The 3d Ising Spectrum Minimizes c^{1}

David Simmons-Duffin

IAS

January 31, 2014
with S. El-Showk, M. Paulos, D. Poland, S. Rychkov, A. Vichi

Bound on Lowest Dimension Scalar in $\sigma \times \sigma$ OPE

- From studying $\langle\sigma \sigma \sigma \sigma\rangle$
- Assuming only conformal invariance, unitarity, crossing symmetry

A Conjecture

- Let's take seriously the idea: the 3d Ising Model lies on the boundary of the allowed space of 3d CFTs.
- For this talk, we'll explore a stronger conjecture: $\langle\sigma \sigma \sigma \sigma\rangle$ lies on boundary of space of unitary, crossing symmetric 4-pt functions.

Outline

(1) An Optimization Problem For the Spectrum
(2) Simplex Algorithm
(3) Results

Outline

(1) An Optimization Problem For the Spectrum

(2) Simplex Algorithm

(3) Results

The Space of 4-pt Functions

Define $\mathcal{C}_{\Delta_{\sigma}}$ to be the space of maps

$$
(\Delta, \ell) \mapsto p_{\Delta, \ell} \in \mathbb{R}
$$

such that

1. $p_{0,0}=1$ (the unit operator is present)
2. $p_{\Delta, \ell} \geq 0$ (unitarity)
3. $p_{\Delta, \ell}$ gives a crossing-symmetric conformal block expansion:

$$
G(u, v) \equiv \sum_{\Delta, \ell} p_{\Delta, \ell} g_{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\sigma}} G(v, u)
$$

(Think of $p_{\Delta, \ell}$ as a squared OPE coefficient if Δ, ℓ is in the spectrum, 0 otherwise.)

Some Properties of $\mathcal{C}_{\Delta_{\sigma}}$

- $\mathcal{C}_{\Delta_{\sigma}}$ is Convex:

$$
t p_{\Delta, \ell}+(1-t) p_{\Delta, \ell}^{\prime} \quad \text { with } \quad t \in[0,1]
$$

also gives a unitary crossing symmetric 4-pt function.

- $\mathcal{C}_{\Delta_{\sigma}}$ is nonempty
- Contains 4pt function for any CFT with scalar of dimension Δ_{σ}
- Contains 4pt function for Mean Field Theory (aka Generalized Free Fields)

$$
\begin{aligned}
\operatorname{dim} \mathcal{C}_{\Delta_{\sigma}}= & \#(\text { dimensions and } \operatorname{spins}(\Delta, \ell)) \\
& -\#(\text { constraints from crossing symmetry }) \\
= & \infty-\infty=\infty
\end{aligned}
$$

A Picture of $\mathcal{C}_{\Delta_{\sigma}}$

Getting To the Boundary of $\mathcal{C}_{\Delta_{\sigma}}$

Points on the boundary of a convex space are extrema of some linear function. So...

- The 3d Ising Spectrum Maximizes something.

Candidates:

- The 3d Ising Spectrum Maximizes Δ_{ϵ} (dimension of lowest-dimension scalar in $\sigma \times \sigma$)
- The 3d Ising Spectrum Maximizes $p_{T}=p_{3,2}$ (coefficient of stress-tensor conformal block)

p_{T} Maximization $=c$ Minimization

The coefficient p_{T} is fixed by Ward identities

$$
\begin{array}{lll}
\left\langle T_{\mu \nu} \sigma \sigma\right\rangle & \propto \Delta_{\sigma} \\
\left\langle T_{\mu \nu} T_{\rho \sigma}\right\rangle & \propto c
\end{array} \Longrightarrow p_{T} \propto \frac{\Delta_{\sigma}^{2}}{c}
$$

Bounds support idea that Ising Model minimizes c

Equivalence of c-minimization and Δ_{ϵ}-maximization

Precise Conjecture

$$
\Delta_{\sigma}, p_{\Delta, \ell} \text { in 3d Ising }=\operatorname{argmax}_{\Delta_{\sigma}, p_{\Delta, \ell} \in \mathcal{C}_{\Delta_{\sigma}}}\left[p_{T}\right]
$$

- Conceptually nice
- Conjecture is in terms of $T_{\mu \nu}$, which is present in every CFT
- Ising is as far as possible from MFT $\left(c_{\mathrm{MFT}}=\infty\right)$
- Smallest $c \approx$ "simplest" theory
- Computationally nice
- p_{T} is a linear function on $\mathcal{C}_{\Delta_{\sigma}}$, so we have a linear program for each Δ_{σ}
- Solve with Dantzig's simplex method ('47)

Outline

(1) An Optimization Problem For the Spectrum

(2) Simplex Algorithm

Making the Problem Finite

We first relax the crossing constraint to a finite set of constraints

$$
\left.\partial_{u}^{m} \partial_{v}^{n}\left(G(u, v)-\left(\frac{u}{v}\right)^{\Delta_{\sigma}} G(v, u)\right)\right|_{u=v=1 / 4}=0
$$

for N pairs of derivatives (m, n). Recover $\mathcal{C}_{\Delta_{\sigma}}$ as $N \rightarrow \infty$.

- Optimum is achieved with N nonzero $p_{\Delta, \ell} \Longrightarrow N$ operators.
- Take $N \rightarrow \infty$ to recover spectrum.

The Simplex Method

1. Start with N positive coefficients $\left\{p_{\Delta_{1}, \ell_{1}}, \ldots, p_{\Delta_{N}, \ell_{N}}\right\}$ satisfying the N crossing constraints.
2. Consider turning on some new $p_{\Delta_{*}, \ell_{*}}$, adjusting the $p_{\Delta_{i}, \ell_{i}}$ to preserve crossing symmetry. Choose Δ_{*}, ℓ_{*} to maximize $\frac{\delta p_{T}}{\delta p_{\Delta, \ell}}$.
$\frac{\delta \mathrm{p}_{T}}{\delta \mathrm{p}_{\Delta, L}}$

3. Turn on $p_{\Delta_{*}, \ell_{*}}$ as much as possible until some $p_{\Delta_{k}, \ell_{k}}$ goes to zero, leaving N nonzero coefficients again.
4. Repeat.

Outline

(1) An Optimization Problem For the Spectrum
(2) Simplex Algorithm
(3) Results

Spin-0 Spectrum

Spin-2 Spectrum

Spin-2 Spectrum in 2d (For Comparison)

Conclusions

Results:

- Special value of Δ_{σ} emerges as $N \rightarrow \infty$
- Extremely precise determinations of critical exponents and OPE coefficients
- $\Delta_{\sigma}=0.518155(15)$
- $\Delta_{\epsilon}=1.41268(12)$
- $c / c^{\text {free }}=0.946533(10)$
- Certain operators predicted by Exact RG methods not actually present in spectrum.

Future Directions:

- Improve algorithm/precision
- Study optimization analytically
- Investigate other CFT constraints

