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I. Introduction/Definitions
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1. (Global) Quantum Quench

A. Consider an isolated quantum system in the thermodynamic 
limit; Hamiltonian H(h) (short-ranged), h e.g. bulk magnetic field

B. Prepare the system in the ground state |ψ〉of H(h0)

C. At time t=0 change the Hamiltonian to H(h)

D. (Unitary) time evolution |ψ(t)〉= exp(-iH(h)t) |ψ〉

E. Goal: study time evolution of local (in space) observables 
〈ψ(t)|Ο(x)|ψ(t)〉,  〈ψ(t)|O1(x)Ο2(y)|ψ(t)〉etc
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2 main scenarios at late times after the quench

- generic systems behaves “thermally”.

- integrable systems behave in a more complicated way.

Deutsch ’91
Srednicki ’94

Rigol, Dunjko, Yurosvki
 & Olshanii ’07
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2 main scenarios at late times after the quench

- generic systems behaves “thermally”.

- integrable systems behave in a more complicated way.

Deutsch ’91
Srednicki ’94

Rigol, Dunjko, Yurosvki
 & Olshanii ’07

talks by J. Eisert, M. Rigol, J. Cardy, J.-S. Caux...

many (most) people 
in the audience
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2. Reduced Density Matrix

Density matrix: ρ(t)=|ψ(t)›‹ψ(t)|

Reduced density matrix: ρB(t)=trA ρ(t)

A

B

|ψ› = initial (pure) state of the entire system A∪B (A infinite)

Expectation values of 
local observables in B: 〈ψ(t)|ΟB(x)|ψ(t)〉= trB [OB(x) ρB(t)]
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3. Stationary State

If limt→∞ ρB(t)= ρB(∞) exists for any finite subsystem B:

→ system approaches a stationary state
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4. Thermalization

ρG=exp(-βH(h))/Z

 

β fixed by: tr[ρG H(h)]=〈ψ(0)| H(h) |ψ(0)〉

Define a Gibbs ensemble for the entire system A∪B

Reduced density matrix for subsystem B:

ρG,B=trA ρG

ρB(∞)= ρG,B

The system thermalizes if for any finite subsystem B
cf talk by J. Eisert
Landau/Lifshitz vol 5
Goldstein et al ’05
Barthel&Schollwöck ’08
Cramer, Eisert et al ’08 ...
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4. Thermalization

A acts as a heat 
bath with Teff

A

B
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4. Thermalization

A acts as a heat 
bath with Teff

A

B

Expectation: “Generic” systems thermalize.
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5. Generalized Gibbs Ensemble Rigol, Dunjko, Yurosvki
 & Olshanii ’07

Integrable systems don’t thermalize but are described by a GGE!
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5. Generalized Gibbs Ensemble

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

In =
X

j

In(j, j + 1, . . . , j + `n)

j j+ln...

in our case
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5. Generalized Gibbs Ensemble

ρgG=exp(-Σ λm Im)/ZgG

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

Define GGE density matrix by:

tr[ρgG Im]=〈ψ(0)| Im |ψ(0)〉λm fixed by

ρB(∞)= ρgG,B

The system is described by a GGE if for any finite subsystem B

ρgG,B=trA ρgGReduced density matrix of B:

Barthel & Schollwöck ’08

Cramer, Eisert et al ’08
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5. Generalized Gibbs Ensemble

A is not a standard heat bath: 
∞ information about the initial 

state is retained!!!

A

B

Tuesday, 28 August 12



5. Generalized Gibbs Ensemble

A is not a standard heat bath: 
∞ information about the initial 

state is retained!!!

A

B
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II. Goals and Questions

Derive analytic results for quench dynamics in an 
integrable model (should be simple, but more than just 
harmonic oscillators) in the thermodynamic limit.
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II. Goals and Questions

Q1: What happens for t→∞ ?
- Is the stationary state described by a GGE?
- If it is, can we determine local observables?

Q2: How fast is the approach to the t→∞ limit?

Q3: How do local observables behave at 1<<t<∞?

〈ψ(t)|O(x)O(y)|ψ(t)〉=??

Q4: What about dynamical response functions?

