Properties of monopole operators in 3d gauge theories

Silviu S. Pufu Princeton University

Based on:

- arXiv:1303.6125
- arXiv:1309.1160 (with Ethan Dyer and Mark Mezei)
- work in progress with Ethan Dyer, Mark Mezei, and Subir Sachdev

KITP, January 31, 2014

Silviu Pufu (Princeton University)

Abelian gauge theories in 3d

• Consider (compact) U(1) gauge theory in 3 dimensions:

$$\mathcal{L} = rac{1}{4e^2}F_{\mu
u}^2 + ext{matter w/ integer }U(1) ext{ charges}.$$

- IR dynamics:
 - No matter \implies confinement [Polyakov] .
 - Lots of matter ⇒ interacting CFT [Appelquist, ...]. Maxwell term is irrelevant.
 - Can be studied in 1/N_f expansion.
 - Few matter fields: the theory may confine.
 - Analog of χSB if we have few fermions [Pisarski; Vafa, Witten; ...]
- When should we expect an interacting CFT? What is the operator spectrum of this CFT?

Monopole operators

- A U(1) gauge theory in 3d has a global $U(1)_{top}$ symmetry with conserved current $j^{top}_{\mu} = \frac{1}{4\pi} \epsilon_{\mu\nu\rho} F^{\nu\rho}$. Monopole operators are local operators with non-zero $U(1)_{top}$ charge.
- Monopole operators are "disorder operators" that insert a monopole singularity in the gauge field
 - A monopole of charge $q \in \mathbb{Z}/2$ centered at the origin:

$$\int_{S^2} F = 4\pi q \, .$$

• Monopole operator $\mathcal{M}_q(0)$ satisfies OPE

$${\cal M}_q(0)\int_{S^2}{\sf F}\sim {\cal M}_q(0)4\pi q+\cdots\,.$$

• Lots of operators with given q.

Monopole operators

- A U(1) gauge theory in 3d has a global $U(1)_{top}$ symmetry with conserved current $j^{top}_{\mu} = \frac{1}{4\pi} \epsilon_{\mu\nu\rho} F^{\nu\rho}$. Monopole operators are local operators with non-zero $U(1)_{top}$ charge.
- Monopole operators are "disorder operators" that insert a monopole singularity in the gauge field
 - A monopole of charge $q \in \mathbb{Z}/2$ centered at the origin:

$$\int_{S^2} F = 4\pi q$$
 .

Monopole operator M_q(0) satisfies OPE

$${\cal M}_q(0)\int_{S^2}{m F}\sim {\cal M}_q(0)4\pi q+\cdots.$$

• Lots of operators with given q.

Monopole operators in CFT

- In CFT: use state-operator correspondence and study the theory on S² × ℝ.
- Let $\mathcal{M}_q(0)$ correspond to the ground state in the sector of monopole flux $\int_{S^2} F = 4\pi q$ [Borokhov, Kapustin, Wu '02].

Roles played by monopole operators

- Mechanism for confinement: monopole proliferation in theories where U(1)_{top} is explicitly broken microscopically [Polyakov].
 - Key insight: failure of the Bianchi identity implies Wilson loop area law.
 - If monopole operators are irrelevant ⇒ confinement (e.g. [Hermele, Senthil, Fisher, Lee, Nagaosa, Wen]).
- Order parameters for continuous phase transitions between two ordered phases (i.e. which evade the Landau-Ginsburg-Wilson paradigm) [Sachdev, Read '89].
 - A discrete \mathbb{Z}_k subgroup of $U(1)_{top} \times SO(2)_{rot}$ is a symmetry of the lattice Hamiltonian.
 - Relevant monopole ops that transform under \mathbb{Z}_k : order parameters.
 - Relevant monopole ops invariant under \mathbb{Z}_k : can cause confinement.

