Supersymmetry in Curved Space

Thomas Dumitrescu

Harvard University

KITP, 30 January 2014

Quantum Fields Beyond Perturbation Theory KITP, 27-31 January 2014

Sources and Background Fields

A standard tool in QFT is to turn on sources and study the response of the system.

Example: In a theory with a global flavor symmetry we can turn on a gauge field A_{μ} that couples to the conserved flavor current j_{μ} ,

$$\mathscr{L}' = \mathscr{L} + A^{\mu} j_{\mu} + \mathcal{O}\left(A^{2}\right)$$

- ► The higher-order seagull terms ensure invariance under gauge transformations of A_{μ} (equivalently $\partial^{\mu} j_{\mu} = 0$).
- $ightharpoonup A_{\mu}$ is a non-dynamical background field (no e.o.m.)
- ▶ Small variations of A_{μ} around $A_{\mu}=0$ are captured, order by order in a power series, by correlation functions of j_{μ} in the original theory (linear response).

QFT in Curved Space

Every Poincaré invariant QFT has a conserved, symmetric stress tensor $T_{\mu\nu}$. The appropriate source is a background spacetime metric $g_{\mu\nu}$. In Euclidean theories, $g_{\mu\nu}$ is a Riemannian metric. Around flat space:

$$g_{\mu\nu} = \delta_{\mu\nu} + \Delta g_{\mu\nu} , \qquad \mathscr{L}' = \mathscr{L} - \frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \mathcal{O} \left(\Delta g^2 \right)$$

- ▶ The effect of $\Delta g_{\mu\nu}$ is captured by correlation functions of $T_{\mu\nu}$.
- Some higher-order terms are fixed by diff-invariance (seagull terms). The fully invariant theory can then be studied on any Riemannian manifold M. In particular, M may be compact.
- ► The curved space Lagrangian is not unique: we can add curvature couplings, which correspond to a choice of $T_{\mu\nu}$,

$$T'_{\mu\nu} = T_{\mu\nu} + (\partial_{\mu}\partial_{\nu} - \delta_{\mu\nu}\partial^{2}) \mathbf{u} \quad \Leftrightarrow \quad \mathcal{L}' = \mathcal{L} - \frac{1}{2}R[g]\mathbf{u}$$

2

The Partition Function

$$Z_{\mathcal{M}}[g_{\mu
u},A_{\mu},\cdots] = \int \mathcal{D}\Phi \ e^{-\int \mathscr{L}_{\mathcal{M}}[\Phi,g_{\mu
u},A_{\mu},\cdots]}$$

IR finite if \mathcal{M} is compact, but possible UV ambiguities (scheme dependence). The physical part of $Z_{\mathcal{M}}$ is a rich observable:

- ▶ Dependence on $g_{\mu\nu}, A_{\mu}$ encodes correlators of $T_{\mu\nu}, j_{\mu}$ on \mathcal{M} .
- It can detect global degrees of freedom, which are activated by the topology of \mathcal{M} (e.g. Chern-Simons theory).
- ▶ In a CFT, the theory on M is sometimes related to flat space by a conformal transformation (fixes curvature couplings):
 - ▶ States on $S^{d-1} \times \mathbb{R} \Leftrightarrow \text{Local operators on } \mathbb{R}^d$. They are counted by the partition function on $S^{d-1} \times S^1$.
 - ▶ Correlation functions on $S^d \Leftrightarrow$ Correlation functions on \mathbb{R}^d .
 - Partition function on $S^d \Leftrightarrow \text{Entanglement entropy across a sphere in } \mathbb{R}^d$. [Casini, Huerta, Myers] + Talks by Headrick and Myers.

In general, computing $Z_{\mathcal{M}}$ is very challenging.

Supersymmetric Theories

Flat Space: SUSY provides a powerful handle on the dynamics of QFT. This is especially useful for BPS observables that preserve some of the supercharges: their dependence on the parameters of the theory is tightly constrained and can sometimes be determined exactly, e.g. superpotential $W(\Phi)$ in 4d $\mathcal{N}=1$ theories.

