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Outline

I.  Use AdS Kinematics to motivate and define 
Cluster Decomposition, and long-range corrections 

to it, purely as a statement in the CFT.!
!

!

II.  We will Prove results using the CFT bootstrap, 
in generality in d > 2, and in a special large central 

charge limit for d=2.!
!



Cluster Decomposition: 
Very Coarse Locality

For some sufficiently large separation, perhaps truly 
gargantuan, well-separated processes decouple.

We will also address the rate of decoupling, !
relating it to the bulk gravity and other forces.



Formal Definition of 
Cluster Decomposition?

HAdS = HCFT ⇡ Fock Space

Statement about structure of the Hilbert Space:

 d = c =

=) 9  cd =



A Fock Space 
at Large Separation



How to Define 
Distant Furballs?

AdS
Geodesic separation between cat & dog:

Are there two furball states at!
large angular momentum???

 ⇠ RAdS log `



!

Review of  
AdS/CFT  

and 
Expectations
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Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the
CFT in radial quantization. The time translation operator in the bulk of AdS is the Dilatation
operator in the CFT, so energies in AdS correspond to dimensions in the CFT.fig:AdSCylinderIntro

for general scalar theories at tree-level and for ⇥4 theory at one-loop. Recently we [2] verified
the conjecture for n-pt amplitudes in general scalar theories at tree-level by showing that our
diagrammatic rules for the Mellin amplitude reduce to the usual Feynman rules in the flat space
limit. By setting up the appropriate scattering experiment [10, 11, 12, 13] in AdS and making
gratuitous use of the stationary phase approximation, we will derive Penedones’ conjecture in
section 2.

Why is the Mellin amplitude related to the flat-space S-matrix? A key point is that
the Dilatation operator in the CFT generates global time translations in AdS, as pictured
in figure 1. In other words, the energy of particles in AdS is given by the dimension of a
CFT operator (or CFT state – we are freely making use the operator-state correspondence).
So aside from their manifest similarity in a large class of examples, one can understand the
relationship between Mellin and scattering amplitudes by thinking about which states in the
CFT correspond to scattering processes in AdS. CFT states dual to AdS particles with energies
parametrically larger than the AdS curvature scale correspond to primary operators with
very large scaling dimension. The �ij’s in the Mellin amplitude correspond to relative scaling
dimensions, so scattering states localize the Mellin amplitude on large �ij’s related to the energy
and momentum of the physical scattering process. We will show how to make this argument
precise by directly extracting scattering states from the correlation functions of n single-trace
operators, written in the Mellin representation. For scattering momenta pi large compared to

2

HAdS = DCFT

Energies and Dimensions 
in AdS/CFT



Representations of 
Conformal Symmetry

The momentum and special conformal generators act as 
raising and lowering operators wrt Dimension

[D,Pµ] = Pµ [D,Kµ] = �Kµ

Irreducible reps built from primaries:

[Kµ,O(0)] = 0 or Kµ| Oi = 0

Can derive a unitarity relation for ⌧ = �� `

�s �
d

2
� 1 and ⌧` � d� 2



Conformal Symmetry 
and Primary States

AdS CFT

CoM of Ground State CFT Primary State



Center of Mass !
for Excited State

Descendant of a!
Primary

AdS CFT

 n,`(t, ⇢,⌦)
�
@2n@µ1 · · · @µ`O

� |0i

Excited/Descendant 
States



Two Particle State,!
CoM at Origin `Double-Trace’ Primary

Now Specialize to  
Two Particle States?

AdS CFT

�O@2n@µ1 · · · @µ`O
� |0i n,`(ti, ⇢i,⌦i)



Double-Trace Primary

Two Particle Kinematics

�O@2n@µ1 · · · @µ`O
� |0i

AdS

Geodesic distance between objects:

 ⇡ RAdS log


`

�O

�



Double-Trace Primary

Two Particle Physics
�O@2n@µ1 · · · @µ`O

� |0iAdS

Bulk Energy = CFT Dimension:
�n,` = �1 +�2 + 2n+ `+ �(n, `)

View anomalous dimension as

�(n, `) ! �
⇣
n, e/RAdS

⌘



Two Furball Physics?

AdS
AdS Energy = CFT Dimension:

Existence of states as               with vanishing!
             implies AdS Cluster Decomposion.

Anomalous dimension,           ,!
is a kind of `binding energy’.

�(n, `)

En` = Ec + Ed + 2n+ `+ �(n, `)

�(n, `)

` ! 1



Two Anything Physics?

