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Introduction

I will make some comments on finite density strongly interacting
states.

Most recent paper: arXiv:1312.0463 (with R. Davison and M.
Goykhman)

Related work by Karch, Starinets, Son; Faulkner and Iqbal; Nickel
and Son; Hartnoll and Shaghoulian, many others.
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Introduction

We generally expect physics at low energies to be described by an
effective theory. At finite density Fermi liquid theory is an example
of such an effective theory.

It would be great to have such a description for theories at finite
density that are described by holography. At the moment we don’t
have a complete picture although we do know quite a bit about
the responses of finite density system.

Especially interesting for strongly interacting fermions. One way is
to place back-reacting fermions in the bulk (1/N corections). But
we really need to understand the starting point: N =∞ limit.
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Fermi liquid

Fermi statistics of quasiparticle excitations. Change in energy due
to the change in distribution function δn

1

V
δE =

∫
ε0(k)δn(k)dτ +

∫
f (k, k′)δn(k)δn(k′)dτdτ ′

ε0(k) defines dispersion relation and Fermi velocity

υF = ∂ε0(k)
∂k

∣∣
k=kF

; effective mass m∗ = kF
υF

; and interaction

f (k, k′) = kFm
∗

π2~3 F (ϑ). Also, dτ = d3p/(2π~)3.

Convenient to expand: F (ϑ) =
∑

(2l + 1)FlPl(ϑ)
Fl –Landau parameters
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Note that it is natural to expand to second order in δn:

1

V
δ(E−µN) =

∫
(ε0(k)−µ)δn(k)dτ+

∫
f (k, k′)δn(k)δn(k′)dτdτ ′

If α is a small parameter characterizing deviation from degenerate
state, (ε− µ), δn ∼ α and both terms are O(α2).
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Fermi liquid

m∗ = µ

(
1 +

F1
3

)
, u21 =

υ2F
3

(1 + F0)

(
1 +

F1
3

)

The most important thermodynamical fact about near degenerate
Fermi liquid is heat capacity which vanishes linearly with
temperature. This is because quasiparticles are excited in the
narrow region of momenta ∼ T with an average energy ∼ T .

Cυ = T

(
∂S

∂T

)
V

=
m∗kF

3
T
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Zero sound

An interesting dynamical property is the existence of a sound
(gapless) excitation at small temperature. The speed of zero sound
u0 is determined by

(s − cos θ)ν(θ, ϕ) = cos θ

∫
F (ϑ′)ν(θ′, ϕ′)

dΩ′

4π

where s = u0/υF and ν(θ, ϕ) parametrizes deformations of
spherical Fermi surface; θ denotes polar angle with respect to the
direction of sound propagation and ϑ′ is the angle between (θ, ϕ)
and (θ′, ϕ′).
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Zero sound

This equation comes from n = n0(~p) + δn(~p,~r , t)

∂δn

∂t
+
∂δn

∂~r

∂ε0
∂~p
− ∂n0

∂~p

∂δε

∂~r
= 0

Now use ∂n0/∂~p = −n̂δ(p − pF ) = −~vδ(ε− εF ) and
δn = δ(ε− εF )ν(n̂) exp(i~k~r − iωt) to obtain

(ω − ~v~k)ν(n̂) = ~v~k

∫
f (~p, ~p′)δ(ε− εF )ν(n̂′)dτ ′

Zero sound lives in the ωτ ∼ wµ/T 2 � 1 regime, as opposed to
the normal sound which corresponds to ωτ � 1 and necessarily
has u1 = 1/

√
d − 1.
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Spectral function

Consider summing “bubble” diagrams in the current-current
correlator

〈J0(ω, q)J0(−ω,−q)〉 =
χ0(q, ω)

1− F0χ0(q, ω)
,

where χ0(q, ω) = χr
0(q, ω) + i χ

(i)
0 (q, ω) The spectral function

Im〈J0(ω, q)J0(−ω,−q)〉 =
χ
(i)
0 (q, ω)

(1− F0χ
(r)
0 (q, ω))2 + (χ

(i)
0 (q, ω))2

.
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Zero sound and particle-hole continuum

Delta function peak, representing zero sound, appears as the
solution of

1− F0χ
(r)
0 (q, ω) = 0

Upper edge of the particle-hole continuum is at ω = υFq.
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Zero sound and particle-hole continuum

The location of zero sound pole is determined by

χ
(r)
0 (q, ω) = 1/F0. The equation is equivalent to the integral

equation for s = u0/υF with F = F0

s

2
log

s + 1

s − 1
− 1 =

1

F0
,

In the limit of small interactions, F0 � 1, s ' 1, u0/u1 '
√
d − 1.

