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Sources and Background Fields

A standard tool in QFT is to turn on sources and study the
response of the system.

Example: In a theory with a global flavor symmetry we can turn
on a gauge field Aµ that couples to the conserved flavor current jµ,

L ′ = L +Aµjµ +O
(
A2
)

I The higher-order seagull terms ensure invariance under gauge
transformations of Aµ (equivalently ∂µjµ = 0).

I Aµ is a non-dynamical background field (no e.o.m.)

I Small variations of Aµ around Aµ = 0 are captured, order by
order in a power series, by correlation functions of jµ in the
original theory (linear response).
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QFT in Curved Space

Every Poincaré invariant QFT has a conserved, symmetric stress
tensor Tµν . The appropriate source is a background spacetime
metric gµν . In Euclidean theories, gµν is a Riemannian metric.
Around flat space:

gµν = δµν + ∆gµν , L ′ = L − 1

2
∆gµνTµν +O

(
∆g2

)
I The effect of ∆gµν is captured by correlation functions of Tµν .

I Some higher-order terms are fixed by diff-invariance (seagull
terms). The fully invariant theory can then be studied on any
Riemannian manifold M. In particular, M may be compact.

I The curved space Lagrangian is not unique: we can add
curvature couplings, which correspond to a choice of Tµν ,

T ′µν = Tµν +
(
∂µ∂ν − δµν∂2

)
u ⇔ L ′ = L − 1

2
R[g]u
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The Partition Function

ZM[gµν , Aµ, · · · ] =

∫
DΦ e−

∫
LM[Φ,gµν ,Aµ,··· ]

IR finite if M is compact, but possible UV ambiguities (scheme
dependence). The physical part of ZM is a rich observable:

I Dependence on gµν , Aµ encodes correlators of Tµν , jµ on M.
I It can detect global degrees of freedom, which are activated

by the topology of M (e.g. Chern-Simons theory).
I In a CFT, the theory on M is sometimes related to flat space

by a conformal transformation (fixes curvature couplings):
I States on Sd−1 × R ⇔ Local operators on Rd. They are

counted by the partition function on Sd−1 × S1.
I Correlation functions on Sd ⇔ Correlation functions on Rd.
I Partition function on Sd ⇔ Entanglement entropy across a

sphere in Rd. [Casini, Huerta, Myers] + Talks by Headrick and Myers.

In general, computing ZM is very challenging.
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Supersymmetric Theories

Flat Space: SUSY provides a powerful handle on the dynamics of
QFT. This is especially useful for BPS observables that preserve
some of the supercharges: their dependence on the parameters of
the theory is tightly constrained and can sometimes be determined
exactly, e.g. superpotential W (Φ) in 4d N = 1 theories.

Curved Space: Generic choices of M and gµν , Aµ break SUSY,

[Q,Tµν ] 6= 0 , [Q, jµ] 6= 0 (not BPS) .

Preserving some of the supercharges requires additional
background fields and/or additional geometric structures on M.

I When and how can we preserve SUSY on M?
I What extra data does the Lagrangian LM depend on?
I The partition function ZM = 〈1〉 is a BPS observable. How

does it depend on the data in the Lagrangian?
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Selected Examples
I Twisting [Witten]: consider a theory with R-symmetry GR, a

metric on M with holonomy Ghol, and a Q that is a singlet
under GR ×Ghol|diagonal. Then Q can be preserved on M.

More recently, other SUSY backgrounds (not twisting). Some
backgrounds are highly symmetric and preserve all supercharges:

I N = 2 on S4
[Pestun], N = 2 on S3

[Kapustin, Willett, Yaakov; Jafferis; Hama,

Hosomichi, Lee], N = (2, 2) on S2
[Benini, Cremonesi; Doroud, Gomis, Le Floch, Lee], ...

I N = 1 on S3 × S1
[D. Sen; Römelsberger], N = 2 on S2 × S1

[Imamura,

Yokoyama; Kapustin, Willett], N = (2, 0) on T 2
[Witten; Benini, Eager, Hori, Tachikawa;

Gadde, Gukov], ... (Supersymmetric Indices)

Others are less symmetric and preserve fewer supercharges. They
often come in continuous families labeled by some parameters:

I N = 2 in Ω(ε1, ε2) background [Nekrasov; Nekrasov, Okounkov], N = 2 on
squashed S3

b , N = (2, 2) on squashed S2
b [Gomis, Lee], ...
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Case Study: Squashed S3
b

In N = 2 theories with an R-symmetry, the partition function on a
round S3 can be computed using supersymmetric localization
techniques [Kapustin, Willett, Yaakov; Jafferis; Hama, Hosomichi, Lee] + Talk by Willett. Many
authors have generalized this to squashed spheres [Hama, Hosomichi, Lee;

Gadde, Yan; Imamura; Imamura, Yokoyama; Martelli, Passias, Sparks; Nishioka, Yaakov; Alday, Martelli,

Richmond, Sparks; . . . ]. The metric can contain arbitrary functions, in
addition to continuous parameters.