AdS

| cd,`i

Generally, proves existence!
of Fock space at large separation.

In any CFT whatsoever in d > 2,!
and in some d=2 limits, we will prove that 

two anything states exist at large spin.



!

Expectations 
for Anomalous 

Dimensions  
from Distant  

Objects in AdS?



Anomalous Dimensions 
with Distance in D > 2

At large spin in d > 2, we will!
show that the interaction 

energies are universal:

AdS

�(n, `) ⇠ �
n

`⌧exch

⇠ �
n

exp[�⌧
exch

]

Can be computed and matched!
in the `Newtonian’ limit of!

AdS-Schwarzschild if                        .⌧
exch

= d� 2



Deficit Angles in D=2

In 2+1 dimensional AdS, expect deficit 
angles, detectable near infinity.

AdS

AdS Solution for a Sub-Planckian Object:
ds2 = cosh

2
()dt2 � d2 � (1� 8GM) sinh

2
()d�2



D=2 Energy Shifts

Leads to a constant energy shift at large separations.

� ⇡ �6�1�2

c

Deficit angle implies time for orbits,!
corresponding to constant phase shift.



!

Let’s Prove 
that EVERY CFT 

in D>2 
Dimensions Has 

a Fock Space



Theorem to Prove 
(for Any CFT in d>2)

O1(x1)O2(x2) =
X

�,`

c

12
�,`O�,`(x)

Consider OPE of any two scalar primary operators:

For each     there exists infinitely many operatorsn

O�,` with � = �1 +�2 + 2n+ `+ �(n, `)

�(n, `) ! �n
`⌧m

or �ne
�⌧m

as              , where the anomalous dimensions

from leading twist, generically Tµ⌫

` ! 1



What is the Bootstrap?

• Conformal Symmetry!

• Unitarity!

• Crossing Symmetry

What can we learn from the fundamental principles?

structure constants of the schematic form
X

k

f
12k

f
34k
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X

k

f
14k

f
23k

(. . .) . (3.3)

The (. . .) factors are functions of coordinates x
i

, called conformal partial waves. They are
produced by acting on the two-point function of the exchanged primary field �

k

with the
di↵erential operators C appearing in the OPE of two external primaries. Thus, they are also
fixed by conformal invariance in terms of the dimensions and spins of the involved fields.
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Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-
point functions of su�ciently many (all?) primary fields, should allow one to determine the
CFT data and thus solve the CFT. Of course, there are presumably many di↵erent CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help
us to select the solution representing the 3D Ising model is the global symmetry group,
which must be Z

2

.

Our method of dealing with the conformal bootstrap will require explicit knowledge of
the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of
scalars. Conformal partial waves for such correlators were introduced in [7] and further
studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them
were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial
waves was made recently in [43] (building on [44]), which also contains a concise introduction
to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see
Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries �
i

of dimension �
i

, which is fixed
by conformal invariance to have the form [3]
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Consider the 4-pt 
CFT Correlators

Recall that 4-pt correlators can be written

h�(x1)�(x2)�(x3)�(x4)i =
A(u, v)

(x2
13x

2
24)

��

dual to bulk interactions will e↵ectively shut o↵ as the bulk impact parameter is taken to be
much greater than the AdS length. This can also be viewed as a strong form of the cluster
decomposition principle in the bulk. Since the early days of AdS/CFT it has been argued that
this notion of “coarse locality” [10] could be due to a decoupling of modes of very di↵erent
wavelengths, but it has been challenging to make this qualitative holographic RG intuition
precise. The bootstrap o↵ers a precise and general method for addressing coarse locality.

For the remainder of this section we will give a quick review of the CFT bootstrap. Then
in section 2 we delve into the argument, first giving an illustrative example from mean field
theory (a Gaussian CFT, with all correlators fixed by 2-pt functions, e.g. a free field theory in
AdS). We give the complete argument in sections 2.2 and 2.4, with some more specific results
and examples that follow from further assumptions in section 2.3. We provide more detail
on how two dimensional CFTs escape our conclusions in section 2.5. In section 3 we connect
our results to superhorizon locality in AdS, and we conclude with a brief discussion in section
4. In Appendix A we collect some results on relevant approximations of the conformal blocks
in four and general dimensions. In Appendix B we give a more formal and rigorous version
of the argument in section 2. In Appendix C we explain how our results generalize to terms
occurring in the OPE of distinct operators �1 and �2. In Appendix D we connect our results
with perturbative gravity computations in AdS.

