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Abstract

We survey the (2,0) superconformal field theory in six dimensions,
including its relation to D = 5 maximally supersymmetric Yang-Mills
theory (MRD arXiv:1012.2880 and LPS Lambert-Papageorgakis-
Schmidt-Sommerfeld arXiv:1012.2882), and other approaches to its
formulation.

Michael R. Douglas (Simons Center) (2, 0) theories KITP, January 2014 1 / 35



Outline

1 Introduction

2 Basic facts about (2,0) theory
Role of extended objects
BPS states in the Coulomb phase
Tensionless string formulation?
Relation to D = 5 and D = 4 MSYM
UV divergences

3 Origin of N3

4 Perturbative approach
Adding extra states

5 Actions

6 Other ideas

Michael R. Douglas (Simons Center) (2, 0) theories KITP, January 2014 2 / 35



Introduction

Inspired by string/M theory and AdS/CFT, many superconformal field
theories have been discovered and studied. The most mysterious and
arguably the most important is the (2,0) theory in six dimensions
(Witten, 1995). There is a free or “abelian” (2,0) theory, a field theory
of a self-dual tensor (3 physical modes), 5 scalars and 8 fermions.
There are also “nonabelian” (2,0) theories, with various indirect
definitions and relations to other superconformal theories:

Type IIb string theory on a four-dimensional ADE singularity,
leading to an ADE classification of these theories.
N coincident M5-branes, leading to the AN−1 theory.
The large N limit is dual to M theory on AdS7 × S4.
After compactification on T 2, one gets N = 4 maximally
supersymmetric Yang-Mills theory, with complex gauge coupling τ
equal to the complex modulus of T 2. This gives S-duality a
geometric explanation.
Twisted compactifications on manifolds with d = 2,3,4 lead to
new superconformal theories in D = 4,3,2.
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Introduction

However there is no satisfactory Lagrangian, and since the theory has
no dimensionless coupling, no argument that there must be one, nor is
any other usable microscopic definition known.
Here are some of the other ideas which have been tried:

On the Coulomb branch there are BPS strings, with tension
proportional to differences of scalar vevs φi − φj . In the unbroken
limit φi → φj , these might lead to “tensionless strings” as
fundamental degrees of freedom.
One can conjecturally define M theory in the light-cone frame as
the large N limit of D0-branes in IIa theory – BFSS “Matrix theory.”
This idea also leads to a definition of the AN and DN (2,0)
theories as large N limits of D0-D4 systems (Aharony et al ’97).
One might start with the theory compactified on S1, T 2 or possibly
other manifolds, add in any extra degrees of freedom of the D = 6
theory (such as Kaluza-Klein states), and take the large volume
limit. The simplest starting point would be D = 5 MSYM, if we can
make sense if it (it is perrturbatively nonrenormalizable).
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Introduction

More ideas:
There is an argument called “deconstruction” that the AN quiver
D = 4, N = 2 SYM becomes (2,0) theory in an appropriate limit.
Essentially the quiver is a lattice approximation to the fifth
dimension. While it is sensible, the problem is that the gauge
theories are strongly coupled in this limit.
There is some work on D = 6 conformal blocks, which might allow
working with the bootstrap.
One can construct (2,0) theory on a curved background by
decoupling the degrees of freedom at a singularity in IIb string
theory on AdS5 × S5/ZN . Using dualities this can lead to a
realization in terms of D = 4 SCFT’s (Aharony, Berkooz and Rey,
to appear).
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Introduction

In this talk we will survey these approaches as well as other recent
results:

Computation of the superconformal index by localization methods
(Kim3+Lee 1307.7660).
Calculations reproducing the free energy with its N3 scaling
(Maxfield and Sethi 1204.2002; Källen et al 1207.3763).
Constraints from superconformal invariance on the S-matrix
(Czech, Huang and Rozali 1110.2791).