Roles played by monopole operators

- Mechanism for confinement: monopole proliferation in theories where U(1)_{top} is explicitly broken microscopically [Polyakov].
 - Key insight: failure of the Bianchi identity implies Wilson loop area law.
 - If monopole operators are irrelevant ⇒ confinement (e.g. [Hermele, Senthil, Fisher, Lee, Nagaosa, Wen]).
- Order parameters for continuous phase transitions between two ordered phases (i.e. which evade the Landau-Ginsburg-Wilson paradigm) [Sachdev, Read '89].
 - A discrete \mathbb{Z}_k subgroup of $U(1)_{top} \times SO(2)_{rot}$ is a symmetry of the lattice Hamiltonian.
 - Relevant monopole ops that transform under \mathbb{Z}_k : order parameters.
 - Relevant monopole ops invariant under \mathbb{Z}_k : can cause confinement.

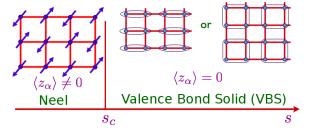
Monopole operators as order parameters

Square lattice antiferromagnet with SU(N) spins at each site.

J-Q model:

$$H = J \sum_{\langle ij
angle} {\cal S}^{lpha}{}_{eta}(i) {\cal S}^{eta}{}_{lpha}(j)$$

 $+ Q \times$ (four spins)



$$S = \int d^2 r \, d\tau \left[|(\partial_{\mu} - iA_{\mu})z_{\alpha}|^2 + s|z_{\alpha}|^2 + u(|z_{\alpha}|^2)^2 + \frac{1}{4e^2}F_{\mu\nu}^2 \right]$$

- At the critical point *e* = ∞ and *s* is tuned to zero ⇒ same universality class as the CP^{N-1} model [Motrunich, Vishwanath '04; Senthil, Balents, Fisher, Sachdev, Vishwanath '04].
- Néel order: $\langle z_{\alpha} \rangle \neq 0$; VBS order: $\langle \mathcal{M}_{1/2} \rangle \neq 0$. [Sachdev, Read]

Spin liquids

 In other models, obtain compact QED with some number of fermions ⇒ "spin liquids" [Wen, ...].

$$\mathcal{L} = rac{1}{4e^2}F_{\mu
u}^2 + \sum_{a=1}^{N_f}\psi^{\dagger}_{lpha}(iD\!\!\!/ + A\!\!\!/)\psi_{lpha} \,.$$

- Monopole operators that transform under lattice symmetries VBS order parameters.
- Monopoles invariant under lattice symmetries can cause confinement. Non-trivial CFT exists only if they are irrelevant [Heremele, Senthil, Fisher, Lee, Nagaosa, Wen '04].

Properties of monopole operators in CFT

- Task: determine quantum numbers under conformal group (scaling dimension, Lorentz spin) and under the flavor symmetry.
- Method: 1/N_f expansion. Good because gauge field fluctuations are suppressed.
- In fermionic theory, for instance:

$$S = \int d^3x \sqrt{g} \sum_{\alpha=1}^{N_f} \psi^{\dagger}_{\alpha} (i \not D + \not A) \psi_{\alpha} \,.$$

• Integrate out ψ :

$$Z = \int DA \exp\left[N_f \operatorname{tr} \log(i \not D + \not A)\right]$$

• Saddle point approximation A = A + a for some saddle A.

• At large N_f , gauge field fluctuations are suppressed by $1/\sqrt{N_f}$.

Properties of monopole operators in CFT

- Task: determine quantum numbers under conformal group (scaling dimension, Lorentz spin) and under the flavor symmetry.
- Method: 1/N_f expansion. Good because gauge field fluctuations are suppressed.
- In fermionic theory, for instance:

$$S = \int d^3x \sqrt{g} \sum_{\alpha=1}^{N_f} \psi^{\dagger}_{\alpha} (iD + A) \psi_{\alpha}.$$

• Integrate out ψ :

$$Z = \int DA \exp\left[N_f \operatorname{tr} \log(i \not D + \not A)\right]$$

- Saddle point approximation A = A + a for some saddle A.
- At large N_f , gauge field fluctuations are suppressed by $1/\sqrt{N_f}$.