Note added: after this work was completed we learned of the related work of Komargodski
and Zhiboedov [31]; they obtain very similar results using somewhat di↵erent methods.

1.1 Lightning Bootstrap Review

In CFTs, the bootstrap equation follows from the constraints of conformal invariance and
crossing symmetry applied to the operator product expansion, which says that a product of
local operators is equivalent to a sum

�(x)�(0) =
X

O
cOfO(x, @)O(0). (2)

Conformal invariance relates the OPE coe�cients of all operators in the same irreducible
conformal multiplet, and this allows one to reduce the sum above to a sum over di↵erent
irreducible multiplets, or “conformal blocks”. When this expansion is performed inside of a
four-point function, the contribution of each block is just a constant “conformal block coef-
ficient” PO / c2O for the entire multiplet times a function of the xi’s whose functional form
depends only on the spin `O and dimension �O of the lowest-weight (i.e. “primary”) operator
of the multiplet:

h�(x1)�(x2)�(x3)�(x4)i =
1

(x2
12x

2
34)

��

X

O
POg⌧O,`O(u, v), (3)

where xij = xi � xj, the twist of O is ⌧O ⌘ �O � `O, and

u =
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24x
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14x

2
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x2
24x

2
13

◆
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2

where the conformal cross-ratios are

We can use elementary quantum mechanics!
to rewrite this in a different way...



The Conformal Partial 
Wave Decomposition

Since operators = states in the CFT, write 4-pt as

=
X

↵

O↵

Insert    , organize according to conformal symmetry:

hO1O2

 
X

↵

|↵ih↵|
!
O3O4i

1

A sum over exchange of all primary operators,!
magnitude given by product of 3-pt correlators.



Formulate  
CFT Bootstrap

Crossing symmetry gives the Bootstrap Equation:

are the conformally invariant cross-ratios. The functions g⌧O,`O(u, v) are also usually referred
to as conformal blocks or conformal partial waves [32–35], and they are crucial elementary
ingredients in the bootstrap program.

In the above, we took the OPE of �(x1)�(x2) and �(x3)�(x4) inside the four-point function,
but one can also take the OPE in the additional “channels” �(x1)�(x3) and �(x2)�(x4) or
�(x1)�(x4) and �(x2)�(x3), and the bootstrap equation is the constraint that the decomposition
in di↵erent channels matches:

1
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X

O
POg⌧O,`O(v, u). (5)

Much of the power of this constraint follows from the fact that by unitarity, the conformal
block coe�cients PO must all be non-negative in each of these channels, because the PO can
be taken to be the squares of real OPE coe�cients.

2 The Bootstrap and Large ` Operators

Although some of the arguments below are technical, the idea behind them is very simple. By
way of analogy, consider the s-channel partial wave decomposition of a tree-level scattering
amplitude with poles in both the s and t channels. The center of mass energy is simply

p
s,

so the s-channel poles will appear explicitly in the partial wave decomposition. However,
the t-channel poles will not be manifest. They will arise from the infinite sum over angular
momenta, because the large angular momentum region encodes long-distance e↵ects. Crossing
symmetry will impose constraints between the s-wave and t-wave decompositions, relating the
large ` behavior in one channel with the pole structure of the other channel.

We will be studying an analogous phenomenon in the conformal block (sometimes called
conformal partial wave) decompositions of CFT correlation functions. The metaphor between
scattering amplitudes and CFT correlation functions is very direct when the CFT correlators
are expressed in Mellin space, but in what follows we will stick to position space. In position
space CFT correlators, the poles of the scattering amplitude are analogous to specific power-
laws in conformal cross-ratios, with the smallest power-laws corresponding to the leading poles.

2.1 An Elementary Illustration from Mean Field Theory

Let us begin by considering what naively appears to be a paradox. Consider the 4-point cor-
relation function in a CFT with only Gaussian or ‘mean field theory’ (MFT) type correlators.
These mean field theories are the dual of free field theories in AdS. We will study the 4-pt
correlator of a dimension �� scalar operator � in such a theory. By definition, in mean field
theory the 4-pt correlator is given as a sum over the 2-pt function contractions:
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structure constants of the schematic form
X

k

f
12k

f
34k
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X
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f
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The (. . .) factors are functions of coordinates x
i

, called conformal partial waves. They are
produced by acting on the two-point function of the exchanged primary field �

k

with the
di↵erential operators C appearing in the OPE of two external primaries. Thus, they are also
fixed by conformal invariance in terms of the dimensions and spins of the involved fields.
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Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-
point functions of su�ciently many (all?) primary fields, should allow one to determine the
CFT data and thus solve the CFT. Of course, there are presumably many di↵erent CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help
us to select the solution representing the 3D Ising model is the global symmetry group,
which must be Z

2

.