Finally there are some more speculative ideas that should be pursued:
Explicitly adding extra states to D = 5 MSYM.
Nonlocal actions in six dimensions.
Reformulation in terms of D = 6 twistors.
Wilson surface computations.
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Basic facts about (2, 0) theory

Basic facts about (2, 0) theory

It is a local field theory, with local correlation functions, which can
be defined in any (nonsingular) space-time with a fixed metric.
One argument for this is the reduction to D < 6 gauge theory.
Another is that it has a gravity dual.
But while we will assume it, it is not beyond all doubt.
It has no dimensionless parameters, and no relevant operators
which preserve (2,0) supersymmetry.
The AN and DN theories have O(N3) degrees of freedom, as
measured by the free energy, or by the Weyl anomaly. Later we
will discuss recent computations which reproduce this.
The theory involves extended objects – not only do they exist, but
if we remove them the theory becomes non-interacting.
There is a moduli space R5N/WN , just like D = 5 MSYM. When
the Weyl symmetry WN is completely broken, the low energy limit
is the product of N abelian theories – this is the Coulomb phase.
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Basic facts about (2, 0) theory

As usual in superconformal gauge theory, the observables are very
different in the Coulomb and the unbroken phases.

Coulomb: Has an S-matrix, and a rich spectrum of charged
BPS states.

Unbroken: Has superconformal symmetry with bosonic part
Spin(6,2)× Spin(4)R.
S-matrix is very subtle to define because of IR
singularities, and may not make sense at all.
Probably has “Wilson surfaces,” extended
observables analogous to Wilson loops.

In D = 4 MSYM, we have some understanding of the relation between
the two phases, mostly from perturbation theory and the analogy to
QCD (factorization theorems etc.) – this is why people talk about the
“S-matrix of N = 4 SYM” without belaboring this point. We do not
understand this relation for (2,0) theory. But, there is no known reason
why the S-matrix should not exist in the Coulomb phase.

Michael R. Douglas (Simons Center) (2, 0) theories KITP, January 2014 8 / 35



Basic facts about (2, 0) theory Role of extended objects

Any quantum theory, including (2,0) theory, must have a Hilbert space
(for a choice of spacelike surface), a Hamiltonian and other local
operators. For local QFT and string theories we know how to define all
of this in terms of fields, operators which are functions of a point (for
QFT) or a loop (for strings). This does not require that perturbation
theory be convergent or even exist.
More generally we can imagine a field theory in which the operators
are functions on some other space of geometric objects, perhaps
higher dimensional manifolds, perhaps more general collections of
points (such as measures), or noncommutative objects such as
particular large N limits of matrices. If the objects have any relation to
space-time, so that fields cannot naturally be associated to single
points, then they are “extended objects.”
Every example we understand of an interacting quantum theory in
more than four dimensions involves extended objects. This includes
cases we only partly understand such as BFSS Matrix theory. This are
also general arguments that interacting local point field theories cannot
exist in more than four space-time dimensions.
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Basic facts about (2, 0) theory Role of extended objects

On the other hand, the usual state-local operator correspondence of
CFT tells us that we should be able to understand the unbroken phase
entirely in terms of local operators and their correlation functions.
Furthermore, extended objects in a conformal theory can have no
preferred size, and this implies that they do not have the “stationary
states” we are familiar with for fundamental strings or quantum
solitons.
Let us suppose they are described by some sort of wave function on a
configuration space, call it

Ψ(X , ρ, . . .), (1)

where ρ is a measure of the size of the object – the extent of a string,
the scale size of an instanton, or whatever. It is hard to see how such a
wavefunction can be both normalizable in Ψ, and stationary under time
evolution.
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Basic facts about (2, 0) theory BPS states in the Coulomb phase

The (2,0) supersymmetry algebra is

{Q,Q} = PmΓm + Z I
mΓmΓI + Z IJ

mnpΓmnpΓIJ (2)

where m = 0, . . . ,5 are space=time indices, I = 6, . . .10 index an
SO(5)R vector, and Z IJ

mnp is self-dual in space-time. Objects which
source a single central charge are 1/2 BPS, including the basic
self-dual tensor multiplets.
In brane terms, the central charge Z I

m with m 6= 0 is sourced by an M2
ending on the M5, stretching along m and extending out in the I
direction. In six dimensions this looks like a self-dual string charged
under the tensor gauge potential.
An M2 stretching between M5’s is a self-dual string with tension
|~φi − ~φj | (note that D = 6 scalars naturally have mass dimension 2).
On T n compactification they reduce to the monopoles and W bosons
of the Yang-Mills theory Coulomb phase.
The central charge Z IJ

mnp is sourced by an M5 branching (an
embedding like z1z2 = ε).
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Basic facts about (2, 0) theory Tensionless string formulation?