Curved Space: Generic choices of $\mathcal M$ and $g_{\mu\nu}, A_\mu$ break SUSY,

$$[Q, T_{\mu\nu}] \neq 0$$
, $[Q, j_{\mu}] \neq 0$ (not BPS).

Preserving some of the supercharges requires additional background fields and/or additional geometric structures on \mathcal{M} .

- ▶ When and how can we preserve SUSY on \mathcal{M} ?
- ▶ What extra data does the Lagrangian $\mathcal{L}_{\mathcal{M}}$ depend on?
- ▶ The partition function $Z_{\mathcal{M}} = \langle 1 \rangle$ is a BPS observable. How does it depend on the data in the Lagrangian?

Selected Examples

▶ Twisting [witten]: consider a theory with R-symmetry G_R , a metric on \mathcal{M} with holonomy G_{hol} , and a Q that is a singlet under $G_R \times G_{hol}|_{\mathsf{diagonal}}$. Then Q can be preserved on \mathcal{M} .

More recently, other SUSY backgrounds (not twisting). Some backgrounds are highly symmetric and preserve all supercharges:

- $ightharpoonup \mathcal{N}=2$ on S^4 [Pestun], $\mathcal{N}=2$ on S^3 [Kapustin, Willett, Yaakov; Jafferis; Hama, Hosomichi, Lee], $\mathcal{N}=(2,2)$ on S^2 [Benini, Cremonesi; Doroud, Gomis, Le Floch, Lee], \dots
- $ightharpoonup \mathcal{N}=1$ on $S^3 imes S^1$ [D. Sen; Römelsberger], $\mathcal{N}=2$ on $S^2 imes S^1$ [Imamura, Yokoyama; Kapustin, Willett], $\mathcal{N}=(2,0)$ on T^2 [Witten; Benini, Eager, Hori, Tachikawa; Gadde, Gukov], ... (Supersymmetric Indices)

Others are less symmetric and preserve fewer supercharges. They often come in continuous families labeled by some parameters:

 $ightharpoonup \mathcal{N}=2$ in $\Omega(arepsilon_1,arepsilon_2)$ background [Nekrasov; Nekrasov, Okounkov], $\mathcal{N}=2$ on squashed S_b^3 , $\mathcal{N}=(2,2)$ on squashed S_b^2 [Gomis, Lee], ...

Case Study: Squashed S_b^3

In $\mathcal{N}=2$ theories with an R-symmetry, the partition function on a round S^3 can be computed using supersymmetric localization techniques [Kapustin, Willett, Yaakov; Jafferis; Hama, Hosomichi, Lee] + Talk by Willett. Many authors have generalized this to squashed spheres [Hama, Hosomichi, Lee;

Gadde, Yan; Imamura; Imamura, Yokoyama; Martelli, Passias, Sparks; Nishioka, Yaakov; Alday, Martelli, Richmond, Sparks; ...]. The metric can contain arbitrary functions, in addition to continuous parameters.

Explicit localization computations suggest:

- $ightharpoonup Z_{S_b^3}$ only depends on the geometry of the background through a single complex parameter b (squashing parameter).
- ightharpoonup Some deformations of the background geometry do not affect $Z_{S_i^3}$, even though the metric changes.

More generally, examples suggest that $Z_{\mathcal{M}}$ only depends on a finite number of continuous parameters, rather than all the data used to define $\mathcal{L}_{\mathcal{M}}$ (several arbitrary functions).

Goal

In the remainder of the talk I will review a unified approach to supersymmetric theories on curved manifolds \mathcal{M} , describe the data that enters the Lagrangian $\mathscr{L}_{\mathcal{M}}$, and explain how this data affects the partition function $Z_{\mathcal{M}}$.

Note: I will have to omit many topics and references. I will restrict myself to R-symmetric theories with four supercharges in d=3,4 and focus on the partition function $Z_{\mathcal{M}}$. The methods are general and can be applied in many other examples in the literature.

