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i.  Finite boundary observables    [cfr: Don]

iii.   Concrete calculation of an observable:  
       black to white hole tunnelling time, and Fast Radio Bursts 
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How big is a black hole?  
Marios Christodoulou, Carlo Rovelli.  
Phys.Rev. D91 (2015) 6, 064046 

The internal volume of a black hole is large  
even when its Area-Entropy is small:  
the number of internal  degrees of freedom must be 
large in order not to violate local qft in its own 
domain of validity.          … holography?

V ⇠ 3
p
3⇡m2v

V ⇠ m5

V ⇠ m
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After a time m3: 

At the end of the  
evaporation:

r = r0 ⌧ 2m

r = 2m

http://inspirehep.net/record/1327220
http://inspirehep.net/author/profile/Christodoulou%2C%20Marios?recid=1327220&ln=en
http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1327220&ln=en


A quantum theory of gravity cannot be a local qft: 

1. Local observables are not gauge invariant in gravity: diff invariance 
2. Space-time discreteness, or similar (cfr: both loops and strings)  [cfr: Gabriele]

Local qft: degrees of freedom localised with respect to classical entities. 

Quantum gravity: degrees of freedom localised with respect to one another,  
as in classical general relativity.
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Quantum theory gives the probabilities of the outcomes of a (local) interaction of a quantum system 
with another system. 

General relativity describes the (local) interaction of spacetime regions with one another. 

   ➜   Combine the two aspects

   ➜   Boundary formalism
States: associated to 3d boundaries of spacetime regions. 

Transition amplitudes: associated to 4d regions [cfr: Bianca].

Quantum system
=

Spacetime region

Boundary
➜  Hamilton function: S(q,t,q’,t’)



Hamilton function S(q, t, q0, t0) =

Z t0

t
dt̃ L(q̇q,t,q0,t0(t̃), qq,t,q0,t0(t̃))

Propagator

Systems evolving in observable time

System evolving in 
parameter time

W (q, t, q0, t0) = hq, t|P |q0, t0i ⇠ e
i
~S(q,t,q0,t0)
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Spacetime region

Particle detector

Distance and time 
measurements

In a general relativistic theory, distance and time measurements are field measurements like the other 
ones: they are determined by the boundary data of the problem. [cfr.: Jim]

But in a generally covariant theory: W [',⌃] = W [']

� Boundary functional 



Transition amplitudes

Rep invariant

h |eiH(t�t0)| 0i

Quantum gravity

h |P | 0i = hW | ⌦  0i
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   ➜   The boundary determines the here and now of the interaction whose  
          correlations are predicted by quantum theory. 

   ➜   The physical relative position of the points on the boundary is determined by  
          the (quantum) state of geometry on the boundary itself 

Quantum gravity  
Carlo Rovelli  
CUP 2004

Introduction to Canonical  
Loop Quantum Gravity  
Francesca Vidotto, Carlo Rovelli  
CUP 2014

http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1250761&ln=en


Let’s make this concrete
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hvfTransition amplitudes

Vertex amplitude

State space

Operators [cfr: Steve]:                                                                    
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SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D 
Loop Quantum Gravity with a Cosmological Constant  
Hal M. Haggard, Muxin Han, Wojciech Kamiński, Aldo Riello.  
arXiv:1412.7546 

With cosmological constant:
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Main results:       (i)  Classical limit: GR 
        (ii)  Spacetime discreteness 

                            (iii)  UV and IR finite amplitudes

Regime of validity of the expansion:

On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli

Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)

Summarizing:
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TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above
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II. DISCRETIZATION

Consider a harmonic oscillator with mass m and angu-
lar frequency !. The action is

S =
m

2

Z
dt

 ✓
dq

dt

◆2

� !2q2

!
. (1)

Choose a fixed time interval t of interest and divide it into
a large number N of small steps of size a = t/N . The
continuum theory will be recovered with N ! 1 and
a ! 0, keeping the size t = Na of the time interval fixed.
Discretize the system on the time steps tn = an, with
integer n = 1, ..., N . The system is then described by the
variables qn = q(tn) and the action can be discretized as
follows