Since there are strings in the Coulomb phase, whose tension goes to
zero in the unbroken phase (at least formally), it is reasonable to
hypothesize that they are the fundamental extended objects.
There are actions for tensionless strings, starting with Schild 1977, and
a modest literature which began before the proposal of (2,0) theory, in
good part motivated by the desire to understand the high energy limit
of string scattering amplitudes, which has many interesting properties
(Gross and Mende 1988; Amati, Ciafaloni, and Veneziano 1988;
Sundborg 1988; ...). The simplest action (Lindström Sundborg
Theodoridis 1991) is

S =

∫
d2σ VαV βDαX · DβX + λX 2 (3)

where X embeds the string into the lightcone of RD,2, there is a
gauged scale invariance, and V is a 2d vector (the world-sheet metric
is rank 1).
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Basic facts about (2, 0) theory Tensionless string formulation?

So far most work is inconclusive, while the few conclusive works are
negative – for example Gustafsson et al hep-th/9410143 showed that
the action above can only be quantized in D = 2. The evidence so far
suggests that tensionless strings do not exist (J. Schwarz, private
communication).
Any description in terms of fundamental strings would also have to
address the problem that strings normally do not allow defining local
correlation functions.
In addition, we repeat the general point that extended objects in a
conformal theory cannot have a preferred scale. Although a particular
object can certainly have an average expected size, there is no reason
why this should not run off to zero or infinity under time evolution. So
the picture of tensionless strings moving in a background
six-dimensional space-time, with no other dynamical variables needed
to describe their free motion, is certainly wrong.
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Basic facts about (2, 0) theory Relation to D = 5 and D = 4 MSYM

To compactify the abelian theory on S1, note that a self-dual tensor
reduces to an ordinary vector boson in D = 5, as the extra
components Hpqr are dual to H5mn ≡ Fmn.
Clearly the postulated relation between (2,0) and D = 4 MSYM is
simplest if the nonabelian version of this is D = 5 MSYM. This also
follows from the stringy arguments that an M5 reduces to a D4. The
off-diagonal gauge bosons come from self-dual strings wound around
x5.
Going in reverse, the KK momentum is then

P5 =

∫
dx5T05 ∝

∫
dx5

∑
H0mnH5mn (4)

→
∫

dx4
∑

(∗F )mnFmn →
∫

dx4Tr F ∧ F (5)

Thus the KK momentum is identified with the instanton charge. Since
the latter is quantized, this corresponds to a compact extra dimension.

Michael R. Douglas (Simons Center) (2, 0) theories KITP, January 2014 14 / 35



Basic facts about (2, 0) theory Relation to D = 5 and D = 4 MSYM

In the unbroken phase, the self-dual solution, which in D = 4 would
have been an instanton, leads to an “instantonic particle” in D = 5.
Identifying the one-instanton sector with the minimal KK momentum,
and using the fact that instanton number sources a central charge, one
finds

1
R5

=
4π2

g2
YM5

. (6)

This is 1/2 BPS (more specifically, (2,0) BPS in the notation of Hull
0004086) which is correct for a KK mode of a self-dual tensor multiplet.
There is a similar “dyonic instanton” in the Coulomb phase (Lambert
and Tong; LPS). However it is 1/4 BPS and it is not immediately
evident that its multiplet structure matches up with (2,0) theory.
However there is now evidence for this from localization calculations
(Kim3+Lee 1307.7660). These computations start from various
reductions of (2,0) – on S5 × S1; on S5/ZK × S1, and the AdS7 dual,
and find a consistent superconformal index which includes 1/4 BPS
states.
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Basic facts about (2, 0) theory Relation to D = 5 and D = 4 MSYM

