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PLAN

Introduction: simplistic models of SIT transition
In Josephson junction arrays

Experimental data

Missing ingredients: charge disorder.
Numerical solution of finite small systems.
Unconventional glass.

Conclusions.



SIMPLISTIC MODEL OF THE SIT TRANSITION IN
JOSEPHSON JUNCTION ARRAYS



JOSEPHSON ARRAYS

Elementary building block
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Ideal Hamiltonian:
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C; - capacitance matrix E; - Josephson energy
Simplest case: large ground capacitance of individual islands (C, > C):
C; =C,0,+CD; where D; Is discrete Laplace operator



JOSEPHSON ARRAYS

Elementary building block
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Toy Hamiltonian:
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C, - ground capacitance E; - Josephson energy
AtE, > E. =e*/2C expect long range order in phase (superconductor)

At E, < E. =€°/2C ground state q = 0 excitations are separated by a gap
that closes exactly at transition.



JOSEPHSON ARRAYS

Elementary building block
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EXPERIMENTAL DATA



SUPERCONDUCTOR-INSULATOR TRANSITION
IN DIRTY FILMS AND ARRAYS.
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SUPERCONDUCTOR-INSULATOR TRANSITION
IN DIRTY FILMS AND ARRAYS,
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Quantum critical behavior as a function of
magnetic field (Kapitulnik 2008). Self
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JOSEPHSON ARRAYS VS, FILMS

Films show direct supercondutor-insulator transition while some arrays show broad
intermediate “normal” phase for large E;/E,.

Both arrays and films show insulating gap decreasing continuously away from the critical
point.

Both arrays and films show large inhomogeneity of superconducting properties despite
nominally homogeneous normal state.
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JOSEPHSON ARRAYS VS, FILMS

Multiple phase transitions in films as a function of field for small E./E;?
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EMERGENCE OF LARGE SPATIAL SCALES
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Gap extracted from the current-voltage characteristics and activation energies coincide
for the whole arrays!
Indication that transport is dominated by a single weak link.



NO EVIDENCE FOR WEAK LINK
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OFFSET VOLTAGE IVCS AT FULL FRUSTRATION
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MISSING INGREDIENT: DYNAMICAL CHARGE
DISORDER
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TYPE 3 TRANSITION - JOSEPHSON ARRAYS

Elementary building block
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Realistic Hamiltonian:
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C; - capacitance matrix E; - Josephson energy

Q. =Q°+Q.(t) - induced charge (static and fluctuating) - large effect

D = 5D° + 5D (t) - static flux due to area scatter and flux noise sD(t) ~2-5x10"°®D,
OE, =6E,° + SE, (t) - static scatter of Josephson energies and their time dependent
fluctuations. SE,(t)/E, <10°°



OFFSET CHARGE DYNAMICS

Direct studies of
Ultra-small junctions

1. Conventional SET
Zimmerman 2008
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CONCLUSIONS FOR THE MODEL

The relevant terms in the Hamiltonian:
1 -1 q)” - d
H :_Zcij (q; _Qi)(qj _Qj)+ E, cos(o, —Q; —2r—) ¢ =2ei—
2] D, do,
C; - capacitance matrix E; - Josephson energy
Q.- completely random pseudostatic offset charge
To compare with the experiments results should be averaged over Q.
because typical experiment cannot resolve the times scales at which Q. varies



NUMERICAL SOLUTION OF FINITE (SMALL)
SYSTEMS,
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Q: WHICH TYPE OF BEHAVIOR TO EXPECT?
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NUMERICAL TOOL; LEVEL STATISTICS

Spins located on random graph
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Level correlations as a function of interaction evidence the transition between
localized regime at small J and delocalized regime at large J



DETAILED COMPARISON OF NUMERICAL
RESULTS AND ANALYTICAL EXPECTATIONS
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In a finite system one expects the level repulsion when I'(¢)~ level spacing with
probability O(1). This happens at g > g.-(¢) (true transition in infinite system).

Conclusion: perfect agreement with the leading order recursive equations for I'(g)
No evidence for .,.~N



NUMERICAL EVIDENCE FOR BAD METAL
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Level statistics in the presence of Coulomb interaction shows transition
from coherent to incoherent phases
J, =0.065for E €[1...2] and J, =0.037 for E €[3...4]



TRANSITION FOR LOW ENERGY STATES

Practical problem: low energy states have low density of states + their
properties vary with energy — poor statistics.
Resolution: check the low energy results by computing participation ratio.
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Probability to find large participation ratio shows a well defined crossing point which
coincides with the one found from level statistics at high energies (when the latter is
accurate.

Conclusion: transition at very low energies happens at
J, =0.10 for E — 0 while J, =0.065 for E €[1...2] and J, =0.037 for E €[3...4]



SUPERCONDUCTIVITY

Compute susceptibility in the ground state
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Susceptibility (normalized to
spin) shows well defined
transition at much larger J.
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PHASE DIAGRAM (NUMERICAL SIMULATIONS)
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Conclusion from numerical simulations:

The presence of Coulomb repulsion leads to the appearance of the intermediate phase
between superconductor and coherent insulator!

The regime of ‘bad metal’ shrinks to zero as C/C, —0



EVIDENCE FOR UNCONVENTIONAL GLASS.



WHAT IS THE STATE AT J=07?

Classical Hamiltonian:
1 _
H zazcij 1(qi _Qi)(qj _Qj)
i,j

Q. €(0,1), g, =0,1 (one can show that larger variations of g, are irrelevant)
C; =C,0; +CD; where D; Is discrete Laplace operator

C, < C — long range interaction in finite d>1

Main question: is long range interaction and disorder sufficient to form a glass?
The interaction (inverse Laplace) is largest in d=1.

Q: What is the ground state in d=1 for C, =07

A: Trivial because interaction becomes local in variables



DATA FOR D>1
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SUMMARY

1. Experimental data indicate that an intermediate phase might be formed
between the superfluid and insulating Josephson arrays as a function of
frustration or E,/E ratio.

2. In the intermediate phase the resistance is weakly (if it all) temperature
dependent, certainly the activation gap becomes zero. Current voltage
characteristics in this regime are featureless at low current or voltages.

3. Numerical and analytical solutions for the models on random graph show that
such phase does not appear in the absence of Coulomb interaction.

4. Numerical data show that a wide regime in which the activation gap is zero but
the superconductivity is absent might appear in the presence of Coulomb
interaction.

5. It is likely that the existence of the intermediate phase is due to the glassy
nature of the classical state formed by Coulomb interaction.

6. There is no real theory...