A brief history of the $1/N_f$ expansion

The leading order epoch (treat gauge field as background):

- [Murthy, Sachdev '90] : bosonic theory, scaling dim's to order $O(N_f)$.
- [Borokhov, Kapustin, Wu '02] : fermionic theory, scaling dim's to order $O(N_f)$, flavor charges of $\mathcal{M}_{1/2}$.
- [Metlitski, Hermele, Senthil, Fisher '08] : bosonic theory, scaling dim's to order $O(N_f)$.

Assumption: rotationally-invariant saddle.

The subleading order epoch (fluctuations of the gauge field):

- [SSP '13] : fermionic theory, scaling dim of $\mathcal{M}_{1/2}$ to order $O(N_f^0)$.
- [Dyer, Mezei, SSP '13] : fermionic theory, scaling dim's to order $O(N_f^0)$ for all \mathcal{M}_q ; flavor symmetry charges; generalization to QCD.
- [Dyer, Mezei, SSP, Sachdev, in progress] : bosonic theory, scaling dim's to order O(N⁰_f).

A brief history of the $1/N_f$ expansion

The leading order epoch (treat gauge field as background):

- [Murthy, Sachdev '90] : bosonic theory, scaling dim's to order $O(N_f)$.
- [Borokhov, Kapustin, Wu '02] : fermionic theory, scaling dim's to order O(N_f), flavor charges of M_{1/2}.
- [Metlitski, Hermele, Senthil, Fisher '08] : bosonic theory, scaling dim's to order $O(N_f)$.

Assumption: rotationally-invariant saddle.

The subleading order epoch (fluctuations of the gauge field):

- [SSP '13] : fermionic theory, scaling dim of $\mathcal{M}_{1/2}$ to order $O(N_f^0)$.
- [Dyer, Mezei, SSP '13] : fermionic theory, scaling dim's to order $O(N_f^0)$ for all \mathcal{M}_q ; flavor symmetry charges; generalization to QCD.
- [Dyer, Mezei, SSP, Sachdev, in progress] : bosonic theory, scaling dim's to order O(N⁰_f).

Scaling dimensions in **fermionic** theory

 The IR scaling dimension of *M_q* are [Borokhov, Kapustin, Wu '02; SSP '13; Dyer, Mezei, SSP '13]:

q	scaling dimension $[\mathcal{M}_q]$
0	0
1/2	$0.265 N_{f} - 0.0383 + O(1/N_{f})$
1	$0.673N_f - 0.194 + O(1/N_f)$
3/2	$1.186N_{f} - 0.422 + O(1/N_{f})$
2	$1.786N_{f} - 0.706 + O(1/N_{f})$
5/2	$2.462N_f - 1.04 + O(1/N_f)$

• $\mathcal{M}_{1/2}$ is irrelevant, provided:

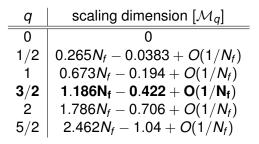
$$[\mathcal{M}_{1/2}] > 3 \implies N_f \ge 12$$
 .

• So we expect the theory does not confine whenever $N_f \ge 12$.

• *F*-theorem \implies confinement impossible for $N_f \ge 12$. Also [Grover].

Scaling dimensions in **fermionic** theory

 The IR scaling dimension of *M_q* are [Borokhov, Kapustin, Wu '02; SSP '13; Dyer, Mezei, SSP '13] :



• $\mathcal{M}_{3/2}$ is irrelevant, provided:

$$[\mathcal{M}_{3/2}] > 3 \implies N_f \geq 4$$
 .

 So we expect the theory does not confine whenever N_f ≥ 4 if *M*_{1/2} and *M*₁ transform non-trivially under lattice symmetries.

