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Abelian gauge theories in 3d

Consider (compact) U(1) gauge theory in 3 dimensions:

L =
1

4e2 F 2
µν + matter w/ integer U(1) charges.

IR dynamics:
No matter =⇒ confinement [Polyakov] .

Lots of matter =⇒ interacting CFT [Appelquist, . . . ] . Maxwell
term is irrelevant.

Can be studied in 1/Nf expansion.

Few matter fields: the theory may confine.
Analog of χSB if we have few fermions [Pisarski; Vafa, Witten; . . . ]

When should we expect an interacting CFT? What is the operator
spectrum of this CFT?
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Monopole operators

A U(1) gauge theory in 3d has a global U(1)top symmetry with
conserved current j top

µ = 1
4π εµνρF

νρ. Monopole operators are local
operators with non-zero U(1)top charge.

Monopole operators are “disorder operators” that insert a
monopole singularity in the gauge field

A monopole of charge q ∈ Z/2 centered at the origin:∫
S2

F = 4πq .

Monopole operatorMq(0) satisfies OPE

Mq(0)

∫
S2

F ∼Mq(0)4πq + · · · .

Lots of operators with given q.
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Monopole operators in CFT

In CFT: use state-operator correspondence and study the theory
on S2 × R.

LetMq(0) correspond to the ground state in the sector of
monopole flux

∫
S2 F = 4πq [Borokhov, Kapustin, Wu ’02] .
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Roles played by monopole operators

Mechanism for confinement: monopole proliferation in theories
where U(1)top is explicitly broken microscopically [Polyakov] .

Key insight: failure of the Bianchi identity implies Wilson loop area
law.

If monopole operators are irrelevant =⇒((((((confinement
(e.g. [Hermele, Senthil, Fisher, Lee, Nagaosa, Wen] ).

Order parameters for continuous phase transitions between two
ordered phases (i.e. which evade the Landau-Ginsburg-Wilson
paradigm) [Sachdev, Read ’89] .

A discrete Zk subgroup of U(1)top × SO(2)rot is a symmetry of the
lattice Hamiltonian.

Relevant monopole ops that transform under Zk : order parameters.

Relevant monopole ops invariant under Zk : can cause confinement.
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Monopole operators as order parameters

Square lattice antiferromagnet with SU(N) spins at each site.

J-Q model:

H = J
∑
〈ij〉

Sα
β(i)Sβ

α(j)

+ Q × (four spins)

S =

∫
d2r dτ

[
|(∂µ − iAµ)zα|2 + s|zα|2 + u(|zα|2)2 +

1
4e2 F 2

µν

]
At the critical point e =∞ and s is tuned to zero =⇒ same
universality class as the CPN−1 model [Motrunich, Vishwanath ’04;
Senthil, Balents, Fisher, Sachdev, Vishwanath ’04] .
Néel order: 〈zα〉 6= 0; VBS order: 〈M1/2〉 6= 0. [Sachdev, Read]
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Spin liquids

In other models, obtain compact QED with some number of
fermions =⇒ “spin liquids” [Wen, . . . ] .

L =
1

4e2 F 2
µν +

Nf∑
a=1

ψ†α(i /D + /A)ψα .

Monopole operators that transform under lattice symmetries =⇒
VBS order parameters.

Monopoles invariant under lattice symmetries can cause
confinement. Non-trivial CFT exists only if they are irrelevant
[Heremele, Senthil, Fisher, Lee, Nagaosa, Wen ’04] .
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Properties of monopole operators in CFT

Task: determine quantum numbers under conformal group
(scaling dimension, Lorentz spin) and under the flavor symmetry.

Method: 1/Nf expansion. Good because gauge field fluctuations
are suppressed.
In fermionic theory, for instance:

S =

∫
d3x
√

g
Nf∑
α=1

ψ†α(i /D + /A)ψα .

