Alberto Nicolis Columbia University

"Non-relativistic" theories

w/ L. Delacretaz, S. Dubovsky, T. Gregoire, S. Endlich, B. Horn, L. Hui, W. Irvine, R. Penco, F. Piazza, R. Porto, R. Rattazzi, R. Rosen, S. Sabharwal, S. Sibiryakov, D. T. Son, J. Wang, X. Xiao

JHEP 0603, JHEP 1104, JHEP 1206, PRD 85 (2012), PRL 110 (2013), JCAP 1310, PRD 88 (2013), JHEP 1311, PRD (2014) hep-th 1303.3289, 1307.0517, 1310.2272, 1311.6491, ...

Alberto Nicolis Columbia University

Relativistic non-relativistic theories

w/ L. Delacretaz, S. Dubovsky, T. Gregoire, S. Endlich, B. Horn, L. Hui, W. Irvine, R. Penco, F. Piazza, R. Porto, R. Rattazzi, R. Rosen, S. Sabharwal, S. Sibiryakov, D. T. Son, J. Wang, X. Xiao

JHEP 0603, JHEP 1104, JHEP 1206, PRD 85 (2012), PRL 110 (2013), JCAP 1310, PRD 88 (2013), JHEP 1311, PRD (2014) hep-th 1303.3289, 1307.0517, 1310.2272, 1311.6491, ...

Usually

condensed matter EFTs = relativily

1. $\mathrm{V} \ll 1$
2. preferred frame

Note: relativity = Lorentz or Galilei

For us instead

condensed matter EFTs = relativility spontaneously

Note: relativity = Lorentz or Galilei

Or equivalently

condensed matter EFTs = relativity
non-linearly realized

Note: relativity = Lorentz or Galilei

More precisely:

Poincaré $\left\{\begin{array}{lr}P^{\mu} & \text { translations } \\ J^{i} & \text { rotations +internal symmetries } \\ K^{i} & \text { boosts }\end{array}\right.$

$\begin{cases}\bar{P}^{\mu} & \text { (new) translations } \\ \bar{J}^{i} & \text { (new) rotations (convenience) }\end{cases}$

Example: solids and fluids

Dof: volume elements' positions

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

Example: solids and fluids

Dof: volume elements' positions

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

$$
\left\langle\phi^{I}\right\rangle_{\mathrm{eq}}=x^{I}
$$

Symmetries: Poincaré + internal

$$
\begin{gathered}
\phi^{I} \rightarrow \phi^{I}+a^{I} \\
\phi^{I} \rightarrow S O(3) \phi^{I} \\
\left(\left\langle\phi^{I}\right\rangle_{\text {eq }}=x^{I} \quad\right. \text { preserves diagonal combinations) } \\
\phi^{I} \rightarrow \xi^{I}(\phi) \quad \operatorname{det} \frac{\partial \xi^{I}}{\partial \phi^{J}}=1 \quad \text { fluid vs solid }
\end{gathered}
$$

Action: $\quad S=\int d^{4} x F(b) \quad b=\sqrt{\operatorname{det} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}}$
Correct hydrodynamics ($T_{\mu \nu}+$ eom $)$ with

$$
\begin{aligned}
\rho & =-F \\
p & =F-F^{\prime} b \\
u^{\mu} & =\frac{1}{6 b} \epsilon \epsilon \partial \phi \partial \phi \partial \phi
\end{aligned}
$$

Relativistic, non-linear
ground state (at given p): $\quad \phi^{I}=x^{I}$

Nambu-Goldstone modes: $\quad \phi^{I}=x^{I}+\pi^{I}$

$$
\mathcal{L} \rightarrow\left(\dot{\pi}^{I}\right)^{2}-c_{s}^{2}\left(\partial_{I} \pi^{I}\right)^{2}+\text { interactions }
$$

$$
\begin{array}{ll}
\text { longitudinal }=\text { sound } & \omega=c_{s} k \\
\text { transverse }=\text { vortices } & \omega=0
\end{array}
$$