Flavor quantum numbers in fermionic theory

- N_f fermions in U(1) gauge theory have $SU(N_f)$ flavor symmetry.
- How do monopole operators transform in representations of SU(N_f)?
- Step 1: Ground state of N_f fermions on S² × ℝ in the presence of uniform magnetic flux F = q sin θdθ ∧ dφ.
- Step 2: Take into account the effect of having a dynamical gauge field.

Step 1: Fermions on S^2 in uniform magnetic flux

The Dirac equation

$$(iD \!\!\!/ + A\!\!\!\!/)\psi^{lpha} = 0$$

has solutions with energy $\pm \sqrt{(j+1/2)^2 - q^2}$ transforming in the spin-*j* irrep of $SU(2)_{rot}$.

- 2|q|N_f zero-energy modes with j = |q| − 1/2 (for each flavor there are 2j + 1 zero-energy modes).
 - Creation and annihilation operators $c_{im}^{\alpha\dagger}$ and c_{im}^{α} , respectively.
- Ground state: non-zero energy modes are not excited.

Ground state Hilbert space G has dimension 2^{2|q|N_f}. It is spanned by |Ω⟩, c^{α†}_{jm1}|Ω⟩, c^᱆_{jm2}|Ω⟩, etc.

Step 1: Fermions on S^2 in uniform magnetic flux

The Dirac equation

$$(iD \!\!\!/ + A\!\!\!\!/)\psi^{lpha} = 0$$

has solutions with energy $\pm \sqrt{(j+1/2)^2 - q^2}$ transforming in the spin-*j* irrep of $SU(2)_{rot}$.

- 2|q|N_f zero-energy modes with j = |q| − 1/2 (for each flavor there are 2j + 1 zero-energy modes).
 - Creation and annihilation operators $c_{im}^{\alpha\dagger}$ and c_{im}^{α} , respectively.
- Ground state: non-zero energy modes are not excited.
- Ground state Hilbert space \mathcal{G} has dimension $2^{2|q|N_f}$. It is spanned by $|\Omega\rangle$, $c_{jm}^{\alpha\dagger}|\Omega\rangle$, $c_{jm_1}^{\alpha\dagger}c_{jm_2}^{\alpha\dagger}|\Omega\rangle$, etc.

Step 2: Dynamical gauge field

• At IR fixed point, ignore Maxwell field. The action is

$$\mathcal{S} = \int d^3x \sum_{lpha=1}^{N_f} \psi^{\dagger}_{lpha}(iD\!\!\!/ + A\!\!\!/ + a\!\!\!/)\psi_{lpha}.$$

- The path integral over a_{μ} imposes $j^{\mu} = \sum_{\alpha=1}^{N_f} \psi^{\dagger}_{\alpha} \gamma^{\mu} \psi_{\alpha} = 0$.
- The space of physical ground states G_{phys} consists of those states of G that satisfy

$$j^{\mu}(\mathbf{x})|\chi
angle = \mathbf{0}$$
 .

Step 2: Dynamical gauge field

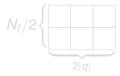
• The current is:

$$j^{\mu}(x) = \sum_{m,m'} \left(c^{lpha\dagger}_{jm} c^{lpha}_{jm'} - rac{N_f}{2} \delta_{mm'}
ight) S^{\dagger}_{q,jm}(heta,\phi) \gamma^{\mu} S_{q,jm'}(heta,\phi) + \cdots$$

- Integrate $j^{\tau}(x)$ against $Y_{00}(\theta, \phi) \Longrightarrow$ total charge constraint: $\sum_{m,\alpha} c_{jm}^{\alpha\dagger} c_{jm}^{\alpha} |\chi\rangle = |q| N_f |\chi\rangle.$
- Integrate $j^{\tau}(x)$ against $Y_{1m}(\theta, \phi) \Longrightarrow$ total spin vanishes.
- Integrate j^τ(x) against Y_{ℓm}(θ, φ), ℓ > 1 ⇒ more complicated constraints.
- All ℓ ≥ 1 constraints: invariance under the SU(2|q|) that rotates the *m* index of c^{α†}_{jm}.