Our method of dealing with the conformal bootstrap will require explicit knowledge of
the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of
scalars. Conformal partial waves for such correlators were introduced in [7] and further
studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them
were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial
waves was made recently in [43] (building on [44]), which also contains a concise introduction
to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see
Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries �
i

of dimension �
i

, which is fixed
by conformal invariance to have the form [3]
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PO = f2 > 0

Unitarity:



The Idea of the Proof: 
A Scattering Analogy

Free propagation and massless exchange!
require large amplitude at large    , e.g.

Conformal Partial Waves ~ Partial Wave Amplitudes

`

1

1� cos ✓
=

X

`

cos

` ✓

Completely analogous CFT phenomenon!
implies existence of large      states.`



!

Consider the 
CFT Bootstrap 

for 
Generalized 

Free Theories...



(Warm Up Example) 
Generalized Free Theory

What is the conformal block decomposition?

are the conformally invariant cross-ratios. The functions g⌧O,`O(u, v) are also usually referred
to as conformal blocks or conformal partial waves [32–35], and they are crucial elementary
ingredients in the bootstrap program.

In the above, we took the OPE of �(x1)�(x2) and �(x3)�(x4) inside the four-point function,
but one can also take the OPE in the additional “channels” �(x1)�(x3) and �(x2)�(x4) or
�(x1)�(x4) and �(x2)�(x3), and the bootstrap equation is the constraint that the decomposition
in di↵erent channels matches:

1
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14x
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O
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Much of the power of this constraint follows from the fact that by unitarity, the conformal
block coe�cients PO must all be non-negative in each of these channels, because the PO can
be taken to be the squares of real OPE coe�cients.

2 The Bootstrap and Large ` Operators

Although some of the arguments below are technical, the idea behind them is very simple. By
way of analogy, consider the s-channel partial wave decomposition of a tree-level scattering
amplitude with poles in both the s and t channels. The center of mass energy is simply

p
s,

so the s-channel poles will appear explicitly in the partial wave decomposition. However,
the t-channel poles will not be manifest. They will arise from the infinite sum over angular
momenta, because the large angular momentum region encodes long-distance e↵ects. Crossing
symmetry will impose constraints between the s-wave and t-wave decompositions, relating the
large ` behavior in one channel with the pole structure of the other channel.

We will be studying an analogous phenomenon in the conformal block (sometimes called
conformal partial wave) decompositions of CFT correlation functions. The metaphor between
scattering amplitudes and CFT correlation functions is very direct when the CFT correlators
are expressed in Mellin space, but in what follows we will stick to position space. In position
space CFT correlators, the poles of the scattering amplitude are analogous to specific power-
laws in conformal cross-ratios, with the smallest power-laws corresponding to the leading poles.

2.1 An Elementary Illustration from Mean Field Theory

Let us begin by considering what naively appears to be a paradox. Consider the 4-point cor-
relation function in a CFT with only Gaussian or ‘mean field theory’ (MFT) type correlators.
These mean field theories are the dual of free field theories in AdS. We will study the 4-pt
correlator of a dimension �� scalar operator � in such a theory. By definition, in mean field
theory the 4-pt correlator is given as a sum over the 2-pt function contractions:

h�(x1)�(x2)�(x3)�(x4)i =
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2
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Since this is the 4-pt correlator of a unitary CFT, it has a conformal block decomposition in
every channel with positive conformal block coe�cients. The operators appearing in the con-
formal block decomposition are just the identity operator 1 and the “double-trace” operators
On,` of the schematic form

On,` ⇠ �(@2)n@µ1 . . . @µ`
�, (7)

with known [29] conformal block coe�cients P2��+2n,` and twists ⌧n,` = 2�� + 2n. Factoring
out an overall (x2

13x
2
24)

��� , the conformal block decomposition in the 14 ! 23 channel reads

u��� + 1 + v��� = v��� + v���
X

n,`

P2��+2n,` g2��+2n,`(v, u), (8)

where the v��� on the RHS is the contribution from the identity operator. If we look at the
behavior of the conformal blocks g2��+2n,`(v, u), we notice a simple problem with this equation:
it is known that the conformal blocks g2��+2n,`(v, u) in the sum on the RHS each have at most
a log u divergence at small u, but the LHS has a u��� divergence. Thus the LHS cannot be
reproduced by any finite number of terms in the sum. To be a bit more precise, the conformal
blocks have a series expansion around u = 0 with only non-negative integer powers of u and
at most a single logarithm appearing, so in particular we can write

v���g2��+2n,`(v, u) = f0(v) + uf1(v) + u2f2(v) + . . .

