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C. Jess Riedel, REDUNDANT INFORMATION AND THE QUANTUM-
CLASSICAL TRANSITION this WEDNESDAY 2 pm in 3302 Broida,

a conference room directly across from the elevators

on the 3rd floor of the physics building.

Phase winding by Bose-Einstein condensation

Miscibility-immiscibility quantum phase transition

Critical dynamics of decoherence
Assisted finite rate adiabatic passage through quantum critical point

Topological Schrodinger Cat in a quantum Ising
chain

Quench from Mott insulator to superfluid



Phase winding around the loop...

, Phase chosen independently 1n each of
Circumference C .
N = C /& ftragments of the loop
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Therefore, expected mismatch of phase of the “condensate” 1s:

This implies a gradient of phase of A@/C which implies a velocity:

In a loop topology winding number is preserved.

and a winding number:

(WHZ, Nature ‘85)

First experiment: Polturak et al., Haifa, 2001... More recent experiments by Brian
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“When symmetry breaks, how big are the pie

All second order phase transitions fall into universality classes
characterized by the behavior of quantities such as specific heat,
magnetic susceptibility, etc. This is also the case for quantum
phase transitions.

Equilibrium behavior of the relaxation time and of the
healing length near the critical point will be essential; they
determine density of topological defects formed by
nonequilibrium phase transition -- by “the quench”.

“CRITICAL SLOWING DOWN” “CRITICAL OPALESCENCE”




Derivation of the “freeze out time”...

Assume:
time t
E = =
"quench time" 7,
Relaxation time: -
-
determines “reflexes” of the system.
The potential v, , =~ (p)= ,g|¢|2 + |¢|4 changes at a rate given by:
£
=1
X

Relaxation time 1s equal to this rate of change when T(é‘(? ) = t



... and the corresponding “frozen out”
healing length

Hence:

z-0/(t /TQ ) =1 adiabatic adiabatic

Or:

-4

The corresponding length follows:

adiabatic
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é — 60 |TQ/TO|U/(1+UZ)
WHZ, Nature, 317, 505 (1985)...




Our S|mulat|on of Bose- Elnsteln Condensat|<
|n a torus

A Circumference C \ ¥

Arnab Das, Jacopo Sabbatini, WHZ
Nature Sci. Reports, 2, Article number 352
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When symmetry breaks, how can one caléulate ,
the “size of the pieces”™?



http://arxiv.org/abs/1102.5474

We consider a BEC in a quasi-1D) ring of circumfer-
ence ', an idealization of guasi-11) toroidal geometry,
e.g., see [12—-14]. We model it using the stochastic Gross-
Pitaevskii equation (SGPE) [22]:

. AP 1 9% _ >
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(Z—7)5; > B2 e(t)d + glo|“d + n(x, t) (1)
where ¢ = |@(x)|e??(®) is the condensate wavefunction

and n(x.,t) is the thermal noise satisfying the fluctuation-
dissipation relation (n(x,t)n*(x’, ")) = 2T 6(x —x")o(t —
t"), with ~ representing the dissipation, 7’ the noise tem-
perature, g the non-linearity parameter and —e the chem-
ical potential [21]. Leaving aside the noise and dissi-
pation, the above system can be described by the en-

ergy functional £ = friﬂg[%|5$¢5|2 + U(|®|)]dx, where
U(|ld]) = e€|l|? + %§|¢5|4. Extremizing the energy func-

tional we obtain ¢ = O for e > 0 and ¢ = +/|€|/gexp (20)
for € << 0, where 0 is the wave function phase (e = 0O is the
critical point). We induce the transition by quenching e:

€(t) = —t/7q (2)

from an initial e = 0 to a final € < 0, and allow the
system enough time to thermalize initially and stabilize
eventually [23]. The critical point is crossed at #,. — 0.




Winding up superfluid in a torus via Bose
Einstein condensation

Arnab Das, Jacopo Sabbatini, Wojciech H. Zurek t=0.76 ms
Scientific Reports 2, Article #352, (2012) (arXiv:1_102.5474)
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(b) Winding number as a function
of quench timescale. (Inset in (b):
Distribution of winding numbers

For a single quench time is nearly

Gaussian. A y vz
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(c) BEC buildup as a function
of time lags behind: The critical

- pointis traversed at t=0. All the
o, Plots overlap when rescaled by
- the characteristic time that follows

from the KZM:

|1/(I+uzJ

t—|’i"[]

“A” marks sharp “knee” where
catching up with equilibrium N starts.