In the opposite limit F0 � 1, s '
√
F0/3, u0/u1→1.

The upper edge of the particle-hole continuum is defined by
ω ' υFk and is separated from the zero sound when υF � u0.
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Summary

It the regime where Fermi liquid is a good description ω,T � µ
the following things happen:

I Sound mode interpolates between regular sound ωµ/T 2 � 1
and zero sound ωµ/T 2 � 1

I When F0 or F1 are large, υF/u0 � 1 and spectral density is
entirely given by the sound pole.
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AdS/CFT for probe branes

d = 3 + 1 dimensional: N D3 branes stretched along 0123
directions and a Dp brane stretched along 0123 4, . . . , p. Matter
interacting with N = 4 SYM.

d = 2 + 1 dimensional: N D3 branes stretched along 0123
directions and a Dp brane stretched along 012 4, . . . , p + 1. This
describe defect matter + N = 4 SYM.

Examples: (d,p)=(3,5) susy defect; (3,7) - defect fermions; (4,7) -
susy hyper

Andrei Parnachev Aspects of holographic finite density matter



Fermi liquid: review
Holographic finite density matter

Fermi liquid: fine tuning
Comments

Probe branes
Einstein-Maxwell-(Dilaton)

AdS/CFT for probe branes

At strong ’t Hooft coupling the dynamics of the fundamental
matter living on the intersection is described by the DBI action in
AdS5 × S5 background.

Finite temperature = asymptotically AdS black hole.

Finite density = Gauge field flux on the probe brane world volume.
At sufficiently large chemical potential the symmetric state
represents the vacuum of the theory.
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Holographic zero sound

What about zero sound? (massless excitation in the regime,
µ� ω, q � T 2/µ) Consider gauge field fluctuations on the D7
branes at finite µ.

Technically one needs to expand the DBI action for the probe
brane to quadratic order in fluctuations. Need to solve the second
order differential equation for fluctuations with incoming boundary
conditions at the horizon. Looking for quasinormal mode with
ω, q → 0.

Andrei Parnachev Aspects of holographic finite density matter



Fermi liquid: review
Holographic finite density matter

Fermi liquid: fine tuning
Comments

Probe branes
Einstein-Maxwell-(Dilaton)

D3/Dp; d=3; massless

EOM for E = ωA2 + qA0, ~q = qx̂2.

E ′′+
2

z

(
1

1+z−4
+2(1−ω

2 − q2(1+z4)−2

ω2−q2(1+z4)−1
)

)
E ′+(ω2− q2

1+z4
)E=0

can be solved separately in the ωz � 1 regime and z � 1 regime
(e iωz/z). The solutions than can be matched and the quasinormal
mode can be found.

ω = ± q√
2
− iq2

√
λ

4K (1/2)µ

[true for ω � T , otherwise q2/µ→(q2 + T 2)/µ]

Andrei Parnachev Aspects of holographic finite density matter



Fermi liquid: review
Holographic finite density matter

Fermi liquid: fine tuning
Comments

Probe branes
Einstein-Maxwell-(Dilaton)

D3/D7; massive

This exercise can be repeated in the case of massless fermions.
Complication: gauge field fluctuations couple to the fluctuations of
the probe brane profile. One needs to solve the system of 2
coupled ODEs, but this can be done and the zero sound mode is
uncovered with the speed of sound

s =
µ2 −m2

3µ2 −m2

The speed of zero sound is equal to the speed of normal sound.
This is true in ALL holographic finite matter examples studied so
far. Also, no structure in spectral density other than zero sound.
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Gravity+gauge field+...

We considered a couple of cases (RN-AdS and S ∼ T BH) and
studied low energy excitations of finite density holographic matter
in the T 2/µ2 � ω/µ� 1 regime.

Naively this is where the zero sound lives in the Landau Fermi
liquid setting (and it violates hydro). However, we observed that
the sound mode is always described by hydro (as long as
ω,T � µ).