Integrate out ψ:

Z =

∫
DA exp

[
Nf tr log(i /D + /A)

]
Saddle point approximation A = A+ a for some saddle A.

At large Nf , gauge field fluctuations are suppressed by 1/
√

Nf .
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A brief history of the 1/Nf expansion

The leading order epoch (treat gauge field as background):
[Murthy, Sachdev ’90] : bosonic theory, scaling dim’s to order O(Nf ).
[Borokhov, Kapustin, Wu ’02] : fermionic theory, scaling dim’s to
order O(Nf ), flavor charges ofM1/2.
[Metlitski, Hermele, Senthil, Fisher ’08] : bosonic theory, scaling dim’s
to order O(Nf ).

Assumption: rotationally-invariant saddle.

The subleading order epoch (fluctuations of the gauge field):
[SSP ’13] : fermionic theory, scaling dim ofM1/2 to order O(N0

f ).
[Dyer, Mezei, SSP ’13] : fermionic theory, scaling dim’s to order
O(N0

f ) for allMq; flavor symmetry charges; generalization to
QCD.
[Dyer, Mezei, SSP, Sachdev, in progress] : bosonic theory, scaling
dim’s to order O(N0

f ).
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Scaling dimensions in fermionic theory

The IR scaling dimension ofMq are [Borokhov, Kapustin, Wu ’02;
SSP ’13; Dyer, Mezei, SSP ’13] :

q scaling dimension [Mq]

0 0
1/2 0.265Nf − 0.0383 + O(1/Nf)
1 0.673Nf − 0.194 + O(1/Nf )

3/2 1.186Nf − 0.422 + O(1/Nf )
2 1.786Nf − 0.706 + O(1/Nf )

5/2 2.462Nf − 1.04 + O(1/Nf )

M1/2 is irrelevant, provided:

[M1/2] > 3 =⇒ Nf ≥ 12 .

So we expect the theory does not confine whenever Nf ≥ 12.
F -theorem =⇒ confinement impossible for Nf ≥ 12. Also [Grover] .
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q scaling dimension [Mq]

0 0
1/2 0.265Nf − 0.0383 + O(1/Nf )
1 0.673Nf − 0.194 + O(1/Nf )

3/2 1.186Nf − 0.422 + O(1/Nf)
2 1.786Nf − 0.706 + O(1/Nf )

5/2 2.462Nf − 1.04 + O(1/Nf )

M3/2 is irrelevant, provided:

[M3/2] > 3 =⇒ Nf ≥ 4 .

So we expect the theory does not confine whenever Nf ≥ 4 if
M1/2 andM1 transform non-trivially under lattice symmetries.
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Flavor quantum numbers in fermionic theory

Nf fermions in U(1) gauge theory have SU(Nf ) flavor symmetry.

How do monopole operators transform in representations of
SU(Nf )?

Step 1: Ground state of Nf fermions on S2 × R in the presence of
uniform magnetic flux F = q sin θdθ ∧ dφ.

Step 2: Take into account the effect of having a dynamical gauge
field.
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Step 1: Fermions on S2 in uniform magnetic flux

The Dirac equation
(i /D + /A)ψα = 0

has solutions with energy ±
√

(j + 1/2)2 − q2 transforming in the
spin-j irrep of SU(2)rot.

2|q|Nf zero-energy modes with j = |q| − 1/2 (for each flavor there
are 2j + 1 zero-energy modes).

Creation and annihilation operators cα†jm and cαjm, respectively.

Ground state: non-zero energy modes are not excited.

Ground state Hilbert space G has dimension 22|q|Nf . It is spanned
by |Ω〉, cα†jm |Ω〉, cα1†

jm1
cα2†

jm2
|Ω〉, etc.
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Step 2: Dynamical gauge field

At IR fixed point, ignore Maxwell field. The action is

S =

∫
d3x

Nf∑
α=1

ψ†α(i /D + /A+ /a)ψα .