2-D Simulation of BEC
Formation

20 40-40 -20

N=6 t=10ms T =5nk

Das, Sabbatini, WHZ



Phase separation and pattern formation in a binary Bose-Einstein condensate

Jacopo Sabbatini,!** Wojciech H. Zurek,”? and Matthew J. Davis!

'The University of Queensland, School of Mathematics and Physics, Qld 4072, Australia
QTJ'H:?OF}’ Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Dated: September 11, 2011)

The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled
by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern
formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase
transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales with
the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic
trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a “quantum
simulation” of the harmonically trapped system in a ring trap to verify the scaling exponent.
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Figure 1. Density of the two components of a binary BEC. (a) Natural ground state of a binary
immiscible system. (b) In the strong coupling regime state (a) becomes miscible. Quantum
noise has been added that results in the formation of domains (see text). (c) Quenching the
coupling €2(t) to zero brings the system back to its immiscible phase. If the quench is non-
adiabatic a random pattern of domains is created and the system is left in an excited state. We
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Phase separation and pattern formation in a

binary Bose-Einstein condensate

Jacopo Sabbatini, Wojciech H. Zurek, Matthew J. Davis
Phys. Rev. Lett. 107, 230402 (2011) (arXiv:1106.5843); NJP, in
press
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Critical Dynamics of
BI@@@ht@ﬁ@ﬂ@@@ phase transition(s) is an

environment of a single qubit. We study decoherence

factor.
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B. Damski, H. T. Quan, WHZ
Phys. Rev. A83: 062104,2011

N
He = =) ofof,  +g(t)o:
j=1

g(t) =1—t/7q,

IV
Hse = —0 E 0;05.
j=1

ﬂZﬁg—l—ﬂS‘g.


http://arxiv.org/find/quant-ph/1/au:+Damski_B/0/1/0/all/0/1
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A straightforward calculation then shows that

[9(8) = Te e @ HEO gt = o))
= .| 1) @ Te™ o D) G5t = —o0))
+ oo | ) @Te i o #He0O-8) G5 (¢ = o))
= . ) ®lec(®) e [V ®lp-(t),  (6)

where T' is the time-ordering operator, and evolution of
the environmental states coupled to up-down qubit states
1s given by

i los(t) = He(o() £ 0) lex(®) . | (7)

Therefore, evolution of the system depends on dynamics
of two Ising branches evolving in an effective magnetic
field given by g(t) + 4.

The reduced density matrix of the qubit in the

{1 1),]4)} basis reads

ps(t) = Trelw) (o) =  , Jorb ) el ).

|e—

where d(t) = (¢4 (t)|¢—(t)) 1s the decoherence factor. We
study its squared modulus,

D =d(®)I* = [{p+ &)l (D), (8)

also known as the decoherence factor; we follow this
nomenclature below. When D = 1, the qubit is in a
pure state, but when DD = 0 it is completely decohered.
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FIG. 2: (color online) Decoherence during a quench: a quasi-
periodic regime between the critical points. Black solid line is
a numerical solution. Our analytical approximations are su-
perimposed on it as a blue dashed line: (20) for g(t) € (—1,1)
and (23) for g(t) < —1. The green dashed-dotted line is the
adiabatic result equivalent to ground state fidelity (7g — oo
limit). Numerical solution almost perfectly overlaps with an-
alytical results away from the critical points — |g — g.| > g, 6.
Them main plot shows that for moderate environment sizes
— N = 1000 here — almost perfect revivals of coherence take
place between the critical points, but coherence is virtually
lost after driving the environment through the second critical
point. The inset, prepared for N = 30, 000, illustrates that
for very large environments there is little coherence left afl-
ter passing the first critical point and the qubit is completely
decohered after crossing the second critical point. Interest-
ingly, the ground state fidelity provides the envelope for the
revivals between the critical points. We used here § = 1072
and 7 = 250.