〈ψ(t)|O(x,t1)O(y,t2)|ψ(t)〉=??
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III. The Model: Transverse Field Ising Chain

Hamiltonian:

T

h01
0

0

Quantum 
Critical Point

Phase Diagram:

Simplest paradigm of a T=0 Quantum Phase Transition

order parameter:

(          always)

T>0: order melts 
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Jordan-Wigner
transformation

to spinless fermions:

Fourier+Bogoliubov
transformations:

local
nonlocal

Ground State: This will be our initial state | i
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Quantum Quench h0→h

New Hamiltonian:

New vs old Bogoliubov 
fermions:

linearly related → easy to calculate e.g. (Barouch, McCoy 
& Dresden ’70)

σjz non-local in fermions → hard problem.
(Rossini, Suzuki, Silva, 

Mussardo, Santoro 
’09, ’10)

non-local correlators may behave qualitatively
different → some obervables thermal, some not??

H(h) =
X

k

✏h(k)


�†
k�k � 1

2

�

U(k) = R†
h(k)Rh0(k)

h (t)|�x

j

| (t)i
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Note:

TFIC maps to free fermions, but observables are spins!

TFIC in many ways close to “generic integrable models” 
(sine-Gordon, XXZ, Lieb-Liniger), albeit (of course) simpler.
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IV. Our Work:

Developed 2 novel approaches to derive analytic results in 
the thermodynamic limit.
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Q1: What happens for t→∞ ?

- Is the stationary state described by a GGE?.
- If it is, can we determine local observables?
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Q1: What happens for t→∞ ?

- Is the stationary state described by a GGE? Yes.
- If it is, can we determine local observables?

limt→∞trA |ψ(t)><ψ(t)|=trA[ρgG]Showed that

includes quenches to critical point in scaling limit (c=1/2 CFT)

more general quenches in general CFTs → talk by J. Cardy
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Q1: What happens for t→∞ ?

- Is the stationary state described by a GGE? Yes.
- If it is, can we determine local observables? Yes.

Calculated e.g.

Have explicit expressions for correlation length and amplitude
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Q1: What happens for t→∞ ?

- Is the stationary state described by a GGE? Yes.
- If it is, can we determine local observables? Yes.

Calculated e.g.

Have explicit expressions for correlation length and amplitude
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Q2: How fast is the approach to the t→∞ limit?

- How close is ρB(t) to ρgG,B or to ρG,B ?

||M || �
�

Tr
�
M†M

�
Define distance: d(ρ,ρ’)=||ρ-ρ’||

M. Fagotti
&FHLE

Cramer et al ’08
Cramer&Eisert ’10

Banuls, Cirac
& Hastings ’11
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Q2: How fast is the approach to the t→∞ limit?

- How close is ρB(t) to ρgG,B or to ρG,B ?

||M || �
�

Tr
�
M†M

�
Define distance: d(ρ,ρ’)=||ρ-ρ’||

M. Fagotti
&FHLE

1. not thermal.

2. GGE approached
as power-law in t!

3. approach slower
for larger systems.
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Q3: How do local observables behave at 1<<t<∞?
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Time evolution of order parameter correlators

1. Order parameter for a quench within the ordered phase

At late times

Exponential decay to zero with exactly known decay rate τ 
and amplitude CFF.

5 10 15 20

0.1

0.2

0.3

0.4
��(t)|�z

j |�(t)⇥

t

h0=0.2 → h=0.8

line: asymptotic result
dots: numerical data L=∞,
       acc. 10-16
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Time evolution of order parameter correlators

At late times

2. Two-point function for a quench within the ordered phase

known simple functions

Exact in the limit t,l→∞, t/l fixed !
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Time evolution of order parameter correlators

At late times

2. Two-point function for a quench within the ordered phase

t

��(t)|�z
j+20�

z
j |�(t)⇥

�⇥�(t)|�z
j |�(t)⇤2

10 20 30 40

0.01

0.02

0.03

0.04

0.05 h0=0.2 → h=0.8

l=20 fixed
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Time evolution of order parameter correlators

At late times

2. Two-point function for a quench within the ordered phase

t

��(t)|�z
j+20�

z
j |�(t)⇥

�⇥�(t)|�z
j |�(t)⇤2

10 20 30 40

0.01

0.02

0.03

0.04

0.05 h0=0.2 → h=0.8

l=20 fixed

l/(2vmax) horizon effect Calabrese&Cardy ‘05
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Time evolution of order parameter correlators