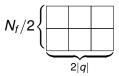
Fun with group theory

- Package all $c_{jm}^{\alpha\dagger}$ into a column vector of length $2|q|N_f$ and let $SU(2|q|N_f)$ act on it.
- Clearly, $SU(2|q|N_f) \supset SU(N_f) \times SU(2|q|)$.
- Group theory question: find SU(2|q|) singlets under the decomposition of the rank-|q|N_f anti-symmetric tensor irrep of SU(2|q|N_f).
- Answer: only one *SU*(2|*q*|) singlet transforming in the *SU*(*N*_f) irrep with Young diagram



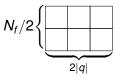
Fun with group theory

- Package all $c_{jm}^{\alpha\dagger}$ into a column vector of length $2|q|N_f$ and let $SU(2|q|N_f)$ act on it.
- Clearly, $SU(2|q|N_f) \supset SU(N_f) \times SU(2|q|)$.
- Group theory question: find SU(2|q|) singlets under the decomposition of the rank-|q|N_f anti-symmetric tensor irrep of SU(2|q|N_f).
- Answer: only one *SU*(2|*q*|) singlet transforming in the *SU*(*N*_f) irrep with Young diagram

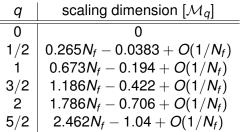


Quantum numbers of monopole operators in **fermionic** theory

• M_q transforms under $SU(N_f)$ as [Dyer, Mezei, SSP '13] :



- These operators are Lorentz scalars b/c SU(2)_{rot} ⊂ SU(2|q|).
- Scaling dimensions



Generalization to $U(N_c)$ QCD w/ N_f fundamentals

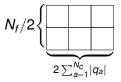
• Monopole operator with lowest scaling dimension:

 $\Delta = 0.265 N_f - 0.0383 - (N_c - 1)0.516 + O(N_c^2/N_f).$

• Predictions:

U(1) deconfines when $N_f \ge 12$, U(2) when $N_f \ge 14$, U(3) when $N_f \ge 16$, etc.

• More complicated monopole operators are parameterized by $\{q_a \in \mathbb{Z}/2\}, a = 1, 2, ..., N_c$. They transform as



Not all {q_a} yield independent operators!! [Dyer, Mezei, SSP '13]

- Can the properties of monopole operators I described be verified through lattice QED/QCD or through the conformal bootstrap?
- Do monopole operators play any role in non-supersymmetric (bosonization) dualities?
 - $U(N)_k$ + fundamental boson: $\Delta \propto k$ if $k \gg N$.
 - $U(N)_k$ + fundamental fermion: $\Delta \propto k^{3/2}$ if $k \gg N$.

- Can the properties of monopole operators I described be verified through lattice QED/QCD or through the conformal bootstrap?
- Do monopole operators play any role in non-supersymmetric (bosonization) dualities?
 - $U(N)_k$ + fundamental boson: $\Delta \propto k$ if $k \gg N$.
 - $U(N)_k$ + fundamental fermion: $\Delta \propto k^{3/2}$ if $k \gg N$.

Tentative comments on the critical bosonic theory

 Assuming spherically symmetric flux through S² [Sachdev, Murthy '90; Metlitski, Hermele, Senthil, Fisher '08; Dyer, Mezei, SSP, Sachdev, in progress] :

- Lorentz scalars invariant under *SU*(*N*) global symmetry.
- $\mathcal{M}_{1/2}$ is irrelevant, provided:

$$[\mathcal{M}_{1/2}] > 3 \implies N_b \ge 24$$
.

• So we expect the theory does not confine whenever $N_b \ge 24$.