- 4d $\mathcal{N}=1$ theories on curved manifolds
- ▶ Constraints on $Z_{\mathcal{M}}$
- ▶ 3d $\mathcal{N}=2$ theories, squashed S_b^3 revisited

4d $\mathcal{N}=1$ Theories on Curved Manifolds

Now $T_{\mu\nu}$ resides in a supermultiplet with other currents. For theories with a $U(1)_R$ -symmetry, we can use the R-multiplet:

$$\mathcal{R} = \left(j_{\mu}^{(R)}, S_{\mu\alpha}, T_{\mu\nu}, C_{[\mu\nu]}\right)$$

It controls the coupling of the field theory to background fields, which reside in an off-shell supergravity multiplet:

$$\mathcal{H} = \left(A_{\mu}^{(R)}, \Psi_{\mu\alpha}, \Delta g_{\mu\nu}, B_{\mu\nu} \right) , \qquad V^{\mu} = \frac{i}{2} \varepsilon^{\mu\nu\rho\lambda} \partial_{\mu} B_{\nu\lambda}$$

A bosonic background preserves a supercharge Q if $\delta_Q \Psi_{\mu\alpha} = 0$ (independent of the field theory). Given a Lagrangian in flat space, it is very convenient to infer the curved space $\mathscr{L}_{\mathcal{M}}$ and SUSY transformation rules for the matter fields from the corresponding off-shell supergravity formulas. [Festuccia, Seiberg] + Talk by Festuccia (online)

Example: Free Chiral Multiplet

Consider a free chiral multiplet $\Phi=(\phi,\psi_{\alpha},F)$ with R-charge r. To obtain $\mathscr{L}_{\mathcal{M}}$ in a bosonic background satisfying $\delta_{Q}\Psi_{\mu\alpha}=0$, we can take the linearized coupling to the \mathcal{R} -multiplet operators

$$j_{\mu}^{(R)} = i r \widetilde{\phi} \stackrel{\leftrightarrow}{\partial_{\mu}} \phi + r \widetilde{\psi} \widetilde{\sigma}_{\mu} \psi , \dots , T_{\mu\nu} = (\cdots) + \frac{r}{2} \left(\partial_{\mu} \partial_{\nu} - \delta_{\mu\nu} \partial^{2} \right) \widetilde{\phi} \phi ,$$

and find the non-linear completion using the Noether procedure:

$$\mathscr{L}_{\mathcal{M}} = \mathscr{L}_{\mathbb{R}^4}|_{\text{covariant}} + V^{\mu} \left(i\widetilde{\phi} \stackrel{\leftrightarrow}{D_{\mu}} \phi + \widetilde{\psi} \widetilde{\sigma}_{\mu} \psi \right) - \frac{\mathbf{r}}{4} \left(\frac{1}{4} R - 3 V^{\mu} V_{\mu} \right) \widetilde{\phi} \phi$$

The SUSY transformations of Φ are also modified (covariant). To show that $\mathscr{L}_{\mathcal{M}}$ is supersymmetric we must use $\delta_{Q}\Psi_{\mu\alpha}=0$. It is much more convenient to take a rigid limit of the corresponding off-shell supergravity formulas (if available) [Sohnius, West; Festuccia, Seiberg].

Note the explicit dependence of $\mathscr{L}_{\mathcal{M}}$ on the choice of R-charge r, through covariant derivatives and curvature couplings.

Supersymmetry on Complex Manifolds

The condition $\delta_Q \Psi_{\mu\alpha} = 0$ leads to a generalized Killing spinor equation for the spinor ζ corresponding to Q:

$$\left(\nabla_{\mu} - iA_{\mu}^{(R)}\right)\zeta = \frac{i}{2}V_{\mu}\zeta - iV^{\nu}\sigma_{\mu\nu}\zeta , \quad V = *dB$$

This PDE has a solution $\Leftrightarrow \mathcal{M}$ is a Hermitian manifold: it has an integrable complex structure $J^{\mu}_{\ \nu}$ and $g_{\mu\nu}$ is a compatible Hermitian metric. [TD, Festuccia, Seiberg; Klare, Tomasiello, Zaffaroni]