At late times

2. Two-point function for a quench within the ordered phase

t

��(t)|�z
j+20�

z
j |�(t)⇥

�⇥�(t)|�z
j |�(t)⇤2

10 20 30 40

0.01

0.02

0.03

0.04

0.05 h0=0.2 → h=0.8

l=20 fixed

settles to 
GGE value

Relaxation through ballistically moving domain walls
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Time evolution of order parameter correlators

2. Two-point function for a quench within the disordered phase

known functions

Low density expansion, breaks down at critical point.
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Time evolution of order parameter correlators

2. Two-point function for a quench within the disordered phase

Different relaxational mechanism involving magnon annihilation

l=30 fixed

settles to 
GGE value
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Q4: What about dynamical response functions?

〈ψ(t)|O(x,t1)O(y,t2)|ψ(t)〉=??

Tuesday, 28 August 12



Q4: What about dynamical response functions?

(FHLE, M. Fagotti &
 S. Evangelisti)

- for t→∞ given by the GGE!

More generally: if

then

for fixed t1,t2,...,tn

Lieb&Robinson ’72
Bravyi, Hastings& Verstraete ’06ultimately follows from
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Q4: What about dynamical response functions?

(FHLE, M. Fagotti &
 S. Evangelisti)

- for t→∞ given by the GGE!
- analytic results for 2-point functions

h0=2 → h=3

T = t+
t
1

+ t
2

2

⌧ =
t
1

� t
2

2

tF =
`

2v
max
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A Few Words about the methods:
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Approach I: Block-Toeplitz Determinants

 Express       in terms of the “old” Bogoliubov fermions 

Wick’s thm
Pf(T)

Block-Toeplitz matrix
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Approach I: Block-Toeplitz Determinants

 Express       in terms of the “old” Bogoliubov fermions 

Wick’s thm
Pf(T)

t,n→∞, t/n fixed
Multi-dim stationary

phase approx.

(M. Fagotti &
P. Calabrese ‘08)c.f.
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Approach II: “Form-Factor” Sums

1. Go to large, finite volume L

2. initial state: must give symmetry broken ground state for L→∞

Consider a quench within the ordered phase h,h’<1

periodic bc’s
on fermions

antiperiodic bc’s
on fermions

2. initial state = one of the two ground states

3. Express this in terms of the new Bogoliubov fermions

cf Rossini 
et al ’10
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2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions

k1

-k1

kn

-kn

•
•
•
•

pl

-pl

p1

-p1
•
•
•
•
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2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions

k1

-k1

kn

-kn

•
•
•
•

pl

-pl

p1

-p1
•
•
•
•

form factors are known exactly for the lattice model
Vaidya&Tracy ‘78, 
vonGehlen et al ’08
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2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions

k1

-k1

kn

-kn

•
•
•
•

pl

-pl

p1

-p1
•
•
•
•

Idea: Consider K(q) as expansion parameter:

density of excitations

n(q) small ⇔ K(q) uniformly small in q
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2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions

k1

-k1

kn

-kn

•
•
•
•

pl

-pl

p1

-p1
•
•
•
•

1. Dominant contributions from even orders K2n

2.Leading contributions at order K2n from terms 
with n=l and {k1,...,kn}≈{p1,...,pn} “infrared singularities”
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2. initial state = one of the two ground states

sum these to all orders ⇒

- Low density expansion of the full answer.
- Works well everywhere except very close to QCP.
- (dynamical) 2-point functions calculated similarly 
  (but much more complicated).
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Conclusions

1. Obtained detailed analytic results for the time evolution of
 (general) observables in the Ising case.

2. Noneq. evolution in integrable models appears to be special.

3. As proposed by Rigol et al, the stationary behaviour of
subsystems is given by a GGE for the Ising chain.

4. The GGE gives both static and dynamic correlators at
 stationarity.

5. New methods can be applied to integrable QFTs
(Ising field theory, sine-Gordon model)

6. What happens for more general initial states (e.g. break
 translation invariance) ? ⇒ Ising chain.

D. Schuricht
& FHLE
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