— magnetic field g(t)
: Q.
FIG. 3: (color online) Same as in Fig. 2, except we consider
here N-th root of the decoherence factor I) — decoherence per
spin — illustrating details of decoherence dynamics in the large
N limit. Data from Fig. 2 is used to make this plot: N = 1000
and N = 30,000 data sets provide indistinguishable D'/ on

the scales explored in this plot.
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contribute most to non-equilibrium decoherence




Adiabatic crossing T

of a

quantum phase transition

QC

A. del Campo, M. M. Rams, W. H. Zurek, PRL, arXiv:1206.2670



http://xxx.lanl.gov/abs/1206.2670
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Take a time-dependent Hamiltonian with instantaneous eigenstates:

Ho(t)|n(t)) = E,(t)|n(t))

Write the adiabatic approximation

[V (1)) zexp{—%fo dr’En(z’)—fO dz’<n(r’)|am(z’)>}|n(¢)>

Look for a Hamiltonian for which the adiabatic approximation is exact

ihd, | v, () = H@) |y, (1))

It follows that ﬁ(;) — ﬁo(l‘) —I—ﬁl (1)
- A . |m) (I}'.!‘afﬁ[';lh')(”l
Auxil : = 1/
uxiliary term H(t)=1h mZ:# Z E —E.

Demirplak & Rice 2003, 2005; M. V. Berry 2009



Quantum critical systems

Family of quasi-free fermion models I = Z l//li [dx (A (1)) - Ok| Wk

Ok = (Gkackack)

‘Vli:(cchvaltz)

Model dependent vector  dk(A) = (ay(A),a(1),a;5(1))

Examples: Ising, XY in 1D, Kitaev model in 1D, 2D
Auxiliary Hamiltonian in Fourier space

A= 20Ty W @) < (1) - 6

Long-range time-dependent interactions. Example: Ising model

N/2—1

m=1_— f <1
A — Z Jon +1hN/2( )%ﬁ“"/ﬂ] P = { ¢ or le]
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A. del Campo, M. M. Rams, W. H. Zurek, PRL, arXiv:1206.2670



http://xxx.lanl.gov/abs/1206.2670

Precluding the KZM scaling

A. del Campo, M. M. Rams, WHZ, PRL
TraB&dd¥ed 280126/ - quench of through critical point g(t) — g, — Ut

M
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density of excitations n.,

10—2 10-1 10° 10!
quench rate v To verify if it works:
arXiv:1007.3294 Testing quantum

adiabaticity with quench echo

H. T. Quan, W. H. Zurek
New Journal of Physics, 12 (2010) 093025
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Topological Schrodinger Cat in a Quantum
I‘I&lﬁg @h@iﬂ)n arXiv:1106.2823 Topological

of “kinks”: L Schrodinger cats... J.
IR P A A W A Dziarmaga, WHZ, M. Zwolak:
e e Nature Physics 8, 49-54 (2012)
e e A )

Incoherent

e 1| Last domino standing. Topological defects, such as domain walls separating dominoes falling in opposite directions, are extremely stable. The
no domain wall is a kink between regions of different ordering. When this kink is put into a quantum superposition of two different position states,
ntire region between the two locations is brought into quantum superposition, leading to the possibility of large-scale superposition states as these
ions are taken farther apart.

Figure 1: A Schrodinger kink in a quantum Ising chain. (a) A topological defect in a non-local superposition and (b) The
analogue of a double-slit experiment. A double-well potential (left) is used to create a topological defect, such as a domain wall,
superimposed in two locations (here, defect is represented by its probability distribution in space). To earry out the double slit
experiment, the two potential wells are eliminated, allowing the defect to mowve. In isolation, the two wavepackets emerging
from the “slits” interfere creating fringes of high and low probability for the location of the kink. However, when the system
interacts with the environment, such a superposition will decohere at rate proportional to the distance I — the unzipped part
of the chain shown in (a), which corresponds to the size of the Schrédinger kink — resulting in a classical distribution for the

defect.