- ▶ Relation to twisting: If \mathcal{M} is Kähler (U(2) holonomy) we can find solutions with $V_{\mu}=0$ [Johansen, Witten, Vyas].
- ▶ In general $\mathcal M$ need not be Kähler $(S^3 \times S^1)$, $V_\mu \sim \nabla_\nu J^\nu{}_\mu$.
- ▶ The supercharge Q transforms as a scalar under holomorphic coordinate changes (crucial) and satisfies $Q^2 = 0$.
- $A_{\mu}^{(R)}, V_{\mu}$ are (partially) determined in terms of $J^{\mu}_{\ \ \,
 u}, g_{\mu
 u}.$
- ▶ More supercharges impose further constraints on \mathcal{M} .

Background Gauge Fields

If the field theory has continuous flavor symmetries, we can couple a background gauge field A_{μ} to the flavor current j_{μ} . (Focus on Abelian case.) With SUSY:

$$\mathcal{J} = (J, j_{\alpha}, j_{\mu}) , \qquad \mathcal{V} = (D, \lambda_{\alpha}, A_{\mu})$$

As before, a bosonic configuration A_{μ},D with $\lambda_{\alpha}=0$ preserves Q if $\delta_{Q}\lambda_{\alpha}=0$:

$$(F^{0,2})_{ij} = 0 , \quad F = dA , \quad D = -\frac{1}{2}J^{\mu\nu}F_{\mu\nu}$$

Thus SUSY background gauge fields \Leftrightarrow holomorphic line bundles over the complex manifold \mathcal{M} .

Ingredients for $\mathscr{L}_{\mathcal{M}}$

The supersymmetric curved-space Lagrangian $\mathscr{L}_{\mathcal{M}}$ depends on:

- lacktriangle The integrable complex structure $J^\mu{}_
 u$
- lacktriangle A compatible Hermitian metric $g_{iar{j}}$
- ▶ Background gauge fields ⇔ holomorphic line bundles
- Coupling constants, e.g. those of the original flat-space theory
- **.** . . .

Some of this data can be varied continuously, and the space of possible variations is infinite-dimensional (functions on \mathcal{M}).

What does Z_M Depend On?

We can constrain $Z_{\mathcal{M}}$ by varying the continuous data in $\mathscr{L}_{\mathcal{M}}$ and checking whether the change is Q-exact:

$$\Delta \mathcal{L}_{\mathcal{M}} = (\Delta \mathcal{M})\{Q, \mathcal{O}\} \quad \Rightarrow \quad \Delta Z_{\mathcal{M}} \sim \langle \{Q, \mathcal{O}\} \rangle = 0$$

In principle need full non-linear background supergravity

Simplification: work around flat space $\mathcal{M} \approx \mathbb{R}^4$. Then $\Delta \mathcal{L}_{\mathcal{M}}$ consists of operators in the stress-tensor supermultiplet with known, universal SUSY transformations. What about general \mathcal{M} ?

Key Fact: Q is a scalar under holomorphic coordinate changes and this is enough to extend the result to general \mathcal{M} .

Compare to topologically twisted theories: Q a scalar under all coordinate changes and $T_{\mu\nu}=\{Q,\Lambda_{\mu\nu}\}$ in flat space. Then the partition function does not depend on the metric for any \mathcal{M} .

Varying $J^{\mu}_{\ \nu}$ and $g_{\mu\nu}$

$$J^{\mu}_{\ \nu} \rightarrow J^{\mu}_{\ \nu} + \Delta J^{\mu}_{\ \nu} \ , \qquad g_{\mu\nu} \rightarrow g_{\mu\nu} + \Delta g_{\mu\nu}$$

Use holomorphic coordinates z^i adapted to $J^{\mu}_{\ \nu}$. The deformation must lead to another Hermitian structure:

$$\Delta J^{i}{}_{j} = \Delta J^{\overline{i}}{}_{\overline{j}} = 0 , \qquad \partial_{\overline{j}} \Delta J^{i}{}_{\overline{k}} - \partial_{\overline{k}} \Delta J^{i}{}_{\overline{j}} = 0 ,$$

$$\Delta g_{i \overline{j}} = {
m arbitrary} \; , \qquad \Delta g_{i j} = rac{i}{2} \left(\Delta J_{i j} + \Delta J_{j i}
ight) \; .$$