Explicit localization computations suggest:
I ZS3

b
only depends on the geometry of the background through

a single complex parameter b (squashing parameter).
I Some deformations of the background geometry do not

affect ZS3
b
, even though the metric changes.

More generally, examples suggest that ZM only depends on a finite
number of continuous parameters, rather than all the data used to
define LM (several arbitrary functions).
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Goal

In the remainder of the talk I will review a unified approach to
supersymmetric theories on curved manifolds M, describe the data
that enters the Lagrangian LM, and explain how this data affects
the partition function ZM.

Note: I will have to omit many topics and references. I will restrict
myself to R-symmetric theories with four supercharges in d = 3, 4
and focus on the partition function ZM. The methods are general
and can be applied in many other examples in the literature.

I 4d N = 1 theories on curved manifolds

I Constraints on ZM
I 3d N = 2 theories, squashed S3

b revisited
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4d N = 1 Theories on Curved Manifolds
Now Tµν resides in a supermultiplet with other currents. For
theories with a U(1)R-symmetry, we can use the R-multiplet:

R =
(
j(R)
µ , Sµα, Tµν , C[µν]

)
It controls the coupling of the field theory to background fields,
which reside in an off-shell supergravity multiplet:

H =
(
A(R)
µ ,Ψµα,∆gµν , Bµν

)
, V µ =

i

2
εµνρλ∂µBνλ

A bosonic background preserves a supercharge Q if δQΨµα = 0
(independent of the field theory). Given a Lagrangian in flat space,
it is very convenient to infer the curved space LM and SUSY
transformation rules for the matter fields from the corresponding
off-shell supergravity formulas. [Festuccia, Seiberg] + Talk by Festuccia (online)
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Example: Free Chiral Multiplet

Consider a free chiral multiplet Φ = (φ, ψα, F ) with R-charge r.
To obtain LM in a bosonic background satisfying δQΨµα = 0, we
can take the linearized coupling to the R-multiplet operators

j(R)
µ = irφ̃

↔
∂µ φ+rψ̃σ̃µψ , . . . , Tµν = (· · · )+r

2

(
∂µ∂ν − δµν∂2

)
φ̃φ ,

and find the non-linear completion using the Noether procedure:

LM = LR4 |covariant+V
µ

(
iφ̃
↔
Dµ φ+ ψ̃σ̃µψ

)
−r
(

1

4
R− 3V µVµ

)
φ̃φ

The SUSY transformations of Φ are also modified (covariant). To
show that LM is supersymmetric we must use δQΨµα = 0. It is
much more convenient to take a rigid limit of the corresponding
off-shell supergravity formulas (if available) [Sohnius, West; Festuccia, Seiberg].

Note the explicit dependence of LM on the choice of R-charge r,
through covariant derivatives and curvature couplings.
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Supersymmetry on Complex Manifolds

The condition δQΨµα = 0 leads to a generalized Killing spinor
equation for the spinor ζ corresponding to Q:(

∇µ − iA(R)
µ

)
ζ =

i

2
Vµζ − iV νσµνζ , V = ∗dB

This PDE has a solution ⇔ M is a Hermitian manifold: it has an
integrable complex structure Jµν and gµν is a compatible
Hermitian metric. [TD, Festuccia, Seiberg; Klare, Tomasiello, Zaffaroni]

I Relation to twisting: If M is Kähler (U(2) holonomy) we can
find solutions with Vµ = 0 [Johansen, Witten, Vyas].

I In general M need not be Kähler (S3 × S1), Vµ ∼ ∇νJνµ.

I The supercharge Q transforms as a scalar under holomorphic
coordinate changes (crucial) and satisfies Q2 = 0.

I A
(R)
µ , Vµ are (partially) determined in terms of Jµν , gµν .

I More supercharges impose further constraints on M.
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Background Gauge Fields

If the field theory has continuous flavor symmetries, we can couple
a background gauge field Aµ to the flavor current jµ. (Focus on
Abelian case.) With SUSY:

J = (J, jα, jµ) , V = (D,λα, Aµ)

As before, a bosonic configuration Aµ, D with λα = 0 preserves Q
if δQλα = 0:

(
F 0,2

)
ij

= 0 , F = dA , D = −1

2
JµνFµν

Thus SUSY background gauge fields ⇔ holomorphic line bundles
over the complex manifold M.
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Ingredients for LM

The supersymmetric curved-space Lagrangian LM depends on:

I The integrable complex structure Jµν
I A compatible Hermitian metric gij
I Background gauge fields ⇔ holomorphic line bundles

I Coupling constants, e.g. those of the original flat-space theory

I · · ·

Some of this data can be varied continuously, and the space of
possible variations is infinite-dimensional (functions on M).
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What does ZM Depend On?