SN =
m

2

X

n

a

 ✓
qn+1 � qn

a

◆2

� !2q2n

!
. (2)

A standard lattice procedure is then to define rescaled
dimensionless variables Qn =

p
m
a~ qn and ⌦ = a!, so

that the dimensionless action becomes

SN

~ =
1

2

X

n

�
(Qn+1 �Qn)

2 � ⌦2Q2
n

�
⌘ SN,⌦(Qn) (3)

where all quantities on the r.h.s. are now dimensionless.
This action (or better, its analytical continuation in Eu-
clidean time) can be studied numerically to give an ap-
proximation of the path integral

Z
D[q(t)] e

i
~S[q(t)] !

Z
dQn eiSN,⌦(Qn) (4)

To take the continuum limit we have to send N ! 1,
but this is not su�cient: we must also send ⌦ to its
critical value ⌦ = 0, since ⌦ = a! and a must go to zero
in the limit. More precisely, say we want to compute the
propagator

W (qf , tf ; qi, ti) = hqf |e�
i
~H(tf�ti)|qii

=

Z q(tf )=qf

q(ti)=qi

D[q(t)] e
i
~S[q(t)]. (5)

Then this is given by

W (qf , tf ; qi, ti) = lim
⌦!0
N!1

N
Z

dQn eiSN,⌦(Qn) (6)

whereQ0 =
p

m
a~qi andQN =

p
m
a~qf andN is a suitable

normalization factor for the measure.
The fact that the limit is obtained not only by taking

N ! 1 but also sending ⌦ to its critical value is an essen-
tial defining feature of the discretization. Near the criti-
cal value the correlation lengths of the discretized system
diverge in the number of lattice steps, so that they remain

finite in physical separations. Taking the discretized sys-
tems to its critical point can implement universality and
wash away the e↵ect of the details of the discretization.
This same behavior is present in field theory. It is natural
to think that this pattern is universal. But things are dif-
ferent when discretizing reparametrization-invariant sys-
tems.

III. PARAMETRIZATION

Consider the system defined by the two variables q(⌧)
and t(⌧), evolving in the evolution parameter ⌧ , and gov-
erned by the action

S =
m

2

Z
d⌧

✓
q̇2

ṫ
� !2ṫ q2

◆
(7)

where the dot indicate the derivative with respect to ⌧ .
It is immediate to see that this is physically fully equiva-
lent to the harmonic oscillator discussed in the previous
section. In fact, the equation of motion for q is

d

d⌧

q̇

ṫ
= �!2ṫ q (8)

which gives immediately the harmonic oscillator equation
d2q/dt2 = �!2q; while the equation for t is

d

d⌧

✓
q̇2

ṫ2
+ !2q2

◆
= 0, (9)

which is not an independent equation: it is simply the
conservation of energy that follows from (8). The sys-
tem has indeed a large gauge invariance, under arbitrary
reparametrization of its independent variable ⌧ . In this,
it is very similar to general relativity, which is equally
invariant under the reparametrization of its independent
coordinate variables (Di↵ –invariance).
Let us discretize this system. As before, fix an interval

in ⌧ , split it into N steps of size a and define ⌧n = na,
tn = t(⌧n) and qn = q(⌧n). Consider the discretized
action

SN =
m

2

X

n

a

 
( qn+1

�qn
a )2

tn+1

�tn
a

� !2 tn+1 � tn
a

q2n

!
. (10)

Notice something important: the quantity a drops from
this expression. Indeed, the above reads

SN =
m

2

X

n

✓
(qn+1 � qn)2

tn+1 � tn
� !2(tn+1 � tn) q

2
n

◆
. (11)

In words, the discretized action is fully independent from
a. This elementary observation is the main point of this
article. Let us study the consequences of this fact.
The main consequence is that the continuum limit of

the theory is not given by the double limit N ! 1, a !
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but this is not su�cient: we must also send ⌦ to its
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N ! 1 but also sending ⌦ to its critical value is an essen-
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cal value the correlation lengths of the discretized system
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tems to its critical point can implement universality and
wash away the e↵ect of the details of the discretization.
This same behavior is present in field theory. It is natural
to think that this pattern is universal. But things are dif-
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ṫ
� !2ṫ q2
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0, but rather from the single limit N ! 1. Let us see
this more in detail.