An infinitesimal diffeomorphism parametrized by ε^{μ} leads to $\Delta J^i_{\ \overline{j}}=2i\partial_{\overline{j}}\varepsilon^i$. Non-trivial deformations correspond to cohomology classes in $H^{0,1}\left(\mathcal{M},T^{1,0}\mathcal{M}\right)$. If \mathcal{M} is compact, there are finitely many complex structure moduli.

Obtaining $\Delta \mathscr{L}_{\mathcal{M}}$

Recall the coupling of the supercurrent multiplet to the bosonic supergravity background fields:

$$-\frac{1}{2}\Delta g^{\mu\nu}T_{\mu\nu} + A^{(R)\mu}j^{(R)}_{\mu} + B^{\mu\nu}C_{\mu\nu}$$

Since $A_{\mu}^{(R)}$, $B_{\mu\nu}$ are expressed in terms of J^{μ}_{ν} , $g_{\mu\nu}$, we can perform the infinitesimal deformations ΔJ^{μ}_{ν} , $\Delta g_{\mu\nu}$ to obtain:

$$\Delta \mathcal{L}_{\mathcal{M}} = -\Delta g^{i\bar{j}} \mathcal{T}_{i\bar{j}} - i \sum_{j} \Delta J^{\bar{i}}_{j} \mathcal{T}_{\bar{j}i} + i \sum_{j} \Delta J^{i}_{\bar{j}} \Big(\mathcal{T}_{ij} + i \partial_{j} j_{i}^{(R)} \Big)$$
$$\mathcal{T}_{\mu\nu} = T_{\mu\nu} + \frac{1}{4} C_{\mu\nu} - \frac{i}{4} \varepsilon_{\mu\nu\rho\lambda} \partial^{\rho} j^{(R)\lambda} - \frac{i}{2} \partial_{\nu} j_{\mu}^{(R)}$$

Q-Exactness of Deformations

$$\Delta \mathscr{L}_{\mathcal{M}} = -\Delta g^{i\bar{j}} \mathcal{T}_{i\bar{j}} - i \sum_{j} \Delta J^{\bar{i}}{}_{j} \mathcal{T}_{\bar{j}\bar{i}} + i \sum_{j} \Delta J^{i}{}_{\bar{j}} \Big(\mathcal{T}_{ij} + i \partial_{j} j_{i}^{(R)} \Big)$$

Are any of these operators Q-exact? The only fermionic operator in the same multiplet as $\mathcal{T}_{\mu\nu}$, $j_{\mu}^{(R)}$ is the supersymmetry current:

$$\{Q, S_{\mu\dot{\alpha}}\} = 0 , \qquad \{Q, \widetilde{S}_{\mu\dot{\alpha}}\} \sim \mathcal{T}_{u\bar{i}}$$

We conclude:

- ▶ $Z_{\mathcal{M}}$ does not depend on the Hermitian metric $g_{i\bar{i}}$.
- $ightharpoonup Z_{\mathcal{M}}$ only depends on $\Delta J^i_{\ \overline{j}}$ but not on $\Delta J^{\overline{i}}_{\ j}$, i.e. it is a holomorphic function of the complex structure moduli.

Comments

- ▶ Independence of $g_{i\bar{j}}$ means invariance of $Z_{\mathcal{M}}$ under scale changes $x^{\mu} \to \lambda x^{\mu}$. Thus $Z_{\mathcal{M}}$ is a renormalization group invariant: it can be computed in the UV or the IR, and it must be invariant under (IR) duality.
- ▶ The argument only shows that $Z_{\mathcal{M}}$ is locally holomorphic in the complex structure moduli. Sometimes there are singularities (they should be understood better).
- ▶ If \mathcal{M} is compact, there is a finite number of complex structure moduli (infinite \Rightarrow finite).
- Applying the same arguments to flavor current multiplets, it follows that $Z_{\mathcal{M}}$ only depends on background gauge fields through the corresponding holomorphic line bundles. It is a locally holomorphic function of the bundle moduli (finitely many, if \mathcal{M} is compact).