+ log(u)
⇣
f̃0(v) + uf̃1(v) + u2f̃2(v) + . . .

⌘
. (9)

But this means that if the sum on the right-hand side of equation (8) converges uniformly, it
cannot reproduce the left-hand side, which includes the negative power term u��� and does
not include any logarithms.

The simple resolution of this ‘paradox’ is that the sum over conformal blocks does not
converge uniformly near u = 0. In fact, the sum does converge on an open set with positive
real u, but when Re[

p
u] < 0 the sum diverges. So we must define the sum over conformal

blocks for general u as the analytic continuation of the sum in the convergent region. Crucially,
the analytic continuation of the sum contains the power-law u��� that is not exhibited by any
of the individual terms in the sum.

Let us see how this works in a bit more detail, so that in particular, we can see that the
sum over twists ⌧ = 2�� + 2n at fixed ` converges in a neighborhood of u = 0, but the sum
over angular momentum diverges for u < 0. For the purpose of understanding convergence, we
need only study the conformal blocks when ⌧ or ` are very large. In the very large ⌧ limit with
|u|, |v| < 1 the blocks are always suppressed by u

⌧
2 or v

⌧
2 . The conformal block coe�cients are

bounded at large ⌧ [14]. This means that for small |u| and |v|, the sum over ⌧ will converge.
In fact, once we know that the sum converges for some particular u0, v0 we see that for u < u0

and v < v0, the convergence at large ⌧ becomes exponentially faster.
Now consider the ` dependence. At large ` and fixed ⌧ , we establish in Appendix A that

the crossed-channel blocks in the |u| ⌧ |v| ⌧ 1 limit behave as

g⌧,`(v, u) ⇡ `
1
22⌧+2`

p
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v
⌧
2K0

�
2`
p
u
� `

p
u�1⇡ 2⌧+2`�1v

⌧
2
e�2`

p
u

4
p
u

, (10)

4

Focus on the singularity as u ! 0

Lightcone OPE limit.
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Generalized Free Theory
In the limit that u ! 0

The conformal blocks each behave as 

We cannot recover the LHS without an infinite sum.

g⌧,`(v, u) = av
⌧
2
log u+ bv

⌧
2
+ · · ·

Must be infinite sum over spins,    .`

u��� ⇡ v���
X

⌧,`

P⌧,`g⌧,`(v, u)



Generalized Free 
Theory Operators

So we discovered the operators

u��� = v���
X

⌧,`

P⌧,`g⌧,`(v, u)

�@µ1 · · · @µ`�

Looking at the sub-leading      dependence ofv

In the               limit, also find operatorsu ! 0

�(@2)n@µ1 · · · @µ`�

Trivial result here.  What about general CFTs???



!

Any D>2 CFT



General Bootstrap
Separating out the disconnected piece, have

�s �
d

2
� 1 and ⌧` � d� 2

Have singularity in a general CFT!  Recall unitarity:

Disconnected (identity) piece cleanly separated for

d � 3
Need Virasoro in d=2…  later.

u��� +
X

⌧,`

P⌧,`u
⌧
2���f⌧,`(u, v) = v��� +

X

⌧,`

P⌧,`v
⌧
2���f⌧,`(v, u)



Cluster Decomposition

O�,` with � = �1 +�2 + 2n+ `+ �(n, `)

This is used to prove existence of the operators

in the limit of large spins.!
!

Physical interpretation?  By analogy with scattering...

Need divergence at large spin to capture !
disconnected piece ~ free propagation

g⌧,`(u, v) like A`(s)P`(cos ✓)



Anomalous Dimensions?

u���
+ Pmu

⌧m
2 ���

log v + · · · =
X

⌧,`

P⌧,`v
⌧
2���f⌧,`(v, u)

Anomalous dimensions from sub-leading corrections:

Note that by unitarity we always have:

��� <
⌧m
2

��� < 0

Sub-leading correction can only come from!
a sum over infinitely many spins on RHS:

v
⌧
2���

= vn (1 + �(n, `) log v + · · · )

Matching LHS and RHS gives desired result.