Define as before dimensionless variables Qn =
p

m!
~ qn

and Tn = !tn. Notice that these are not defined using
the time step a, which would be useless in this context
since a is not in the action, but rather the natural units
given by the dynamics itself (in general relativity these
natural units are provided by the Planck length). This
yields the dimensionless action
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Notice that the frequency has been absorbed in the nor-
malization of the dimensionless variables. Suppose now
we want to compute the same transition amplitude as
before
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Then this is given by
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p
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TN = !tf . There is no other limit to take than N ! 1.
When N is large, the average time steps are automati-
cally small.

Below I study whether the classical and the quan-
tum dynamics given by such discretization of the
parametrized theory are well defined and sensible.

IV. CLASSICAL DYNAMICS

The standard discretization (2) of the system breaks
the interval of the physical time t into N steps of equal
size. The discrete equation of motion, obtained minimiz-
ing (2) with respect to qn is
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where I have defined the discrete velocity
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a
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Equation (15) gives the velocity at the next time-step in
terms of the velocity at the previous step and of the dis-
crete impulse (the impulse is the force �!2qn times the
time step a). As well known, because of the approxima-
tion involved in the discretization, the energy
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is not conserved in general.
Consider now the discretization of the parametrized

system. The key observation is that while the two con-
tinuous equations of motion (8) and (9) are degenerate
(the second follow from the first), their discretization are

independent equations. The first discretized equation is
as before

vn+1 = vn � (tn+1 � tn) !
2qn. (18)

where the discrete velocity is now
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and the fixed size time step a is replaced by the variable
size time step (tn+1 � tn). What about the second equa-
tion? The variation of the action with respect to tn gives
easily

En+1 = En. (20)

That is, energy is now conserved! How is it possible?
It is possible because the additional degree of freedom,
which is the position of the time steps, is now adjusted
by the dynamics in order for the energy to be conserved.
In other words, the continous parametrized system adds
a degree of freedom which is fully gauge. The discrete

non-parametrized dynamics breaks energy conservation.
But the discrete parametrized dynamics breaks the gauge
freedom added by the parametrizations and exploits it by
fixing it so that energy is conserved. Concretely, the “po-
sitions” of the intermediate time steps tn are not gauge
in the discrete theory: they are determined in order to
adjust the conservation of energy.
The integration of the discrete equations of motion of

the parametrized systems can be performed numerically,
showing that they give the correct dynamics. See Figures
1, 2 and 3. Notice the irregular evolution of qn (Figure
1) and tn (Figure 2) as functions of n: This reflects the
arbitrary dependence on ⌧ of the parametrized system,
gauge-fixed in the discretization (and determined by the
initial data). But then qn and tn combine into the well-
known solution of the harmonic oscillator equation, in
their relative evolution (Figure 3).
The di↵erence between the discretization of a stan-

dard system and that of a parametrized system can be
directly seen in the equations of motion. In the first case,
the equations of motion (15) contain explicitly the dis-
cretization size a. Therefore we are in fact dealing with a
one-parameter family of equations, which converge to the
continuum theory when the limit a ! 0 is appropriately
taken. Specifically, if qn(q0, v0, a) is the solution of the
equations with initial values q0 and q1 = q0 + av0, then
the solution of the continuum theory is recovered as

q(t) = lim
a!0

q t
a
(q0, v0, a). (21)
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conservation of energy that follows from (8). The sys-
tem has indeed a large gauge invariance, under arbitrary
reparametrization of its independent variable ⌧ . In this,
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•   Systems evolving in time:   The continuum limit is obtained taking the number of steps to infinity  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•   General covariant systems:  The continuum limit is obtained taking just the number of steps to infinity.   
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The main consequence is that the continuum limit of
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0, but rather from the single limit N ! 1. Let us see
this more in detail.