Example: $S^3 \times S^1$

Kodaira: Complex Manifolds diffeomorphic to $S^3 \times S^1$ are primary Hopf surfaces,

$$\mathcal{M}^{p,q} = \mathbb{C}^2 - (0,0)/(w,z) \sim (pw,qz)$$
, $0 < |p| \le |q| < 1$.

The partition function must be a locally holomorphic function of the complex structure moduli p,q. If there is an Abelian background gauge field, $Z_{\mathcal{M}}$ must be locally holomorphic in the corresponding holomorphic line bundle modulus u.

One can show that $Z_{\mathcal{M}}(p,q,u)$ is nothing but the supersymmetric index $\mathcal{I}(p,q,u)$ for states on $S^3 \times \mathbb{R}$ [Römelsberger; Dolan, Osborn; ...] at general complex fugacities. In an SCFT, it counts BPS operators in the flat-space theory [Kinney, Maldacena, Minwalla, Raju; ...].

3d $\mathcal{N}=2$ Theories on Curved Manifolds

Closely related to 4d $\mathcal{N}=1$ theories by (twisted) dimensional reduction. The \mathcal{R} -multiplet now contains the operators <code>[TD, Seiberg]</code>

$$\mathcal{R} = \left(j_{\mu}^{(R)}, S_{\mu\alpha}, T_{\mu\nu}, j_{\mu}^{(Z)}, J\right)$$

and the corresponding background supergravity fields are

$$\mathcal{H} = \left(A_{\mu}^{(R)}, \Psi_{\mu\alpha}, \Delta g_{\mu\nu}, C_{\mu}, H\right)$$

Now the condition $\delta_Q \Psi_{\mu\alpha} = 0$ for supersymmetric backgrounds leads to the Killing spinor equation

$$\left(\nabla_{\mu} - A_{\mu}^{(R)}\right)\zeta = -\frac{1}{2}H\gamma_{\mu}\zeta + \frac{i}{2}V_{\mu}\zeta - \frac{1}{2}\varepsilon_{\mu\nu\rho}V^{\nu}\gamma^{\rho}\zeta$$

Transversely Holomorphic Foliations

A Killing spinor ζ exists $\Leftrightarrow \mathcal{M}$ admits a transversely holomorphic foliation (THF) and the metric is transversely Hermitian [Closset, TD,

Festuccia, Komargodski]:

- A nowhere vanishing unit vector field ξ^{μ} , which provides a local 2+1 decomposition.
- ▶ An integrable complex structure J on the 2d transverse space, such that J is invariant under flows of ξ , i.e. $\mathcal{L}_{\xi}J = 0$.
- In the compact case, they are completely classified [Brunella, Ghys]. Topologically, Seifert manifolds or T^2 bundles over S^1 .
- Many similarities to complex manifolds:
 - $lackbox{(}p,q)$ -forms, $\overline{\partial}$ -operator, Dolbeault cohomology $H^{p,q}(\mathcal{M})$
 - ► Holomorphic line bundles ⇔ SUSY background gauge fields.
 - ▶ Both structures are parametrized by finitely many complex moduli corresponding to certain $\bar{\partial}$ -cohomology classes.

Q-Exactnes in 3d

The supersymmetric Lagrangian $\mathscr{L}_{\mathcal{M}}$ depends on:

- ightharpoonup The transversely holomorphic foliation (THF) on ${\cal M}$
- ▶ A choice of transversely Hermitian metric
- ▶ Background gauge fields ⇔ holomorphic line bundles

Applying the same logic as in 4d, we obtain the following constraints on the parameter dependence of $Z_{\mathcal{M}}$:

- It does not depend on the transversely Hermitian metric.
- ▶ It is a locally holomorphic function of the complex moduli parametrizing the possible THFs on \mathcal{M} .
- It only depends on background gauge fields (including real masses) through the corresponding holomorphic vector bundles. It is locally holomorphic in the bundle moduli.