Applications

- Sound-vortex interactions
- Hall viscosity in $2+1$ D
- Fluids with quantum anomalies
- Finite T relativistic superfluids
(Endlich, Nicolis 2013)
(Nicolis, Son 2011)
(Haehl, Rangamani 2013)
(Geracie, Son soon)
(Dubovsky, Hui, Nicolis 2013) (Haehl, Loganayagam,

Rangamani 2013)
(Nicolis 2011)
(Endlich, Nicolis, Rattazzi, Wang 2013) (Goldberger, Rothstein soon)
(Endlich, Nicolis, Porto, Wang 2012) (Grozdanov, Polonyi 2012)

- Alternative inflationary models
(Endlich, Nicolis, Wang 2012) (Bartolo, Matarrese, Peloso,

Ricciardone 2013)

Sound-vortex interactions

Subsonic regime: $v \ll$ cS

Nearly incompressible

sound waves difficult to excite

treat vortices
non-linearly

treat sound
perturbatively

integrate it out

Vortex-sound decomposition

$$
\begin{aligned}
& \phi^{I}(\vec{x}, t)=\phi_{0}^{I}(\vec{x}, t)+\underbrace{\delta \phi^{I}}_{\text {compression }}(\vec{x}, t) \\
& \operatorname{det} \frac{\partial \phi_{0}^{I}}{\partial x^{j}}=1
\end{aligned}
$$

Expand the action in powers of $\delta \phi$ and v_{0} / c_{s}

The action, expanded

$$
\begin{aligned}
S & =S_{x_{0}}+S_{\psi}+S_{\mathrm{int}} \\
S_{x_{0}} & =(\rho+p) \int d^{3} \phi d t\left[\frac{1}{2} v_{0}^{2}+\frac{1}{8} v_{0}^{4}\left(1 / c^{2}-c_{s}^{2} / c^{4}\right)+\ldots\right] \\
S_{\psi} & =(\rho+p) \int d^{3} x_{0} d t\left[\frac{1}{2}\left(\nabla_{0} \dot{\psi}\right)^{2}-\frac{1}{2} c_{s}^{2}\left(\nabla_{0}^{2} \psi\right)^{2}+\ldots\right] \\
S_{\mathrm{int}} & =(\rho+p) \int d^{3} x_{0} d t\left[-\frac{1}{2} c_{s}^{2} / c^{2}\left(\nabla_{0}^{2} \psi\right) v_{0}^{2}-\vec{\nabla}_{0} \psi \cdot\left(\vec{v}_{0} \cdot \vec{\nabla}_{0}\right) \vec{v}_{0}+\ldots\right]
\end{aligned}
$$

$$
v_{0} \equiv \partial_{t} x_{0}(\vec{\phi}, t)
$$

The sound of turbulence

(similar to Goldberger, Rothstein 2004)

Probing turbulence with sound waves

(Lund, Rojas 1989 + relativistic correction)

Sound mediated vortex－vortex potential

Leading order

Next to leading order

镸臬
 髫复
 長臬

Long range potential:

$$
\begin{gathered}
V \sim \frac{(\rho+p)}{c_{s}^{2}} \cdot \frac{q_{1} q_{2}}{r^{3}} \sim E_{\text {kin }}\left(v / c_{s}\right)^{2}(\ell / r)^{3} \\
q \equiv \int_{\text {vortex }} d^{3} x v^{2}
\end{gathered}
$$

Useful? Detectable? Known?

Long range potential:

$$
\begin{gathered}
V \sim \frac{(\rho+p)}{c_{s}^{2}} \cdot \frac{q_{1} q_{2}}{r^{3}} \sim E_{\text {kin }}\left(v / c_{s}\right)^{2}(\ell / r)^{3} \\
q \equiv \int_{\text {vortex }} d^{3} x v^{2}
\end{gathered}
$$

Useful? Detectable? Known?

 ? ? No(William Irvine, U. of Chicago)
potential

force $F=-\partial_{r} V$, right?

Not really.
For vortex lines
$\vec{v}(\vec{x})=-\frac{\Gamma}{4 \pi} \int \frac{\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} \times d \vec{x}^{\prime}$
1st order EOM!