Define as before dimensionless variables Qn =
p

m!
~ qn

and Tn = !tn. Notice that these are not defined using
the time step a, which would be useless in this context
since a is not in the action, but rather the natural units
given by the dynamics itself (in general relativity these
natural units are provided by the Planck length). This
yields the dimensionless action
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Notice that the frequency has been absorbed in the nor-
malization of the dimensionless variables. Suppose now
we want to compute the same transition amplitude as
before

W (qf , tf ; qi, ti) =

Z q(1)=qf
t(1)=tf

q(0)=qi
t(0)=ti

D[q(⌧)]D[t(⌧)] e
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(13)
Then this is given by
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where Q0 =
p

!m
~ qi and QN =

p
!m
~ qf , T0 = !ti and

TN = !tf . There is no other limit to take than N ! 1.
When N is large, the average time steps are automati-
cally small.

Below I study whether the classical and the quan-
tum dynamics given by such discretization of the
parametrized theory are well defined and sensible.

IV. CLASSICAL DYNAMICS

The standard discretization (2) of the system breaks
the interval of the physical time t into N steps of equal
size. The discrete equation of motion, obtained minimiz-
ing (2) with respect to qn is

vn+1 = vn � a !2qn. (15)

where I have defined the discrete velocity

vn+1 ⌘ qn+1 � qn
a

(16)

Equation (15) gives the velocity at the next time-step in
terms of the velocity at the previous step and of the dis-
crete impulse (the impulse is the force �!2qn times the
time step a). As well known, because of the approxima-
tion involved in the discretization, the energy

En =
m

2

�
v2n+1 + !2q2n

�
(17)

is not conserved in general.
Consider now the discretization of the parametrized

system. The key observation is that while the two con-
tinuous equations of motion (8) and (9) are degenerate
(the second follow from the first), their discretization are

independent equations. The first discretized equation is
as before

vn+1 = vn � (tn+1 � tn) !
2qn. (18)

where the discrete velocity is now

vn+1 ⌘ qn+1 � qn
tn+1 � tn

(19)

and the fixed size time step a is replaced by the variable
size time step (tn+1 � tn). What about the second equa-
tion? The variation of the action with respect to tn gives
easily

En+1 = En. (20)

That is, energy is now conserved! How is it possible?
It is possible because the additional degree of freedom,
which is the position of the time steps, is now adjusted
by the dynamics in order for the energy to be conserved.
In other words, the continous parametrized system adds
a degree of freedom which is fully gauge. The discrete
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This same behavior is present in field theory. It is natural
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In words, the discretized action is fully independent from
a. This elementary observation is the main point of this
article. Let us study the consequences of this fact.
The main consequence is that the continuum limit of
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•   Systems evolving in time:   The continuum limit is obtained taking the number of steps to infinity  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•   General covariant systems:  The continuum limit is obtained taking just the number of steps to infinity.   
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finite in physical separations. Taking the discretized sys-
tems to its critical point can implement universality and
wash away the e↵ect of the details of the discretization.
This same behavior is present in field theory. It is natural
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0, but rather from the single limit N ! 1. Let us see
this more in detail.

Define as before dimensionless variables Qn =
p
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~ qn

and Tn = !tn. Notice that these are not defined using
the time step a, which would be useless in this context
since a is not in the action, but rather the natural units
given by the dynamics itself (in general relativity these
natural units are provided by the Planck length). This
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Notice that the frequency has been absorbed in the nor-
malization of the dimensionless variables. Suppose now
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before
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Then this is given by
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where Q0 =
p

!m
~ qi and QN =

p
!m
~ qf , T0 = !ti and

TN = !tf . There is no other limit to take than N ! 1.
When N is large, the average time steps are automati-
cally small.

