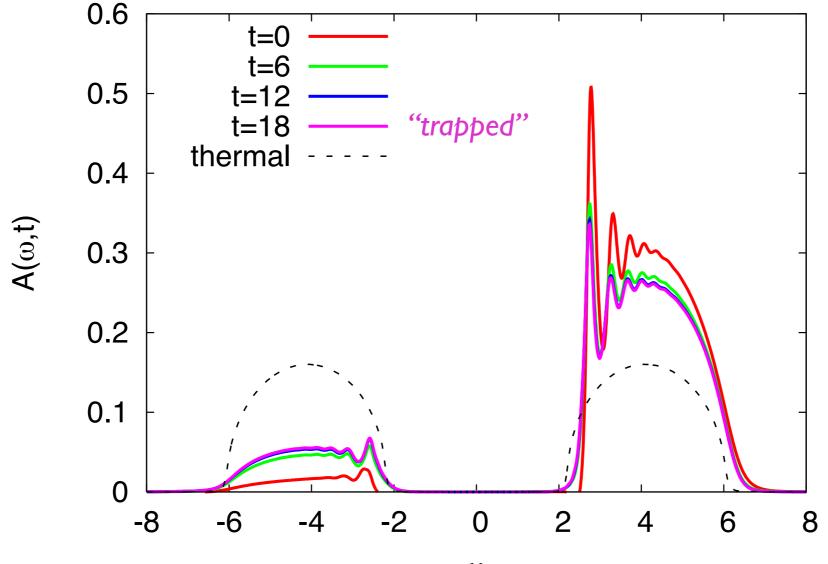
- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- U-quench into the strongly correlated regime freezes doublons / holes



- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- Magnetization does not vanish, even if thermal state PM



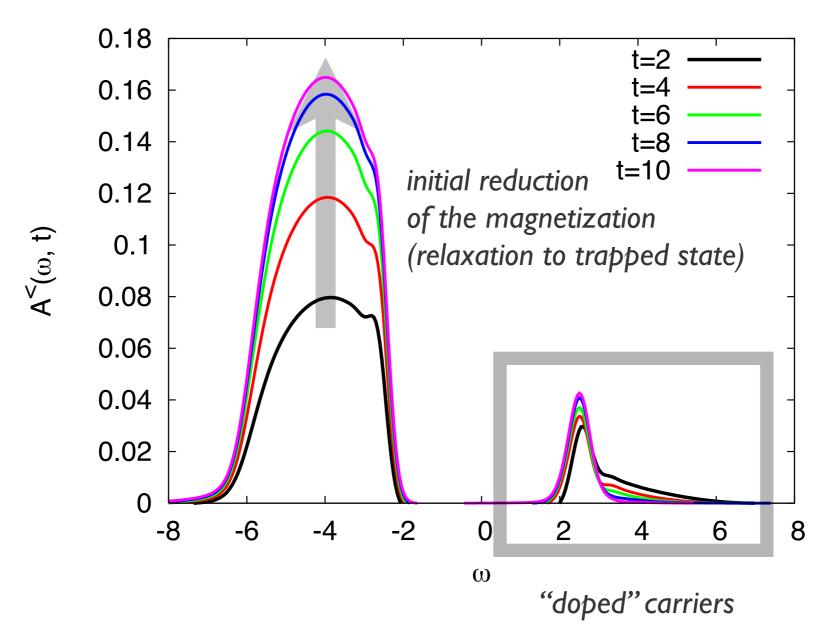
- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- Trapped state similar to chemically doped Mott insulator



timed-dependent spectral function (minority spin)

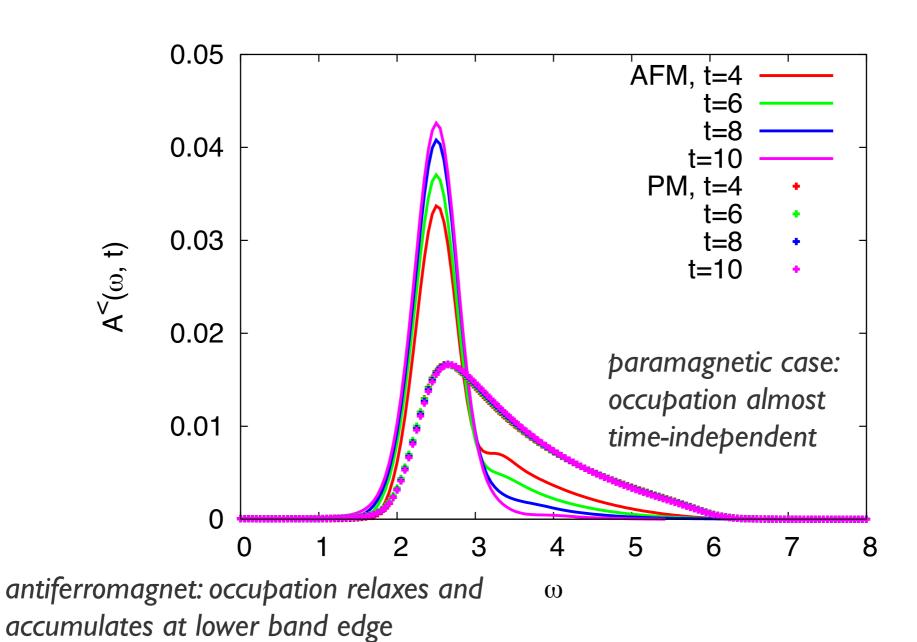
- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- Trapped state similar to chemically doped Mott insulator
- Interpretation:
 - Trapped state is a "t-J model" state with fixed doublons / holes
 - This state is protected by the slow decay of doublons
 - Effective temperature below the Neel temperature of the t-J state
 - entropy cooling due to AFM background

- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- Cooling effect is evident from the time-evolution of the occupation

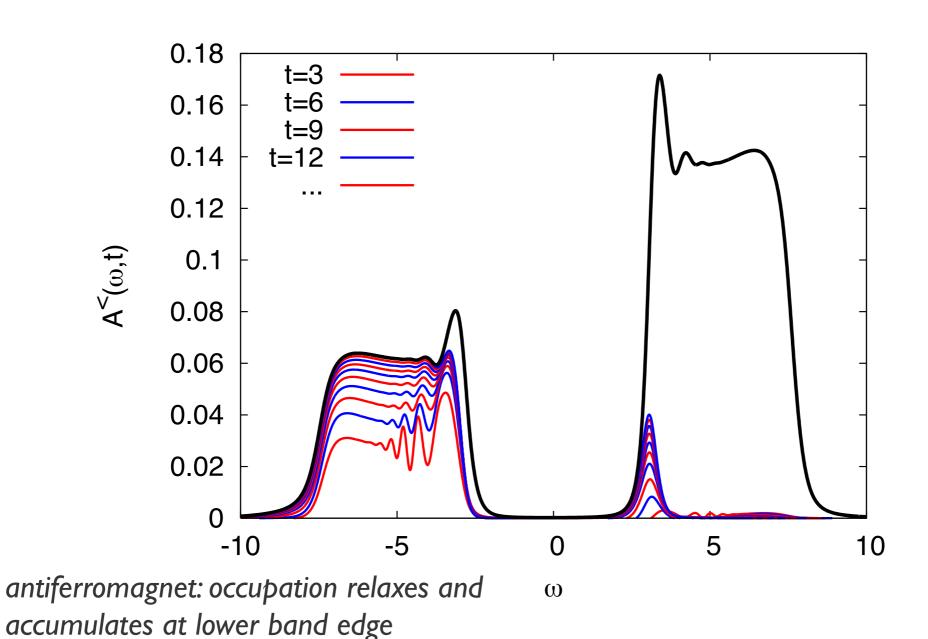


occupied part of the minority-spin spectral function

- "Photo-doped" antiferromagnetic Mott insulator (U-quench)
 Werner, Tsuji & Eckstein (2012)
- Cooling effect is evident from the time-evolution of the occupation



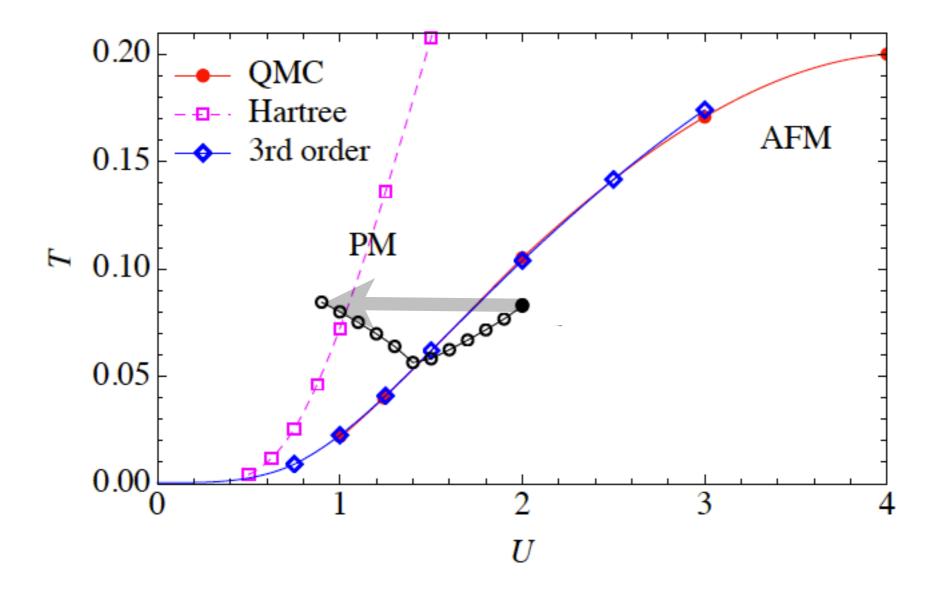
- Real photo-doping simulation $\,\Omega_{
 m pulse} pprox 12\,$ work in progress
- Cooling effect is evident from the time-evolution of the occupation