As for the non-winding self-dual string, it is the D = 5 ’t Hooft-Polyakov
monopole.
The upshot is that all of the (2,0) BPS states can already be seen in
the D = 5 theory. This would strongly suggest that the D = 5 theory is
already a complete theory, except that it is perturbatively
nonrenormalizable. The perturbative expansion is controlled by the
effective dimensionless coupling g2

5E , where E is the energy scale of a
process. At low energies, the expansion should be good, while for
E ∼ 1/g2

5 it will break down. This is signaled by UV divergences which
first appear at six loops (Bern et al 1210.7709).
A sensible physical theory does not have UV divergences and thus the
first question is to determine the scale Λ at which the effective theory
breaks down. In the case at hand this follows from the fact that (2,0)
theory has no dimensionless parameters. Thus, since we already have
a dimensionful parameter g2

YM5 ∝ R5, the only energy scale that it can
be is Λ ∝ 1/R5.
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Basic facts about (2, 0) theory UV divergences

In all known quantum theories, UV divergences are regulated either by
new states at the energy scale Λ, or by the fact that the fundamental
degrees of freedom are extended objects. Normally there is not a
sharp distinction between these options as the extended object usually
has “modes” or stationary states whose spectrum starts at Λ. However
note that in CFT we argued that the extended objects would not have
stationary states, so perhaps this intuition is misleading in this case.
If we grant that new degrees of freedom must come in at the scale
Λ ∝ 1/R5, it seems that they must be the instantonic particles that we
discussed. Thus, one can hypothesize that while D = 5 MSYM is
perturbatively nonrenormalizable, if we could also include the quantum
effects of these instantonic particles, it would be finite.
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Basic facts about (2, 0) theory UV divergences

The simplest way that this could work would be that we could retain the
structure of D = 5 perturbation theory, but add the additional
instantonic particles as propagating states. Some support for this idea
can be found by considering the further reduction to D = 4 by
compactification on T 2. This defines not D = 4 MSYM, but a theory
that we might call “extended D = 4 MSYM” as it contains
nonrenormalizable coupings controlled by the size of the T 2, and
additional states from the unwrapped self-dual string.
The usual argument relating D = 6 and D = 4 is that a self-dual string
winding an A or B cycle of T 2 becomes a W or monopole. One might
ask what happened to the unwound string. In the MSYM limit it goes to
infinite tension – consider the parameters which determine the W and
monopole masses in D = 4 and D = 6, these are MW = g4φ = R5φ̂
and MM = φ

g4
= R4φ̂, where φ̂ is the D = 6 scalar vev (and the string

tension) while φ is the D = 4 scalar vev. We see that
φ2 = φ̂2 · vol (T 2), and the limit vol (T 2)→ 0 must be taken with
φ̂2 →∞. However at finite vol (T 2) it survives.
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Origin of N3

Before taking the idea that D = 5 MSYM has all the (2,0) degrees of
freedom too seriously, we should explain the N3 behavior of its free
energy this way. Various explanations have been offered involving
complicated bound states (3-prong string junctions, other 1/4 BPS
bound states, e.g. see Bolognesi and Lee 1105.5073) and/or new
quasiparticles, as in the proposal of Collie and Tong 0905.2267 that
the instanton particles fractionate. Their common feature is that we
need to understand complicated dynamics.
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Origin of N3

In recent years these problems have been attacked using localization
techniques along the lines of Nekrasov, Pestun, Kapustin et al and
many others. The N3/2 behavior of D = 3 maximal superconformal
theory (ABJM theory) was obtained this way by Drukker, Mariño and
Putrov 1007.3837. It has been applied to D = 5 gauge theory by
several groups: Kim et al; Hosomichi, Seong and Terashima; and
Källen, Minahan, Nedelin and Zabzine, whose 1304.1016 finds
agreement with the gravity result, including the leading coefficient.
This involves numerous subtleties, especially in taking the Euclidean
continuation.
The localization calculation is a long story, but the main idea is that
one computes an index which (in these theories with extended
supersymmetry) can be related to the free energy, but for which the
action admits Q-exact deformations. This allows concentrating the
functional integral on points in space-time, and reduces the gauge
theory calculation to a matrix model.
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Origin of N3