Below I study whether the classical and the quan-
tum dynamics given by such discretization of the
parametrized theory are well defined and sensible.

IV. CLASSICAL DYNAMICS

The standard discretization (2) of the system breaks
the interval of the physical time t into N steps of equal
size. The discrete equation of motion, obtained minimiz-
ing (2) with respect to qn is
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where I have defined the discrete velocity
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a
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Equation (15) gives the velocity at the next time-step in
terms of the velocity at the previous step and of the dis-
crete impulse (the impulse is the force �!2qn times the
time step a). As well known, because of the approxima-
tion involved in the discretization, the energy
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is not conserved in general.
Consider now the discretization of the parametrized

system. The key observation is that while the two con-
tinuous equations of motion (8) and (9) are degenerate
(the second follow from the first), their discretization are

independent equations. The first discretized equation is
as before
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2qn. (18)

where the discrete velocity is now
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and the fixed size time step a is replaced by the variable
size time step (tn+1 � tn). What about the second equa-
tion? The variation of the action with respect to tn gives
easily

En+1 = En. (20)

That is, energy is now conserved! How is it possible?
It is possible because the additional degree of freedom,
which is the position of the time steps, is now adjusted
by the dynamics in order for the energy to be conserved.
In other words, the continous parametrized system adds
a degree of freedom which is fully gauge. The discrete

non-parametrized dynamics breaks energy conservation.
But the discrete parametrized dynamics breaks the gauge
freedom added by the parametrizations and exploits it by
fixing it so that energy is conserved. Concretely, the “po-
sitions” of the intermediate time steps tn are not gauge
in the discrete theory: they are determined in order to
adjust the conservation of energy.
The integration of the discrete equations of motion of

the parametrized systems can be performed numerically,
showing that they give the correct dynamics. See Figures
1, 2 and 3. Notice the irregular evolution of qn (Figure
1) and tn (Figure 2) as functions of n: This reflects the
arbitrary dependence on ⌧ of the parametrized system,
gauge-fixed in the discretization (and determined by the
initial data). But then qn and tn combine into the well-
known solution of the harmonic oscillator equation, in
their relative evolution (Figure 3).
The di↵erence between the discretization of a stan-

dard system and that of a parametrized system can be
directly seen in the equations of motion. In the first case,
the equations of motion (15) contain explicitly the dis-
cretization size a. Therefore we are in fact dealing with a
one-parameter family of equations, which converge to the
continuum theory when the limit a ! 0 is appropriately
taken. Specifically, if qn(q0, v0, a) is the solution of the
equations with initial values q0 and q1 = q0 + av0, then
the solution of the continuum theory is recovered as

q(t) = lim
a!0

q t
a
(q0, v0, a). (21)
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� !2ṫ q2

◆
(7)

where the dot indicate the derivative with respect to ⌧ .
It is immediate to see that this is physically fully equiva-
lent to the harmonic oscillator discussed in the previous
section. In fact, the equation of motion for q is

d

d⌧

q̇

ṫ
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The main consequence is that the continuum limit of
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0, but rather from the single limit N ! 1. Let us see
this more in detail.

Define as before dimensionless variables Qn =
p

m!
~ qn

and Tn = !tn. Notice that these are not defined using
the time step a, which would be useless in this context
since a is not in the action, but rather the natural units
given by the dynamics itself (in general relativity these
natural units are provided by the Planck length). This
yields the dimensionless action
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Notice that the frequency has been absorbed in the nor-
malization of the dimensionless variables. Suppose now
we want to compute the same transition amplitude as
before

W (qf , tf ; qi, ti) =

Z q(1)=qf
t(1)=tf

q(0)=qi
t(0)=ti

D[q(⌧)]D[t(⌧)] e
i
~S[q(⌧),t(⌧)].

(13)
Then this is given by

W (qf , tf ; qi, ti) = lim
N!1

Z
dQn dTn eiSN (Qn,Tn) (14)

where Q0 =
p

!m
~ qi and QN =

p
!m
~ qf , T0 = !ti and

TN = !tf . There is no other limit to take than N ! 1.
When N is large, the average time steps are automati-
cally small.