Unlike $m \vec{a}=\vec{F}_{\text {ext }}$
No room for "forces"

Vortex lines and vortex rings are fascinating objects

Irvine Lab
Other groups
Superfluid turbulence
Pulsars
How to makes sense of their dynamics?

Effective field theory, again

$$
\mathcal{L}=-(\rho+p)\left[\Gamma \int d \lambda \epsilon^{i j k} X^{i} \partial_{t} X^{j} \partial_{\lambda} X^{k}+\Gamma^{2} \int d \lambda d \lambda^{\prime} \frac{\partial_{\lambda} \vec{X} \cdot \partial_{\lambda} \vec{X}^{\prime}}{\left|\vec{X}-\vec{X}^{\prime}\right|}\right]
$$

$$
\text { EOM: } \vec{v}(\vec{x})=-\frac{\Gamma}{4 \pi} \int \frac{\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} \times d \vec{x}^{\prime}
$$

Effective field theory, again

$$
\begin{aligned}
& \mathcal{L}=-(\rho+p)\left[\Gamma \int d \lambda \epsilon^{i j k} X^{i} \partial_{t} X^{j} \partial_{\lambda} X^{k}+\Gamma^{2} \int d \lambda d \lambda^{\prime} \frac{\partial_{\lambda} \vec{X} \cdot \partial_{\lambda^{\prime}} \vec{X}^{\prime}}{\left|\vec{X}-\vec{X}^{\prime}\right|}\right] \\
& \text { EOM: } \vec{v}(\vec{x})=-\frac{\Gamma}{4 \pi} \int \frac{\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} \times d \vec{x}^{\prime} \\
& \qquad \int d^{3} x\left(\partial_{i} A_{j}\right)^{2}-\Gamma \int d \lambda \partial_{\lambda} \vec{X} \cdot \vec{A}(\vec{X}, t)
\end{aligned}
$$

Effective field theory, again

$$
\mathcal{L}=-(\rho+p)\left[\Gamma \int d \lambda \epsilon^{i j k} X^{i} \partial_{t} X^{j} \partial_{\lambda} X^{k}+\Gamma^{2} \int d \lambda d \lambda^{\prime} \frac{\partial_{\lambda} \vec{X} \cdot \partial_{\lambda^{\prime}} \vec{X}^{\prime}}{\left|\vec{X}-\overrightarrow{X^{\prime}}\right|}\right]
$$

$$
\text { EOM: } \vec{v}(\vec{x})=-\frac{\Gamma}{4 \pi} \int \frac{\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} \times d \vec{x}^{\prime}
$$

$$
\int d^{3} x\left(\partial_{i} A_{j}\right)^{2}-\Gamma \int d \lambda \partial_{\lambda} \vec{X} \cdot \vec{A}(\vec{X}, t)
$$

Magnetostatics	Incompressible Hydro
current \vec{J}	vorticity $\vec{\omega}$
magnetic field \vec{B}	velocity field \vec{v}
vector potential \vec{A}	hydrophoton \vec{A}

Point-particle limit

$$
\begin{aligned}
& \mathcal{L}=\sum_{n}\left[\vec{\mu}_{n} \cdot \dot{\vec{x}}_{n}+\vec{\mu}_{n} \cdot(\vec{\nabla} \times \vec{A})\right]-\int d^{3} x\left(\partial_{i} A_{j}\right)^{2} \\
& \rightarrow \sum_{n}\left(\vec{\mu}_{n} \cdot \dot{\vec{x}}_{n}-\mu_{n}^{3 / 2} \log \mu_{n}\right)-\sum_{n \neq m} \frac{\vec{\mu}_{n} \cdot \vec{\mu}_{m}-3\left(\vec{\mu}_{m} \cdot \hat{r}\right)\left(\vec{\mu}_{n} \cdot \hat{r}\right)}{r^{3}}
\end{aligned}
$$