It was hard to observe this in the probe brane case for technical
reasons.
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S ∼ T background

Consider the bulk Lagrangian

S2'
∫

d5x
√
g

(
R−1

2
(∂φ)2− 8

L2
eφ/
√
6− 4

L2
e−2φ/

√
6+2e2φ/

√
6FabF

ab

)
with the black hole solution which has

T =
rH
πL2

, µ =

√
2Q

L2
, s =

rH
4GL3

(r2H + Q2)

ρ̂ =

√
2Qs

2πrH
, ε = 3P =

3
(
r2H + Q2

)2
16πGL5
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S ∼ T background

Low temperature heat capacity is

cV =
πL3

8G
µ2T =

1

3x3
µ2T , x � 1

This should be compared with cV = kFm
∗/3T . This, and

Luttinger theorem

ρ =
1

6π2
µ3

x3
=

k3F
6π2

fix
kF =

µ

x
, m∗ =

µ

x2
, υF = x
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S ∼ T background

Comparing the expression for m∗ with FL prediction we get

F1
3

= x−2, x � 1

On the other hand, the expression for the 1st sound gives F0 = 0.
Now go back to the integral equation for s = u0/υF . Assume
azimuthal independence and write

ν(θ, ϕ) =
∑
l

Pl(cos θ)νl(2l + 1)

which gives

νl +
∑
l

Ωll ′(s)Fl ′νl ′ = 0
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S ∼ T background

This implies det[δll ′ + Ωll ′(s)Fl ′ ] = 0
Assuming Fn>1 = O(1) the determinant is

1− F0s̃
2

3
− F1s̃

2

5
− F0F1s̃

2

9
− 4

225
F1F2s̃

2 +O(s̃2) = 0

where s̃ = 1/s = υF/u0 ∼ x .

Imposing u0 = u1 leads to

4

25

F1(5 + F2)

(1 + F0)(3 + F1)
= O(s̃2)

which means F2 = −5 +O(s̃2). Critical point for Pomeranchuk
instability.
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Observables

What does this mean? Let’s go over observables:

kF ' µ/x , which means we can’t see Friedel oscillations from a
tree-level calculation.

υF ' x , which means we don’t see particle-hole continuum. Only
zero sound pole appears in the spectral function.

log violation in EE is k2FL
2 log L ' L2

x2
log L, can’t be seen at tree

level (which gives 1/x3)
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Observables

Zero sound with azimuthal dependence exists when the following
equation is satisfied:

1− 3F1(5 + F2)S2
1

25(1 + F0)(3 + F1)
= O(s̃2)

where S1 = u
(1)
0 /u

(1)
0 . Precisely when F2 = −5 it disappears.
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Another useful quantity is quasiparticle lifetime

τ =
8π

m∗3〈W 〉T 2

where

〈W 〉 =
2π5

m∗2k2F

∫
dΩ

4π

1

cos(θ/2)
|
∑
l

Fl
1 + Fl/(2l + 1)

Pl(cos θ)|2

For generic Fl , τ ∼ k2F/m
∗T 2 and η/s ∼ µ3/T 3, while observed

value is η/s = 1/4π. But for F2 = −5, τ is parametrically
suppressed.
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Another issue is the applicability of hydro: determined by ωτ � 1
or ωµ� T 2. But in our case ωµx � T 2 which is always true in
the limit x→0. So hydro is supposed to be applicable all the way
to T = 0, and at that point the sound merges with the zero sound;
that’s why the speed has conformal value.

This is precisely what we observe:

ω = ±
√

dP

dε
k − i

2η

3 (ε+ P)
k2 + . . .

[with η = 4πs of course]
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Higher derivative gravity

Can we engineer a gravity dual with η/s ∼ µ3/T 3. The answer is
yes. Two-derivative gravity

S2'
∫

d5x
√
g

(
R−1

2
(∂φ)2− 8

L2
eφ/
√
6− 4

L2
e−2φ/

√
6+2e2φ/

√
6FabF

ab

)
needs to be supplemented by a dilation-Gauss-Bonnet term

S4 '
∫

d5x
√
g

(
3e

7
2
√
6
φ

+
3

2
e
− 7√

6
φ
)

(R2−4RabR
ab +RabcdR

abcd)
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Summary, future directions

I Fermi liquid with tuned parameters exhibits the same
collective behavior as holographic matter

I Is there a gravitational model where the speed of zero sound
is not equal to conformal value? Then one could see
interpolation between hydro and non-hydro regimes.

I Made first steps in this direction by considering certain
higher-derivative gravity. Need to analyze QNM dispersion
relation.

I Zero sound on the probe brane shows interpolation between
the collisionless thermal T 2/µ2 � ω/µ� T/µ and
collisionless quantum T/µ� ω/µ regimes. We don’t see this
in gravity+E&M.
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THE END

Thank you!
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