The basic result in D = 3, and also in D = 6, is then a free energy

F = cN2f (λ) (7)

where λ ∼ g2
YMN is the ’t Hooft coupling. Thus it formally has the usual

N2 scaling, but unlike D = 4 the function f (λ) has a non-trivial
power-like behavjor at large λ, f ∼ λ−1/2 in D = 3 and f ∼ λ in D = 6.
Using the gauge-gravity dictionary, one finds the leading supergravity
term has the predicted power in g2

YM , leaving the remaining power of N
which corrects the result to the expected power of N.
While in D = 3 this is a nontrivial strong coupling effect, in D = 6 the
correction λ is simply the result of doing a two-loop diagram (Kim and
Kim, 1206.6339). Furthermore the required power of g2

YM5 is simply
the R5 factor expected for a D = 6 free energy. Thus the answer to the
puzzle is surprisingly prosaic.
It is still nontrivial that this two-loop diagram dominates. The
localization computation makes many assumptions, in particular about
the treatment of singularities of instanton moduli space. But it is based
on the degrees of freedom of D = 5 MSYM.
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Perturbative approach

Having better justified the idea that D = 5 MSYM contains much and
perhaps all of the (2,0) theory, and even the idea that perturbation
theory has something to teach us, let us continue.
If we follow the chain (2,0)→ D = 5→ D = 4, we can use these
properties to try to constrain D = 5 MSYM. The perturbative argument
is straightforward: compactify D = 5 MSYM on a circle of radius R4,
then

g2
5

∫
dp4 f (p4)→ R5

R4

∑
n

f
(

n
R4

)
and the perturbative expansion is a series in g2

4 = R5/R4.

Furthermore, the limit L→ 0 takes R4,R5 ∝ L→ 0, so the 5d KK states
go to infinite energy and can be dropped. This is the usual argument
for the relation between (2,0) theory, D = 5 and D = 4 MSYM.
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Perturbative approach

g2
5

∫
dp4 f (p4)→ R5

R4

∑
n

f
(

n
R4

)
However, UV divergences in D = 5 can potentially spoil this argument.
These clearly come from states with nonzero p4 (since the D = 4
theory was finite) and start to appear at energies E ∼ 1/R4. Such KK
modes look like D = 4 particles with mass M ∼ n/R4.

Because the underlying theory is (2,0) theory, there are no actual UV
divergences – an apparent D = 5 UV divergence, is cutoff at the scale
Λ ∼ 1/R5. Compared to pure D = 4 MSYM, one gets finite quantum
corrections from states with 1/R4 ≤ E ≤ 1/R5.

Thus, an apparent D = 5 divergence Λn, produces a correction(
Λ

M

)n

∼
(

R4

R5

)n

∼ τn,

or log τ for a log divergence. Note that L has cancelled out, and these
corrections need not disappear as L→ 0.
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Perturbative approach

It is hard to know what properties we should look for in D = 5
amplitudes, but we do know a fair amount about the D = 4 amplitudes
obtained by compactification on T 2. Let the volume of the T 2 be L2,
then as L→ 0 we recover N = 4 SYM, while we expect corrections to
come with positive powers of L. For example,

Seff =

∫
1
g2

4
tr F 2 + θtr F ∧ F + cL4tr F 4 + . . . .

The coefficients c should be computable functions of τ = 4π/g2
4 + iθ,

and by the geometric origin of τ , should satisfy S-duality.

Michael R. Douglas (Simons Center) (2, 0) theories KITP, January 2014 24 / 35



Perturbative approach

Taken at face value, this argument suggests that D = 5 MSYM must
be UV finite, to prevent these problematic corrections. However this
would be too quick:

There might be other positive powers of L in front of these
corrections, and
There is a problem with taking g4 → 0 at fixed L.

