The 3d Ising Spectrum Minimizes c^{-1}

David Simmons-Duffin

IAS

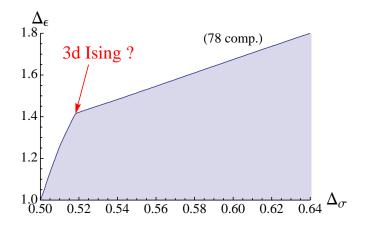
January 31, 2014

with S. El-Showk, M. Paulos, D. Poland, S. Rychkov, A. Vichi

¹(A conjecture)

Results

Bound on Lowest Dimension Scalar in $\sigma\times\sigma$ OPE



- From studying $\langle \sigma \sigma \sigma \sigma \rangle$
- Assuming only conformal invariance, unitarity, crossing symmetry

A Conjecture

- Let's take seriously the idea: the 3d Ising Model lies on the boundary of the allowed space of 3d CFTs.
- ► For this talk, we'll explore a stronger conjecture: $\langle \sigma \sigma \sigma \sigma \rangle$ lies on boundary of space of unitary, crossing symmetric 4-pt functions.

1 An Optimization Problem For the Spectrum

1 An Optimization Problem For the Spectrum

The Space of 4-pt Functions

Define $\mathcal{C}_{\Delta_\sigma}$ to be the space of maps

$$(\Delta, \ell) \quad \mapsto \quad p_{\Delta, \ell} \in \mathbb{R}$$

such that

- 1. $p_{0,0} = 1$ (the unit operator is present)
- 2. $p_{\Delta,\ell} \ge 0$ (unitarity)
- 3. $p_{\Delta,\ell}$ gives a crossing-symmetric conformal block expansion:

$$G(u,v) \equiv \sum_{\Delta,\ell} p_{\Delta,\ell} g_{\Delta,\ell}(u,v) = \left(\frac{u}{v}\right)^{\Delta_{\sigma}} G(v,u)$$

(Think of $p_{\Delta,\ell}$ as a squared OPE coefficient if Δ, ℓ is in the spectrum, 0 otherwise.)

Some Properties of $\mathcal{C}_{\Delta_{\sigma}}$

• $C_{\Delta_{\sigma}}$ is Convex:

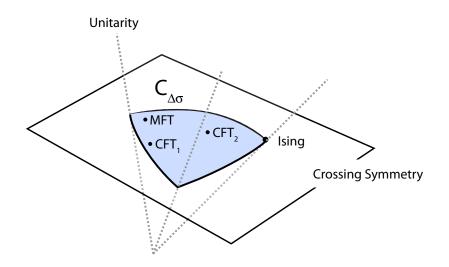
$$tp_{\Delta,\ell} + (1-t)p'_{\Delta,\ell}$$
 with $t \in [0,1]$

also gives a unitary crossing symmetric 4-pt function.

- $C_{\Delta_{\sigma}}$ is nonempty
 - Contains 4pt function for any CFT with scalar of dimension Δ_σ
 - Contains 4pt function for Mean Field Theory (aka Generalized Free Fields)

$$\dim \mathcal{C}_{\Delta_{\sigma}} = \#(\text{dimensions and spins } (\Delta, \ell)) \\ - \#(\text{constraints from crossing symmetry}) \\ = \infty - \infty = \infty$$

A Picture of $\mathcal{C}_{\Delta_{\sigma}}$



Getting To the Boundary of $C_{\Delta_{\sigma}}$

Points on the boundary of a convex space are extrema of some linear function. So...

► The 3d Ising Spectrum Maximizes *something*.

Candidates:

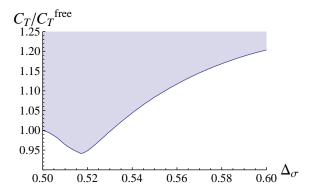
- ► The 3d Ising Spectrum Maximizes Δ_ε (dimension of lowest-dimension scalar in σ × σ)
- ► The 3d Ising Spectrum Maximizes p_T = p_{3,2} (coefficient of stress-tensor conformal block)

p_T Maximization = c Minimization

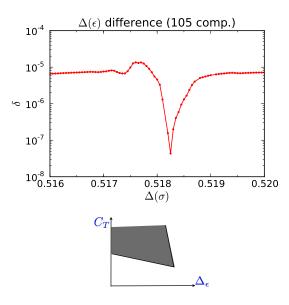
The coefficient p_T is fixed by Ward identities

$$\begin{array}{ll} \langle T_{\mu\nu}\sigma\sigma\rangle & \propto \Delta_{\sigma} \\ \langle T_{\mu\nu}T_{\rho\sigma}\rangle & \propto c \end{array} \implies p_T \propto \frac{\Delta_{\sigma}^2}{c} \end{array}$$