Below I study whether the classical and the quan-
tum dynamics given by such discretization of the
parametrized theory are well defined and sensible.

IV. CLASSICAL DYNAMICS

The standard discretization (2) of the system breaks
the interval of the physical time t into N steps of equal
size. The discrete equation of motion, obtained minimiz-
ing (2) with respect to qn is

vn+1 = vn � a !2qn. (15)

where I have defined the discrete velocity

vn+1 ⌘ qn+1 � qn
a

(16)

Equation (15) gives the velocity at the next time-step in
terms of the velocity at the previous step and of the dis-
crete impulse (the impulse is the force �!2qn times the
time step a). As well known, because of the approxima-
tion involved in the discretization, the energy

En =
m

2

�
v2n+1 + !2q2n

�
(17)

is not conserved in general.
Consider now the discretization of the parametrized

system. The key observation is that while the two con-
tinuous equations of motion (8) and (9) are degenerate
(the second follow from the first), their discretization are

independent equations. The first discretized equation is
as before

vn+1 = vn � (tn+1 � tn) !
2qn. (18)

where the discrete velocity is now

vn+1 ⌘ qn+1 � qn
tn+1 � tn

(19)

and the fixed size time step a is replaced by the variable
size time step (tn+1 � tn). What about the second equa-
tion? The variation of the action with respect to tn gives
easily

En+1 = En. (20)

That is, energy is now conserved! How is it possible?
It is possible because the additional degree of freedom,
which is the position of the time steps, is now adjusted
by the dynamics in order for the energy to be conserved.
In other words, the continous parametrized system adds
a degree of freedom which is fully gauge. The discrete

non-parametrized dynamics breaks energy conservation.
But the discrete parametrized dynamics breaks the gauge
freedom added by the parametrizations and exploits it by
fixing it so that energy is conserved. Concretely, the “po-
sitions” of the intermediate time steps tn are not gauge
in the discrete theory: they are determined in order to
adjust the conservation of energy.
The integration of the discrete equations of motion of

the parametrized systems can be performed numerically,
showing that they give the correct dynamics. See Figures
1, 2 and 3. Notice the irregular evolution of qn (Figure
1) and tn (Figure 2) as functions of n: This reflects the
arbitrary dependence on ⌧ of the parametrized system,
gauge-fixed in the discretization (and determined by the
initial data). But then qn and tn combine into the well-
known solution of the harmonic oscillator equation, in
their relative evolution (Figure 3).
The di↵erence between the discretization of a stan-

dard system and that of a parametrized system can be
directly seen in the equations of motion. In the first case,
the equations of motion (15) contain explicitly the dis-
cretization size a. Therefore we are in fact dealing with a
one-parameter family of equations, which converge to the
continuum theory when the limit a ! 0 is appropriately
taken. Specifically, if qn(q0, v0, a) is the solution of the
equations with initial values q0 and q1 = q0 + av0, then
the solution of the continuum theory is recovered as

q(t) = lim
a!0

q t
a
(q0, v0, a). (21)
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II. DISCRETIZATION

Consider a harmonic oscillator with mass m and angu-
lar frequency !. The action is

S =
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Z
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� !2q2

!
. (1)

Choose a fixed time interval t of interest and divide it into
a large number N of small steps of size a = t/N . The
continuum theory will be recovered with N ! 1 and
a ! 0, keeping the size t = Na of the time interval fixed.
Discretize the system on the time steps tn = an, with
integer n = 1, ..., N . The system is then described by the
variables qn = q(tn) and the action can be discretized as
follows

SN =
m

2

X

n

a

 ✓
qn+1 � qn

a

◆2

� !2q2n

!
. (2)

A standard lattice procedure is then to define rescaled
dimensionless variables Qn =

p
m
a~ qn and ⌦ = a!, so

that the dimensionless action becomes
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⌘ SN,⌦(Qn) (3)

where all quantities on the r.h.s. are now dimensionless.
This action (or better, its analytical continuation in Eu-
clidean time) can be studied numerically to give an ap-
proximation of the path integral

Z
D[q(t)] e

i
~S[q(t)] !