To explain the second point, since

R4 =
L
g4
, R5 = g4L,

taking g4 → 0 at fixed L decompactifies the fifth dimension. We need
to take L→ 0 faster than g4 → 0 to keep the four dimensional
interpretation.
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Perturbative approach Adding extra states

Thus, compactified D = 5→ D = 4 results are only guaranteed to
have a clear interpretation, if we can compute them at finite g4. There
is one case where we can unambiguously do this, namely the tr F 4

term, which receives no higher loop corrections. Summing the
one-loop contributions of KK modes with p4 6= 0, we find a coefficient∑

p4 6=0

g4
4

p4
4

= ζ(4)L4

since the g4 dependence of p4 cancels that of the numerator.

This result is not S-dual. It can be promoted to an S-dual result by the
ansatz of summing over both p4 and p5, leading to the coefficient∑

(m,n) 6=(0,0)

(
(Im τ)2

|mτ + n|2

)2

= ζ(4)E(τ,2)L4,

where E(τ,2) is a nonholomorphic Eisenstein series. As a protected
amplitude, this should be checkable in string theory, perhaps IIa little
string theory (the throat region of NS 5-branes) on T 2.
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Perturbative approach Adding extra states

One could try a similar approach to higher loop amplitudes, starting
with D = 5 on R4 × S1, and writing the loop amplitudes as explicit
sums of D = 4 MSYM loops with KK modes running around the loops.
Since N = 4 is finite, all the UV divergences will be postponed until we
actually do the sum.
We can then promote the sums over internal KK modes, to doubles
sums over (2,0) KK modes which are indexed by (p4,p5). Although
logically we do not need to assume that the extra states are present in
D = 5 MSYM, as we discussed this assumption seems to work and
would allow deriving the couplings to the new states from soliton
calculations in D = 5. Papageorgakis and Roysten have looked into
this (see their talk at String-Math 2013) and noted that the usual
exponential form factor of a soliton need not be present for the
instantonic particles of D = 5, as it it is set by the scale size, but this is
a collective coordinate which would be integrated down to zero.
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Perturbative approach Adding extra states

It is not at all clear how to do such calculations. One needs to integrate
against a wave function for the soliton, but although we can work out
the moduli space and Hamiltonian, they have singularities at zero size,
and the properties of the states we are interested in depend on how
we treat the singularity. Consider the simplest SU(2) one-instanton
case – this bosonic moduli space is a product of the center of mass
with R4/Z2. The right answer is that this QM has one BPS bound state,
and this will follow if we resolve the singularity, for example by a
noncommutative deformation of the instanton problem. But this
introduces a scale and is surely not the right way to think about
unbroken (2,0) theory.
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Perturbative approach Adding extra states

A simpler option is just to make an ansatz for the spectrum and
coupling of the extra states. As we saw, imposing S-duality in D = 4 is
a significant constraint.
Then, the ansatz for an `-loop perturbative amplitude in D = 6 will be a
sum over modified D = 4 amplitudes,

A` =
∑

p(1)
4 ,p(1)

5

. . .
∑

p(`)
4 ,p(`)

5

AD=4(~p4, ~p5; s, t ,u, . . .). (8)

This will a priori be more divergent than standard D = 5, and in fact
power counting would predict a divergence at ` = 3. However, if the
new states come in with appropriate couplings, it is possible that this
divergence will cancel, and that higher loop divergences might cancel.
This is a more concrete form of the hypothesis that the nonperturbative
states of D = 5 MSYM cut off its perturbative divergences and that
properly incorporating them would lead to the (2,0) theory.
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Actions

Of course, if it really turned out that such an ansatz led to all-orders
finiteness, surely this would have some simple explanation, probably
that the enlarged system had additional supersymmetry. Thus a more
straightforward way to work on this proposal would be to hypothesize
such a supersymmetry and look for an action (or other description)
which realized it.
While this sounds very much like the project of finding an action for
(2,0) theory, the biggest difference is that there is no a priori reason
why this action should be local in six dimensions, since it is describing
the couplings to solitonic objects. This immediately evades most of the
no-go results and in fact what success there has been in writing
actions starts by giving up on locality from the start.
This is beause of a paradox pointed out in the first papers by Witten.
The gauge coupling g2

5 in D = 5 has dimensions of length. Thus
dimensional reduction from 6 to 5 leads to a paradox: how can∫ 2πR5