The path integral over aµ imposes jµ =
∑Nf

α=1 ψ
†
αγµψα = 0.

The space of physical ground states Gphys consists of those states
of G that satisfy

jµ(x)|χ〉 = 0 .
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Step 2: Dynamical gauge field

The current is:

jµ(x) =
∑
m,m′

(
cα†jm cαjm′ −

Nf

2
δmm′

)
S†q,jm(θ, φ)γµSq,jm′(θ, φ) + · · · .

Integrate jτ (x) against Y00(θ, φ) =⇒ total charge constraint:∑
m,α cα†jm cαjm|χ〉 = |q|Nf |χ〉.

Integrate jτ (x) against Y1m(θ, φ) =⇒ total spin vanishes.

Integrate jτ (x) against Y`m(θ, φ), ` > 1 =⇒ more complicated
constraints.

All ` ≥ 1 constraints: invariance under the SU(2|q|) that rotates
the m index of cα†jm .
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Fun with group theory

Package all cα†jm into a column vector of length 2|q|Nf and let
SU(2|q|Nf ) act on it.

Clearly, SU(2|q|Nf ) ⊃ SU(Nf )× SU(2|q|).

Group theory question: find SU(2|q|) singlets under the
decomposition of the rank-|q|Nf anti-symmetric tensor irrep of
SU(2|q|Nf ).

Answer: only one SU(2|q|) singlet transforming in the SU(Nf )
irrep with Young diagram

Nf/2

{
︸ ︷︷ ︸

2|q|
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Quantum numbers of monopole operators in
fermionic theory

Mq transforms under SU(Nf ) as [Dyer, Mezei, SSP ’13] :

Nf/2

{
︸ ︷︷ ︸

2|q|

These operators are Lorentz scalars b/c SU(2)rot ⊂ SU(2|q|).
Scaling dimensions

q scaling dimension [Mq]

0 0
1/2 0.265Nf − 0.0383 + O(1/Nf )
1 0.673Nf − 0.194 + O(1/Nf )

3/2 1.186Nf − 0.422 + O(1/Nf )
2 1.786Nf − 0.706 + O(1/Nf )

5/2 2.462Nf − 1.04 + O(1/Nf )
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Generalization to U(Nc) QCD w/ Nf fundamentals

Monopole operator with lowest scaling dimension:

∆ = 0.265Nf − 0.0383− (Nc − 1)0.516 + O(N2
c /Nf ) .

Predictions:
U(1) deconfines when Nf ≥ 12,
U(2) when Nf ≥ 14,
U(3) when Nf ≥ 16, etc.

More complicated monopole operators are parameterized by
{qa ∈ Z/2}, a = 1,2, . . . ,Nc . They transform as

Nf/2

{
︸ ︷︷ ︸

2
∑Nc

a=1|qa|

Not all {qa} yield independent operators!! [Dyer, Mezei, SSP ’13]
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Open questions

Can the properties of monopole operators I described be verified
through lattice QED/QCD or through the conformal bootstrap?

Do monopole operators play any role in non-supersymmetric
(bosonization) dualities?

U(N)k + fundamental boson: ∆ ∝ k if k � N.

U(N)k + fundamental fermion: ∆ ∝ k3/2 if k � N.
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Tentative comments on the critical bosonic theory

Assuming spherically symmetric flux through S2 [Sachdev, Murthy
’90; Metlitski, Hermele, Senthil, Fisher ’08; Dyer, Mezei, SSP, Sachdev,
in progress] :

q scaling dimension [Mq]

0 0
1/2 0.125 Nb + 0.0603 + O(1/Nb)
1 0.311Nb − 0.233 + O(1/Nb)

3/2 negative mode
...

...

Lorentz scalars invariant under SU(N) global symmetry.

M1/2 is irrelevant, provided:

[M1/2] > 3 =⇒ Nb ≥ 24 .

So we expect the theory does not confine whenever Nb ≥ 24.
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