Z
dQn eiSN,⌦(Qn) (4)

To take the continuum limit we have to send N ! 1,
but this is not su�cient: we must also send ⌦ to its
critical value ⌦ = 0, since ⌦ = a! and a must go to zero
in the limit. More precisely, say we want to compute the
propagator

W (qf , tf ; qi, ti) = hqf |e�
i
~H(tf�ti)|qii

=

Z q(tf )=qf

q(ti)=qi

D[q(t)] e
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Then this is given by

W (qf , tf ; qi, ti) = lim
⌦!0
N!1

N
Z

dQn eiSN,⌦(Qn) (6)

whereQ0 =
p

m
a~qi andQN =

p
m
a~qf andN is a suitable

normalization factor for the measure.
The fact that the limit is obtained not only by taking

N ! 1 but also sending ⌦ to its critical value is an essen-
tial defining feature of the discretization. Near the criti-
cal value the correlation lengths of the discretized system
diverge in the number of lattice steps, so that they remain

finite in physical separations. Taking the discretized sys-
tems to its critical point can implement universality and
wash away the e↵ect of the details of the discretization.
This same behavior is present in field theory. It is natural
to think that this pattern is universal. But things are dif-
ferent when discretizing reparametrization-invariant sys-
tems.

III. PARAMETRIZATION

Consider the system defined by the two variables q(⌧)
and t(⌧), evolving in the evolution parameter ⌧ , and gov-
erned by the action
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Z
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ṫ
� !2ṫ q2

◆
(7)

where the dot indicate the derivative with respect to ⌧ .
It is immediate to see that this is physically fully equiva-
lent to the harmonic oscillator discussed in the previous
section. In fact, the equation of motion for q is

d
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which gives immediately the harmonic oscillator equation
d2q/dt2 = �!2q; while the equation for t is
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◆
= 0, (9)

which is not an independent equation: it is simply the
conservation of energy that follows from (8). The sys-
tem has indeed a large gauge invariance, under arbitrary
reparametrization of its independent variable ⌧ . In this,
it is very similar to general relativity, which is equally
invariant under the reparametrization of its independent
coordinate variables (Di↵ –invariance).
Let us discretize this system. As before, fix an interval

in ⌧ , split it into N steps of size a and define ⌧n = na,
tn = t(⌧n) and qn = q(⌧n). Consider the discretized
action
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Notice something important: the quantity a drops from
this expression. Indeed, the above reads

SN =
m

2

X

n

✓
(qn+1 � qn)2

tn+1 � tn
� !2(tn+1 � tn) q

2
n

◆
. (11)

In words, the discretized action is fully independent from
a. This elementary observation is the main point of this
article. Let us study the consequences of this fact.
The main consequence is that the continuum limit of

the theory is not given by the double limit N ! 1, a !
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article. Let us study the consequences of this fact.
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N

•   Systems evolving in time:   The continuum limit is obtained taking the number of steps to infinity  
                                                 and a coupling constant to a critical value.

•   General covariant systems:  The continuum limit is obtained taking just the number of steps to infinity.   



All these are empty formulas until  
we can do physics with them



ii.  A concrete calculation of an observable:  
     Fast Radio Bursts and black to white hole tunnelling time

All these are empty formulas until  
we can do physics with them



What happens here?