Peculiar conservation laws:

$$
\begin{aligned}
\vec{P} & =\sum_{n} \vec{\mu}_{n} \\
\vec{L} & =\sum_{n} \vec{x}_{n} \times \vec{\mu}_{n} \\
E & =\sum_{n} \mu_{n}^{3 / 2} \log \mu_{n}+\sum_{n \neq m} \frac{\vec{\mu}_{n} \cdot \vec{\mu}_{m}-3\left(\vec{\mu}_{m} \cdot \hat{r}\right)\left(\vec{\mu}_{n} \cdot \hat{r}\right)}{r^{3}}
\end{aligned}
$$

Interactions with sound:

$$
\mathcal{L}=\int d^{3} x(\vec{\nabla} \times \vec{A})^{i}((\vec{\nabla} \times \vec{A}) \cdot \vec{\nabla}) \psi^{i}+\ldots
$$

Ex: sound emission in vortex ring collisions

$$
P=\frac{21}{2 \pi} \frac{w_{0}\left(R_{1}^{2} \Gamma_{1}\right)^{2}\left(R_{2}^{2} \Gamma_{2}\right)^{2} v^{4}}{c_{s}^{5} r^{10}(t)} \sim E_{\mathrm{kin}} \omega \cdot(R / r)^{10} \cdot\left(v / c_{s}\right)^{5}
$$

Work in progress: Rotons in Helium 4

usually thought of as microscopic vortex rings. can we check?

Works, but fairly redundant SSB pattern...

Poincaré $\left\{\begin{array}{lr}P^{\mu} & \text { translations } \\ J^{i} & \text { rotations } \\ K^{i} & \text { boosts }\end{array}\right.$ + internal ISO(3) $\left\{\begin{array}{l}Q^{I} \\ Q^{I}\end{array}\right.$

$$
\begin{aligned}
& \text { 【 } \\
& \left\{\begin{array}{l}
P^{t} \\
\bar{P}^{i}=P^{i}+Q^{i} \\
\bar{J}^{i}=J^{i}+\tilde{Q}^{i}
\end{array}\right.
\end{aligned}
$$

simpler description?

Just break boosts:

Poincaré $\left\{\begin{array}{lr}P^{\mu} & \text { translations } \\ J^{i} & \text { rotations } \\ K^{i} & \text { boosts }\end{array}\right.$

$$
\left\{\begin{array}{l}
P^{\mu} \\
J^{i}
\end{array}\right.
$$

e.g.: $\left\langle V^{\mu}(x)\right\rangle=\delta_{0}^{\mu}$

Just break boosts:

Poincaré $\left\{\begin{array}{lr}P^{\mu} & \text { translations } \\ J^{i} & \text { rotations } \\ K^{i} & \text { boosts }\end{array}\right.$

$$
\left\{\begin{array}{l}
P^{\mu} \\
J^{i}
\end{array}\right.
$$

"framid"

$$
\text { e.g.: }\left\langle V^{\mu}(x)\right\rangle=\delta_{0}^{\mu}
$$

3 Goldstones: "boostons"

simple analysis: $\quad V^{\mu}(x)=\left(e^{i \vec{\eta}(x) \cdot \vec{K}}\right)^{\mu}{ }_{\alpha} \delta_{0}^{\alpha}$

$$
\mathcal{L}_{\text {eff }} \supset\left(\partial_{\mu} V^{\mu}\right)^{2},\left(\partial_{\mu} V_{\nu}\right)^{2},\left(V^{\mu} \partial_{\mu} V_{\nu}\right)^{2}+\ldots
$$

coset-ology: $\quad \Omega(x)=e^{i P_{\mu} x^{\mu}} e^{i \vec{\eta}(x) \cdot \vec{K}}$

$$
\begin{aligned}
& \Omega^{-1} \partial_{\mu} \Omega=\ldots \quad \rightarrow \quad \mathcal{D}_{t} \eta_{i}, \mathcal{D}_{i} \eta_{j} \sim \partial \eta+\mathcal{O}\left(\partial \eta^{n}\right) \\
& \mathcal{L}_{\text {eff }} \supset\left(\mathcal{D}_{t} \eta_{i}\right)^{2},\left(\mathcal{D}_{i} \eta_{i}\right)^{2},\left(\mathcal{D}_{i} \eta_{j}\right)^{2}+\ldots
\end{aligned}
$$

same result.