We can constrain ZM by varying the continuous data in LM and
checking whether the change is Q-exact:

∆LM = (∆M){Q,O} ⇒ ∆ZM ∼ 〈{Q,O}〉 = 0

In principle need full non-linear background supergravity

Simplification: work around flat space M≈ R4. Then ∆LM
consists of operators in the stress-tensor supermultiplet with
known, universal SUSY transformations. What about general M?

Key Fact: Q is a scalar under holomorphic coordinate changes and
this is enough to extend the result to general M.

Compare to topologically twisted theories: Q a scalar under all
coordinate changes and Tµν = {Q,Λµν} in flat space. Then the
partition function does not depend on the metric for any M.
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Varying Jµν and gµν

Jµν → Jµν + ∆Jµν , gµν → gµν + ∆gµν

Use holomorphic coordinates zi adapted to Jµν . The deformation
must lead to another Hermitian structure:

∆J ij = ∆J ij = 0 , ∂j∆J
i
k − ∂k∆J

i
j = 0 ,

∆gij = arbitrary , ∆gij =
i

2
(∆Jij + ∆Jji) .

An infinitesimal diffeomorphism parametrized by εµ leads
to ∆J ij = 2i∂jε

i. Non-trivial deformations correspond to

cohomology classes in H0,1
(
M, T 1,0M

)
. If M is compact, there

are finitely many complex structure moduli.
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Obtaining ∆LM

Recall the coupling of the supercurrent multiplet to the bosonic
supergravity background fields:

−1

2
∆gµνTµν +A(R)µj(R)

µ +BµνCµν

Since A
(R)
µ , Bµν are expressed in terms of Jµν , gµν , we can

perform the infinitesimal deformations ∆Jµν ,∆gµν to obtain:

∆LM = −∆gijTij − i
∑
j

∆J ijTji + i
∑
j

∆J ij

(
Tij + i∂jj

(R)
i

)

Tµν = Tµν +
1

4
Cµν −

i

4
εµνρλ∂

ρj(R)λ − i

2
∂νj

(R)
µ
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Q-Exactness of Deformations

∆LM = −∆gijTij − i
∑
j

∆J ijTji + i
∑
j

∆J ij

(
Tij + i∂jj

(R)
i

)

Are any of these operators Q-exact? The only fermionic operator

in the same multiplet as Tµν , j(R)
µ is the supersymmetry current:

{Q,Sµα} = 0 , {Q, S̃µα̇} ∼ Tµi

We conclude:

I ZM does not depend on the Hermitian metric gij .

I ZM only depends on ∆J ij but not on ∆J ij , i.e. it is a
holomorphic function of the complex structure moduli.
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Comments
I Independence of gij means invariance of ZM under scale

changes xµ → λxµ. Thus ZM is a renormalization group
invariant: it can be computed in the UV or the IR, and it
must be invariant under (IR) duality.

I The argument only shows that ZM is locally holomorphic in
the complex structure moduli. Sometimes there are
singularities (they should be understood better).

I If M is compact, there is a finite number of complex
structure moduli (infinite ⇒ finite).

I Applying the same arguments to flavor current multiplets, it
follows that ZM only depends on background gauge fields
through the corresponding holomorphic line bundles. It is a
locally holomorphic function of the bundle moduli (finitely
many, if M is compact).
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Example: S3 × S1

Kodaira: Complex Manifolds diffeomorphic to S3 × S1 are primary
Hopf surfaces,

Mp,q = C2 − (0, 0)/(w, z) ∼ (pw, qz) , 0 < |p| ≤ |q| < 1 .

The partition function must be a locally holomorphic function of
the complex structure moduli p, q. If there is an Abelian
background gauge field, ZM must be locally holomorphic in the
corresponding holomorphic line bundle modulus u.

One can show that ZM(p, q, u) is nothing but the supersymmetric
index I(p, q, u) for states on S3 × R [Römelsberger; Dolan, Osborn; . . .] at
general complex fugacities. In an SCFT, it counts BPS operators
in the flat-space theory [Kinney, Maldacena, Minwalla, Raju; . . .].
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3d N = 2 Theories on Curved Manifolds
Closely related to 4d N = 1 theories by (twisted) dimensional
reduction. The R-multiplet now contains the operators [TD, Seiberg]

R =
(
j(R)
µ , Sµα, Tµν , j

(Z)
µ , J

)
and the corresponding background supergravity fields are

H =
(
A(R)
µ ,Ψµα,∆gµν , Cµ, H

)
Now the condition δQΨµα = 0 for supersymmetric backgrounds
leads to the Killing spinor equation(

∇µ −A(R)
µ

)
ζ = −1

2
Hγµζ +

i

2
Vµζ −

1

2
εµνρV

νγρζ
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Transversely Holomorphic Foliations

A Killing spinor ζ exists ⇔ M admits a transversely holomorphic
foliation (THF) and the metric is transversely Hermitian [Closset, TD,

Festuccia, Komargodski]:

I A nowhere vanishing unit vector field ξµ, which provides a
local 2 + 1 decomposition.