Weak-coupling regime

Tsuji, Eckstein & Werner (2012)

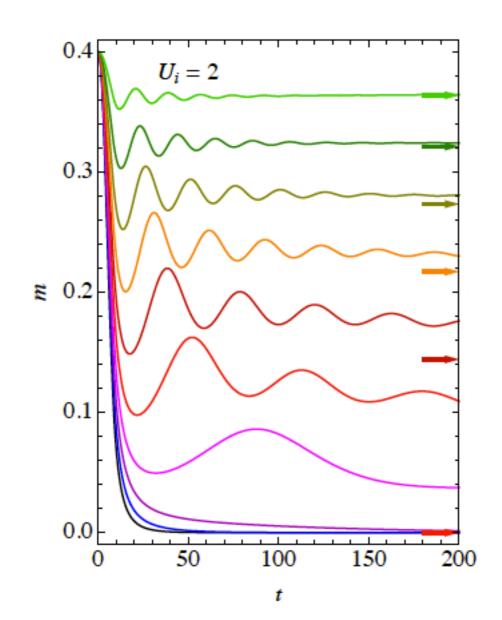
Slow ramp from (Slater-)Antiferromagnet to Paramagnet



Weak-coupling regime

Tsuji, Eckstein & Werner (2012)

Time-evolution of the magnetization for different final U



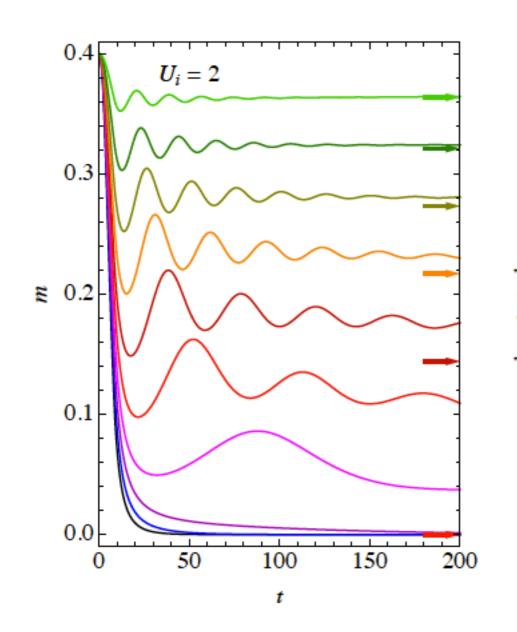
arrows indicate thermal magnetization

U=1.4: Oscillations around a nonthermal value (thermal magnetization=0)

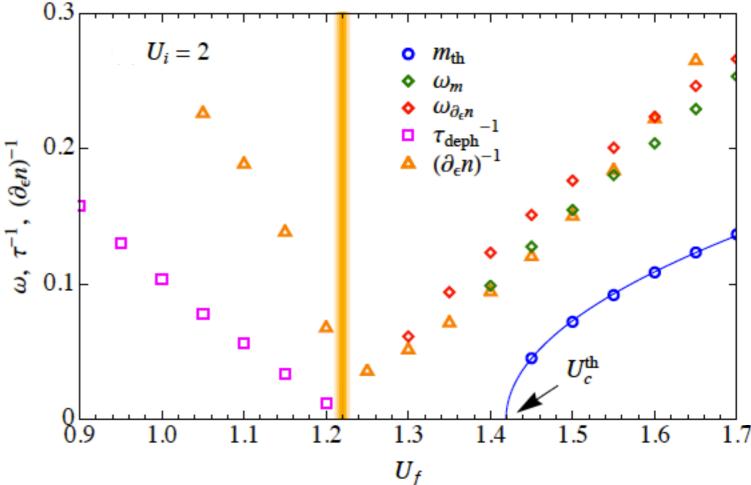
Weak-coupling regime

Tsuji, Eckstein & Werner (2012)

Evidence for a nonthermal critical point (GL-description fails)



diverging timescales (period of amplitude mode, dephasing time, ...)



Summary

Nonequilibrium dynamical mean field results for Hubbard model

- Metallic system: Population inversion by an asymmetric mono-cycle pulse
 - Interaction conversion: $U \rightarrow -U$
 - Dynamically generated superconductivity?
- Antiferromagnetic insulator: Nonthermal symmetry-broken states
 - Thermalization delayed by slow decay of doublons
 - Similar effect expected in superconductors -> experiment by Fausti et al.?
- Trapped states also in the weak-coupling regime
 - Short-time dynamics controlled by nonthermal critical points