framid = solid (fluid) ?!?

match an observable: $\mathcal{M}_{2 \rightarrow 2}$
Different naive scaling:
$\mathcal{L}_{\text {solid }}=F\left(\partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}\right) \sim(\partial \pi)^{2}+(\partial \pi)^{3}+(\partial \pi)^{4}+\ldots$
$\mathcal{L}_{\text {framid }} \sim(\partial \eta)^{2}+\partial^{2} \eta^{3}+\partial^{2} \eta^{4}+\ldots$

Barring cancellations:
$\mathcal{M}_{\text {solid }} \propto E^{4} \quad$ vs. $\quad \mathcal{M}_{\text {framid }} \propto E^{2}$

Cancellations?

$\mathrm{NO}: \quad \mathcal{M}_{\text {framid }}=2 \frac{E^{2}}{f^{2}}\left[-6+4 c_{T}^{2}-2 c_{L}^{2}-\frac{\left(1-c_{L}^{2}\right)^{2}}{c_{T}^{2}}\right]$

$\mathcal{L}_{\text {framid }}=\frac{1}{2} f^{2}\left[\left(\partial_{t} \eta_{i}\right)^{2}-c_{T}^{2}\left(\partial_{i} \eta_{j}\right)^{2}-\left(c_{L}^{2}-c_{T}^{2}\right)\left(\partial_{i} \eta_{i}\right)^{2}+\ldots\right]$.

So, a framid is NOT a solid in disguise Yet, much simpler SSB pattern:

$$
\left.\begin{array}{cc}
\left\{\begin{array}{l}
P^{\mu} \\
J^{i} \\
K^{i}
\end{array}+\left\{\begin{array}{l}
Q^{I} \\
\tilde{Q}^{I}
\end{array}\right.\right. & \left\{\begin{array}{l}
P^{\mu} \\
J^{i} \\
K^{i}
\end{array}\right. \\
\boldsymbol{\eta}
\end{array}\right\} \begin{aligned}
& \square \\
& \left\{\begin{array}{l}
P^{t} \\
\bar{P}^{i}=P^{i}+Q^{i} \\
\bar{J}^{i}=J^{i}+\tilde{Q}^{i}
\end{array}\right.
\end{aligned}
$$

Why don't we see framids in the lab?

1. Condensed matter is made up of "stuff".

 We need this picture:

$$
\phi^{I}(\vec{x}, t)
$$

1. Condensed matter is made up of "stuff".

 We need this picture:

$$
\begin{aligned}
& \phi^{I}(\vec{x}, t) \\
& \left\langle\phi^{I}\right\rangle_{\mathrm{eq}}=x^{I}
\end{aligned}
$$

Superfluids violate this intuition: $\langle\Phi(x)\rangle=e^{i \mu t}$
... where is the stuff?
2. Maybe it is technically natural to have $\operatorname{cs} \ll 1$ for solids and fluids, but not framids.

In fact, the radiative stability of cs<<1 is a consequence of ...

Superfluids violate this intuition: $\langle\Phi(x)\rangle=e^{i \mu t}$
... where is the stuff?
2. Maybe it is technically natural to have $\operatorname{cs} \ll 1$ for solids and fluids, but not framids.