Squashed S_b^3 Revisited

We can use this understanding to explain the observed behavior of partition functions on squashed three-spheres:

The moduli space of THFs on manifolds diffeomorphic to S^3 is well understood [Brunella, Ghys]. The component that contains the usual supersymmetric round sphere of [Kapustin, Willett, Yaakov.; Jafferis; Hama, Hosomichi, Lee] is one-dimensional. Therefore, all squashed S^3_b partition functions should only depend on a single complex parameter — the squashing parameter b — regardless of how complicated the squashing is. This also shows that no interesting new squashings exist on this branch.

Distinct squashings that give the same value of b correspond to the same THF, but different transversely Hermitian metrics.

The Superconformal *R*-Symmetry

The SUSY theories on $S^3 \times S^1$ or S^3 depend on a choice of R-symmetry, which affects the curvature couplings. In an SCFT, they are fixed by conformal invariance. Agreement requires choosing the correct superconformal R-symmetry. In 4d, it can be determined in flat space using a-maximization [Intriligator, Wecht].

In 3d, the analogous principle is F-maximization: consider Z_{S^3} with a background gauge field for a global flavor current j_{μ} . It only depends on one holomorphic line bundle modulus u:

$$Z_{S^3} = e^{-F_{S^3}(u)}$$
, $F_{S^3}(u) = F_{S^3}(m+it)$

Here t controls the mixing of j_{μ} with the R-symmetry [Jafferis; Festuccia, Seiberg]. Derivatives with respect to t compute integrated correlation functions of j_{μ} or its superpartners. In the SCFT:

$$\langle j_{\mu} \rangle = 0 \quad \Rightarrow \quad \partial_t \operatorname{Re} F_{S^3}|_{\mathsf{SCFT}} = 0$$
 [Jafferis]

SCFT Correlation Functions

$$\langle j_{\mu}j_{\nu}\rangle \sim \tau > 0 \quad \Rightarrow \quad \partial_t^2 \operatorname{Re} F_{S^3}|_{\mathsf{SCFT}} = -\frac{\pi^2}{2}\tau < 0$$

[Closset, TD, Festuccia, Komargodski, Seiberg]. Subtleties due to ${
m Im}\,F_{S^3}|_{{\sf SCFT}}.$

- ▶ Once the superconformal point has been found, the second t-derivative can be used to compute $\langle j_{\mu}j_{\nu}\rangle \sim \tau$ in the SCFT.
- ▶ Higher-order t-derivatives compute integrated higher-point correlators of j_{μ} in the SCFT.
- ▶ Similarly, we can squash the sphere slightly at the SCFT point and compute derivatives with respect to the squashing parameter b. They compute integrated correlation functions of the stress tensor $T_{\mu\nu}$ [Closset, TD, Festuccia, Komargodski], such as

$$\langle T_{\mu\nu}T_{\rho\lambda}\rangle \sim C_T \sim \partial_b^2 \operatorname{Re} F_{S_b^3}|_{b=1}$$

Can these protected correlation functions be computed directly in flat space?

Conclusions

- Supersymmetric QFT on curved manifolds can be described using background supergravity. Around flat space, the coupling proceeds via the stress-tensor supermultiplet. It is a powerful tool for analyzing the curved-space theory.
- ▶ 4d $\mathcal{N}=1$ theories with an R-symmetry require \mathcal{M} to be a Hermitian manifold.
 - $lacktriangleright Z_{\mathcal{M}}$ does not depend on the Hermitian metric
 - $lackbox{}{} Z_{\mathcal{M}}$ depends holomorphically on complex structure and line bundle moduli
- ▶ Similar results for 3d $\mathcal{N}=2$ theories with an R-symmetry
- ▶ This explains many observations in the literature and constrains $Z_{\mathcal{M}}$ in situations where no computations are available (complement to explicit localization computations).
- General method that can be applied to many classes of theories in diverse dimensions.