Bounds support idea that Ising Model minimizes \boldsymbol{c}



Equivalence of c-minimization and Δ_{ϵ} -maximization



Precise Conjecture

$\Delta_{\sigma}, p_{\Delta,\ell} \text{ in 3d Ising} = \operatorname{argmax}_{\Delta_{\sigma}, p_{\Delta,\ell} \in \mathcal{C}_{\Delta_{\sigma}}}[p_T]$

Conceptually nice

- Conjecture is in terms of $T_{\mu\nu}$, which is present in every CFT
- ▶ Ising is as far as possible from MFT ($c_{
 m MFT} = \infty$)
- Smallest $c \approx$ "simplest" theory
- Computationally nice
 - ▶ p_T is a linear function on $\mathcal{C}_{\Delta_\sigma}$, so we have a linear program for each Δ_σ
 - Solve with Dantzig's simplex method ('47)

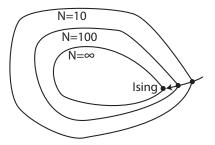
1 An Optimization Problem For the Spectrum

Making the Problem Finite

We first relax the crossing constraint to a finite set of constraints

$$\partial_u^m \partial_v^n \left(G(u, v) - \left(\frac{u}{v}\right)^{\Delta_\sigma} G(v, u) \right) \Big|_{u=v=1/4} = 0$$

for N pairs of derivatives (m, n). Recover $\mathcal{C}_{\Delta_{\sigma}}$ as $N \to \infty$.

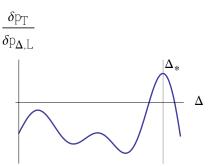


• Optimum is achieved with N nonzero $p_{\Delta,\ell} \implies N$ operators.

• Take $N \to \infty$ to recover spectrum.

The Simplex Method

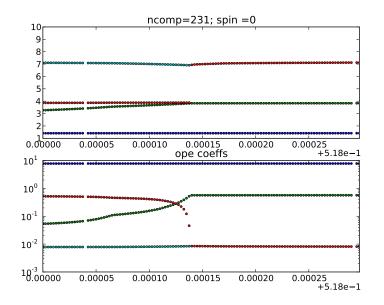
- 1. Start with N positive coefficients $\{p_{\Delta_1,\ell_1},\ldots,p_{\Delta_N,\ell_N}\}$ satisfying the N crossing constraints.
- 2. Consider turning on some new p_{Δ_*,ℓ_*} , adjusting the p_{Δ_i,ℓ_i} to preserve crossing symmetry. Choose Δ_*, ℓ_* to maximize $\frac{\delta p_T}{\delta n_{\Delta_*}}$.



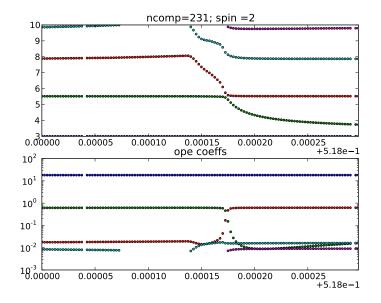
- 3. Turn on p_{Δ_*,ℓ_*} as much as possible until some p_{Δ_k,ℓ_k} goes to zero, leaving N nonzero coefficients again.
- 4. Repeat.

1 An Optimization Problem For the Spectrum

Spin-0 Spectrum

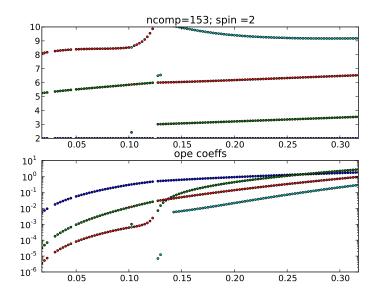


Spin-2 Spectrum



Results

Spin-2 Spectrum in 2d (For Comparison)



Conclusions

Results:

- Special value of Δ_{σ} emerges as $N \to \infty$
- Extremely precise determinations of critical exponents and OPE coefficients
 - $\Delta_{\sigma} = 0.518155(15)$
 - $\Delta_{\epsilon} = 1.41268(12)$
 - $c/c^{\text{free}} = 0.946533(10)$
- Certain operators predicted by Exact RG methods not actually present in spectrum.

Future Directions:

- Improve algorithm/precision
- Study optimization analytically
- Investigate other CFT constraints