0
dx5

∫
d5xL6 →

2π
R5

∫
d5xL5? (9)
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Actions

Even the most basic points about (2,0) theory are confusing. The
starting point for SYM, after gauge invariance, is the observation that
there is a cubic interaction f abcAaAb∂Ac . This leads to a cubic S-matrix
element, which is the first example given in string textbooks.
It is not obvious how to define a nonabelian gauge symmetry which
acts on tensors (self-dual or not). The evident thing to try is to
introduce an auxiliary vector potential under which the tensor is
charged in the standard way. This has been tried many times over the
years. For example, a D = 6 (1,0) supersymmetric action which
couples a self-dual tensor multiplet to a Yang-Mills multiplet was given
in Bergshoeff et al 9605087). This was extended to an interacting
theory of vectors and tensors by Samtleben, Sezgin and Wimmer in
1108.4060.
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Actions

There is a puzzle about the S-matrix in the Coulomb phase, pointed
out by Czech, Huang and Rozali 1110.2791. They work out the
constraints of (2,0) superconformal invariance, both in D = 6 and in
the compactification on S1. One of their claims is that there is no
3-point scattering element for self-dual tensor multiplets in D = 6. This
would seem to immediately rule out the type of action we are looking
for. However, as they point out, there are subtleties having to do with
nonlinear gauge invariance and they also exclude the action of
Samtleben et al, so this needs further work. They do get interesting
results in D = 5 which could be used in the extra state approach I
described earlier.

Although there is no candidate nonlocal (2,0) action as yet, let us look
at a proposed bosonic action in Chu and Ko 1203.4224 (see also Ho,
Huang and Matsuo 1104.4040; Samtleben, Sezgin and Wimmer,
1108.4060; and Bonetti, Grimm and Hohenegger 1209.3017).
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Actions

This is based on an abelian action written by Perry and Schwarz, for a
5× 5 antisymmetric field Bmn. It is

S =
1
2

∫
d6x

(
−H̃mnH̃mn + H̃mn∂5Bmn

)
. (10)

where H̃mn = εmnpqr (dB)pqr . There is a gauge symmetry δBmn = Λmn
and after gauge fixing the equaton of motion becomes self-duality
H = ∗H.
The Chu-Ho action takes Bmn in the adjoint and introduces an auxiliary
gauge field Am, so that now H = DB = dB + [A,B]. It is determined by
a constraint

Fmn =

∫
dx5H̃mn. (11)

Chu and Ho claim that this can be implemented by an auxiliary field,
which contributes no new degrees of freedom.
This action solves the paradox about dimensional reduction on S1.
The integral in the constraint gives a factor of R5, which on solving for
H leads to the D = 5 YM action for F with coupling g2 = R5.
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Other ideas

Wilson surfaces

The large N limit of (2,0) is not so different from that of D = 4 MSYM.
Even at finite N the analogy probably goes much farther?
What is the analog of the Wilson loop? Is there a Wilson surface
defined by carrying around an M2 which ends on the M5? Can we
compute it at strong coupling as a membrane amplitude? There are a
few papers, e.g. by Gustavsson.
Analog of dual superconformal invariance? ∆x for Wilson loop with
corners is related to ∆k for gluon scattering.
Singularities of the Wilson loop are related to the IR subtleties of N = 4
SYM. The new singularity of the Wilson surface is a conical singularity
– how does it behave ?
Given a lightlike surface in D = 6 with conical singularities, what are its
conformal invariants?
Perhaps easier is a surface with line singularities, which bounds a 3d
manifold with boundary kinks. We can combine A and B cycles and
other states.
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Other ideas

Conformal bootstrap

The only work on this I know of is Arutyunov and Sokatchev 0201145,
which expresses the four-point function of (2,0) stress tensors in terms
of an unknown function, and obtains this from the gravity dual.
We have many if not all of the ingredients needed to work on it:
The D = 6 representation theory is known.
The spectrum of 1/2 and 1/4 BPS operators can be obtained from the
localization computations.
The D = 6 superconformal Ward identities are known and the
superconformal blocks could be worked out (see Dolan and Osborn
0309180 for ordinary conformal blocks).
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