In fact, the radiative stability of cs<<1 is a consequence of ... nothing

Generic cs<<l action

$S=\int d^{3} x d t A\left(\dot{\pi}^{2}-c_{s}^{2}(\nabla \pi)^{2}\right)+$ interactions
If interactions \supset "large" $(\nabla \pi)^{4}$

NO: $\quad t \rightarrow t^{\prime} / c_{s}$

$$
S=\int d^{3} x d t^{\prime}\left(\pi^{\prime 2}-(\nabla \pi)^{2}\right)+\text { interactions }
$$

Cut off loops at strong coupling scale at most O (1) renormalization
3. No standard thermodynamical deformations:

$$
V^{\mu}(x)=\left(e^{i \vec{\eta}(x) \cdot \vec{K}}\right)^{\mu}{ }_{\alpha} \delta_{0}^{\alpha}
$$

By def., the background can only be boosted For a solid or fluid: $\left\langle\phi^{I}\right\rangle=\alpha^{I}{ }_{J} x^{J}$ is a solution for all $\alpha^{I}{ }_{J}$

The medium can be deformed homogeneously
4. Intrinsically relativistic stress-energy tensor

$$
\mathcal{L}_{\text {eff }} \supset\left(\partial_{\mu} V^{\mu}\right)^{2},\left(\partial_{\mu} V_{\nu}\right)^{2},\left(V^{\mu} \partial_{\mu} V_{\nu}\right)^{2}+\ldots
$$

$$
T_{\mu \nu} \sim \partial^{2} V^{n}+\ldots \quad \rightarrow \quad 0 \text { for } V=\text { const }
$$

For a solid or fluid: $T_{\mu \nu}=F(\partial \phi) \neq 0$

$$
\text { for }(\partial \phi)=\text { const }
$$

More in general: $T_{\mu \nu}^{\text {framid }} \rightarrow \Lambda \eta_{\mu \nu}$

Gapped Goldstones

(Nicolis, Piazza 2012)
(Nicolis, Penco, Piazza, Rosen 2013)
(Brauner, Murayama, Watanabe 2013)
(Kapustin 2012)

Unbroken Poincaré, and broken internal symmetries

standard Goldstone theorem (\#, m=0)

Broken Poincaré, broken internal symmetries

theorem less pow more possibilities

New counting rules

For internal symmetries
$n_{1}=$ \#Goldstones $\mathrm{w} / \omega \sim k$
$n_{2}=$ \#Goldstones $\mathrm{w} / \omega \sim k^{2}$
$n_{1}+2 \cdot n_{2}=\#$ broken generators
(Nielsen, Chadha 1976)

For spacetime symmetries
\#Goldstones \leq \#broken generators
(Ivanov, Ogievetsky 1975)
(e.g. point particle) (Low, Manohar 2002)

Exact \# depends on the system

Gaps at finite charge density

Finite density for broken Q (superfluid):

$$
\bar{H}|\mu\rangle \equiv(H-\mu Q)|\mu\rangle=0
$$

H broken excitations: eigenstates of \bar{H}

If other broken Q_{a} 's don't commute w/ Q pseudo-Goldstones

No explicit breaking \longrightarrow gap can be computed exactly

Choose basis such that

$$
\begin{aligned}
& {\left[Q, Q_{\alpha}\right]=0} \\
& {\left[Q, Q_{a}^{ \pm}\right]= \pm i q_{a} Q_{a}^{\mp}}
\end{aligned}
$$

Broken Q_{α} 's \longrightarrow gapless Goldstones $\left(n_{1}+2 \cdot n_{2}\right)$
Broken $Q_{a}^{ \pm} \mathrm{s} \longrightarrow$ gapped Goldstones

$$
E_{a}=q_{a} \mu \quad \text { for } k \rightarrow 0
$$

exact non-perturbative result

More gapped Goldstones

From a coset construction of the Goldstone EFT:
gapless: $\quad n_{1}=\#$ Goldstones $w / \omega \sim k$ $n_{2}=\#$ Goldstones w/ $\omega \sim k^{2}$
gapped: $\quad n_{3}=\#$ Goldstones $\mathrm{w} / \omega_{a}=q_{a} \mu$
$n_{4}=\#$ Goldstones $\mathrm{w} / \omega \sim \mu$
Type 4: partners of type 2 and 3

$$
n_{2} \leq n_{4} \leq n_{2}+n_{3}
$$

(Nicolis, Penco, Piazza, Rosen 2013) (cf. Kapustin 2012)

Conclusions

For certain questions in CM , a lot of mileage from taking into account spacetime symmetries.