!

The D=2 Case 
with Virasoro  

Symmetry 
at large 

central charge 



What makes D=2 
Different?

The identity is not the only twist zero state!

Sum over Virasoro descendants changes!
singularity structure in lightcone OPE  limit!

on the left-hand side.!
!

Interpret as AdS gravitational effects that !
do not vanish at large separation.

u��� +
X

⌧,`

P⌧,`u
⌧
2���f⌧,`(u, v) = v��� +

X

⌧,`

P⌧,`v
⌧
2���f⌧,`(v, u)



Need Virasoro Blocks 
in Lightcone OPE Limit

Not obvious from the literature.!
!

Most techniques expand in OPE limit, !
without clear generalization to our case.!

!

We will study the very simple limit of
h1, h2, c ! 1

hi/c ! 0, h1h2/c fixed

where we take



Compute by Brute Force

This means that the second numerator factor will be

hL
m

�(1)�(1)i = h(m� 1) (32)

The first numerator factor should be

h�(0)�(z)L�m

i = h(m� 1)zm (33)

This means that the block is

1X

m=2

12h2

c

m� 1

m(m+ 1)
zm = 2

h2

c
z2

2

F
1

(2, 2, 4; z) (34)

so we have computed it correctly, and obtained the normalization factor.

1.4 Semiclassical k-Graviton Blocks

Now something nice happens. Let’s write the full k graviton contribution as

V
k

=
X

m1,m2,···mk

1

k!

h��L�m1 · · ·L�mk
ihL

mk
· · ·L

m1��i
hL

mk
· · ·L

m1L�m1 · · ·L�mk
i (35)

where we have divided by k! to account for the fact that the distinct states would actually

have m
1

 m
2

 · · ·  m
k

. In the leading approximation at large c and fixed h2/c, we can

ignore the commutators of the L�mi and L
mi , because these commutators contribute fewer

factors of either h2 (in the numerator) or c in the denominator. This also accords with the

idea that these contributions are ‘semiclassical’. In this approximation we see that

V
k

=
V k

1

k!
(36)

This immediately means that we can also sum over k to find that

V
cl

⌘ eV1 = exp


2
h2

c
z2

2

F
1

(2, 2, 4; z)

�
(37)

Now we can take the limit that z ! 1. In that limit we find

V
cl

⇡ e�24

h2

c (1� z)�12

h2

c (38)

Note that since this needs to match �⌧/2 on the other side of the bootstrap equation, we get

the prediction that

�⌧ = �24h2

c
(39)

7

Obtain a simple exponentiation in our limit:

Vcl ⌘ eV1
= exp


2

h1h2

c
z22F1(2, 2, 4; z)

�

Agrees with other computations of !
semi-classical blocks expanded in   .  z



Lightcone OPE limit

In the lightcone OPE limit              get power 

Vcl ⇡ u���+
3�2

�
c

u ! 0

This corresponds to a constant shift!
in the dimensions of 2-phi states:

�2� = 2�� + `�
6�2

�

c
+ · · ·

Reproducing effect of the AdS Deficit angle,!
directly from a limit of the bootstrap.



Philosophy - Spacetime 
in Quantum Theories

Spacetime is `merely’ a set of coordinate labels 
associated with the states and operators of a 

quantum mechanical system.  !
!

It’s a useful idea when the Hamiltonian of the 
system is approximately local in these coordinates.!

Proved theorems about the CFT spectrum!
with striking AdS interpretation.!



Conclusions 
& Future Directions

• All d > 2 CFTs have states that evolve via 
Dilatations like objects in global AdS satisfying 
cluster decomposition!

• corrections can be computed purely from the 
bootstrap, giving long-range forces, e.g. Gravity!

• D=2 CFTs in a large central charge limit satisfy a 
modified theorem, but to generalize further need 
lightcone OPE limit of Virasoro blocks!?!

• Use BTZ to make a prediction for these blocks?



Large Spin Operators
Conformal Block Coeffs and Blocks are known:

g⌧,`(v, u) ⇠ v
⌧
2���

e�`
p
u

4
p
u

P2��,` ⇠ `2��� 3
2

Thus the sum over coeffs times blocks gives:

Singularity reproduced by large spin operators with

u��� /
Z 1

d` v
⌧
2���`2��� 3

2
e�`

p
u

4
p
u

⌧ = 2�� as ` ! 1