http://arxiv.org/abs/1106.2823
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Figure 2: Interference patterns after a Schridinger kink is re-
leased. (a) Time evolution of the Schridinger kink for L = 50
and 2w = 0.3g results in an interference pattern (highlighted
in red at the final time). (b) Interference pattern in the long
time limit (g¢ = 1000) for . = 100 and 2w = 0.3g. The exact
data is shown as black crosses and the expression, equation
(4), is shown as the blue line. (c) Interference pattern in
the long time limit (gt = 1000) for L. = 50 and 2w = 0.34.
The exact data is shown as black crosses and equation (4) is
shown as the blue line. As the initial superimposed kink is
shortened, the interference pattern diminishes.
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Figure 3: A Schridinger kink evolved in the presence of deco-
herence. (a) Time evolution for strong decoherence (I' = g/2),
L = 50, and 2w = 0.3g, where the Schridinger kink evolves
into a (b) Gaussian mixture of locations (highlighted in red
in (a)) at a later time, gt = 100 (the black crosses are the
exact data and the blue curve is the solution to the diffusion
equation). (c) Under weak decoherence (I' = g10™*/8), the
superposition is still visible at intermediate times, but the
decoherence smooths out the fringes (the black crosses are
the exact data and the blue curve is the pure state solution
convoluted with a Lorentzian).



10 gt'=328'0 R gt
. ] 3000
B ¢l |
i _ 2500
2 J \% 1 2000
> | | .
i N SR B 1500
2.5{ gt=>660 ﬂ ﬂ 2
20, | ﬁ ] 1000
- i
9f1.0-' E 500
06 y 0 |
_' 1-100 0 100 -100 O . o
=100 =50 0 50 100
3 n n o

Figure 4: A single kink evolved on a finite lattice with and without decoherence. (Left) Time evolution without decoherence
on an L = 201 site lattice and 2w = 0.5g. The kink travels outward on the lattice and after reflecting off the boundaries,
it starts to interfere with itself. The leftmost panels show the self interference at two particular times. (Right) The same
simulation except in the presence of weak decoherence (I' = 3g x 10~%). The kink can still interfere with itself, but eventually
the decoherence will set in. In the supplemental information, we show movies of the development of this interference pattern
for different values of w.



Quench from Mott Insulator to Superfluid

Jacek Dziarmaga,! Marek Tylutki,! and Wojciech H. Zurek?

We study a linear ramp of the nearest-neighbor tunneling rate in the Bose-Hubbard model driving
the system from the Mott insulator state into the superfluid phase. We employ the truncated Wigner
approximation to simulate linear quenches of a uniform system in 1...3 dimensions, and in a harmonic
trap in 3 dimensions. In all these setups the excitation energy decays like one over third root of
the quench time. The —1/3 scaling is explained by an impulse-adiabatic approximation - a variant
of the Kibble-Zurek mechanism - describing a crossover from non-adiabatic to adiabatic evolution
when the system begins to keep pace with the increasing tunneling rate.

1
H=—1 Y aon+ Y (5rololosac +Viala

(81,52) s
When n > 1 we can replace annihilation operators ~ We drive the system by a linear quench
as by a complex field ¢s, as = /ngs, normalized as
> |#s|? = LP and evolving with the Gross-Pitaevskii J(t) = t/rq ,
equation (GPE) starting in the Mott ground state at J = 0,
dds _ 2 2 |n,n,n,...,n)
1 dt —_ _Jv 'i}s _|_ (|¢s| - ].) 'i}s, 5 (6‘) 1 ? 1 ? ¥

see Refs. [13]. Here
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Vs = ) (¢stea — 205 + Ps—c.) (7)
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FIG. 6. Correlation functions Cr in 1D at J = 0.1 for dif-
ferent quench times 7. The functions are exponential, as
expected in a thermal state in the adiabatic stage of the evo-
lution. Their correlation length scales like £ ~ Tg with the
best fit & = 0.329 close to the predicted 1/3.

We drive the system by a linear quench

J(t) = t/1q ,
starting in the Mott ground state at J = 0,
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FIG. 7. Long-range tail of the correlation functions C'r in 2D
and 3D at J = 0.1 for different quench times 7¢. They are in
the adiabatic stage, in the sense that local observables have
equilibrated, but they have not had enough time to develop
the infinite-range (quasi-)long-range order expected in the low
temperature phase. Instead the correlations have finite range
limited by a finite rate at which they can spread across the

system. The range grows with 7¢ faster than 7
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Vortices in 2D and 3D
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