I An integrable complex structure J on the 2d transverse space,
such that J is invariant under flows of ξ, i.e. LξJ = 0.

I In the compact case, they are completely classified [Brunella, Ghys].
Topologically, Seifert manifolds or T 2 bundles over S1.

I Many similarities to complex manifolds:
I (p, q)-forms, ∂-operator, Dolbeault cohomology Hp,q(M)

I Holomorphic line bundles ⇔ SUSY background gauge fields.

I Both structures are parametrized by finitely many complex
moduli corresponding to certain ∂-cohomology classes.
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Q-Exactnes in 3d

The supersymmetric Lagrangian LM depends on:

I The transversely holomorphic foliation (THF) on M
I A choice of transversely Hermitian metric

I Background gauge fields ⇔ holomorphic line bundles

Applying the same logic as in 4d, we obtain the following
constraints on the parameter dependence of ZM:

I It does not depend on the transversely Hermitian metric.

I It is a locally holomorphic function of the complex moduli
parametrizing the possible THFs on M.

I It only depends on background gauge fields (including real
masses) through the corresponding holomorphic vector
bundles. It is locally holomorphic in the bundle moduli.
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Squashed S3
b Revisited

We can use this understanding to explain the observed behavior of
partition functions on squashed three-spheres:

The moduli space of THFs on manifolds diffeomorphic to S3 is
well understood [Brunella, Ghys]. The component that contains the usual
supersymmetric round sphere of [Kapustin, Willett, Yaakov.; Jafferis; Hama, Hosomichi,

Lee] is one-dimensional. Therefore, all squashed S3
b partition

functions should only depend on a single complex parameter – the
squashing parameter b – regardless of how complicated the
squashing is. This also shows that no interesting new squashings
exist on this branch.

Distinct squashings that give the same value of b correspond to the
same THF, but different transversely Hermitian metrics.
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The Superconformal R-Symmetry
The SUSY theories on S3 × S1 or S3 depend on a choice of
R-symmetry, which affects the curvature couplings. In an SCFT,
they are fixed by conformal invariance. Agreement requires
choosing the correct superconformal R-symmetry. In 4d, it can be
determined in flat space using a-maximization [Intriligator, Wecht].

In 3d, the analogous principle is F -maximization: consider ZS3

with a background gauge field for a global flavor current jµ. It
only depends on one holomorphic line bundle modulus u:

ZS3 = e−FS3 (u) , FS3(u) = FS3(m+ it)

Here t controls the mixing of jµ with the R-symmetry [Jafferis; Festuccia,

Seiberg]. Derivatives with respect to t compute integrated correlation
functions of jµ or its superpartners. In the SCFT:

〈jµ〉 = 0 ⇒ ∂t ReFS3 |SCFT = 0 [Jafferis]
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SCFT Correlation Functions

〈jµjν〉 ∼ τ > 0 ⇒ ∂2
t ReFS3 |SCFT = −π

2

2
τ < 0

[Closset, TD, Festuccia, Komargodski, Seiberg]. Subtleties due to ImFS3 |SCFT.

I Once the superconformal point has been found, the second
t-derivative can be used to compute 〈jµjν〉 ∼ τ in the SCFT.

I Higher-order t-derivatives compute integrated higher-point
correlators of jµ in the SCFT.

I Similarly, we can squash the sphere slightly at the SCFT point
and compute derivatives with respect to the squashing
parameter b. They compute integrated correlation functions
of the stress tensor Tµν [Closset, TD, Festuccia, Komargodski], such as

〈TµνTρλ〉 ∼ CT ∼ ∂2
b ReFS3

b
|b=1

Can these protected correlation functions be computed directly in
flat space?
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Conclusions
I Supersymmetric QFT on curved manifolds can be described

using background supergravity. Around flat space, the
coupling proceeds via the stress-tensor supermultiplet. It is a
powerful tool for analyzing the curved-space theory.

I 4d N = 1 theories with an R-symmetry require M to be a
Hermitian manifold.

I ZM does not depend on the Hermitian metric

I ZM depends holomorphically on complex structure and line
bundle moduli

I Similar results for 3d N = 2 theories with an R-symmetry
I This explains many observations in the literature and

constrains ZM in situations where no computations are
available (complement to explicit localization computations).

I General method that can be applied to many classes of
theories in diverse dimensions.
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