A technical result in classical GR:
The following metric is an exact vacuum solution,  
plus an ingoing and outgoing shell, of the Einstein  
equations outside a finite spacetime region (grey). 

ds2 = �F (u, v)dudv + r2(u, v)(d✓2 + sin2✓d�2)
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The metric is determined by three constants: m, ✏, �
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Black hole fireworks: quantum-gravity effects outside  
the horizon spark black to white hole tunneling  
Hal M. Haggard, Carlo Rovelli  
arXiv:1407.0989

http://inspirehep.net/author/profile/Haggard%2C%20Hal%20M.?recid=1304671&ln=en
http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1304671&ln=en
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The metric is determined by three constants: 

-       is the mass of the collapsing shell.m

-     is the radius where quantum effect start on the shell: 

Quantum pressure causes the bounce

✏

-     is related to the distance from the horizon where the theory 
is entirely classical 
� r

=
0

r
=

a
r
=
R

t = 0
τ

u

v

Planck stars  
Carlo Rovelli, Francesca Vidotto  
Int.J.Mod.Phys. D23 (2014) 12, 1442026 

What does     represent and what determines it? �

http://inspirehep.net/record/1278812
http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1278812&ln=en
http://inspirehep.net/author/profile/Vidotto%2C%20Francesca?recid=1278812&ln=en
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“A black hole is a short cut to the future” 

Time dilation

T: bounce time (very large)

⌧R = 2R�m ln(�/m)
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What do we expect of the bouncing time: 

Naive expectation from analogy with tunnelling in space

Page time. Requiring that AMPS firewall are avoided

Minimal failure of local qft:  

Calculation from LQG, first contribution (too short!)

RT > L�1
Planck
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Detectable?
Already detected?

Duration: ~ milliseconds 

Frequency: 1.3 GHz 

Observed at: Parkes, Arecibo 

Origin: Likely extragalactic 

Estimated emitted power: 1038 erg 

Physical source: unknown.

4

Figure 1. Gain and spectral index maps for the ALFA receiver.
Figure a): Contour plot of the ALFA power pattern calculated
from the model described in Section 3 at ν = 1375 MHz. The
contour levels are −13, −10, −6, −3 (dashed), −2, and −1 dB
(top panel). The bottom inset shows slices in azimuth for each
beam, and each slice passes through the peak gain for its respec-
tive beam. Beam 1 is in the upper right, and the beam number-
ing proceeds clockwise. Beam 4 is, therefore, in the lower left.
Figure b): Map of the apparent instrumental spectral index due
to frequency-dependent gain variations of ALFA. The spectral in-
dexes were calculated at the center frequencies of each subband.
Only pixels with gain > 0.5 K Jy−1 were used in the calculation.
The rising edge of the first sidelobe can impart a positive appar-
ent spectral index with a magnitude that is consistent with the
measured spectral index of FRB 121102.

of parameters. The model assumes a Gaussian pulse
profile convolved with a one-sided exponential scatter-
ing tail. The amplitude of the Gaussian is scaled with
a spectral index (S(ν) ∝ να), and the temporal loca-
tion of the pulse was modeled as an absolute arrival time
plus dispersive delay. For the least-squares fitting the
DM was held constant, and the spectral index of τd was
fixed to be −4.4. The Gaussian FWHM pulse width,
the spectral index, Gaussian amplitude, absolute arrival

Figure 2. Characteristic plots of FRB 121102. In each panel the
data were smoothed in time and frequency by a factor of 30 and 10,
respectively. The top panel is a dynamic spectrum of the discov-
ery observation showing the 0.7 s during which FRB 121102 swept
across the frequency band. The signal is seen to become signifi-
cantly dimmer towards the lower part of the band, and some arti-
facts due to RFI are also visible. The two white curves show the ex-
pected sweep for a ν−2 dispersed signal at a DM = 557.4 pc cm−3.
The lower left panel shows the dedispersed pulse profile averaged
across the bandpass. The lower right panel compares the on-pulse
spectrum (black) with an off-pulse spectrum (light gray), and for
reference a curve showing the fitted spectral index (α = 10) is also
overplotted (medium gray). The on-pulse spectrum was calculated
by extracting the frequency channels in the dedispersed data cor-
responding to the peak in the pulse profile. The off-pulse spectrum
is the extracted frequency channels for a time bin manually chosen
to be far from the pulse.

time, and pulsar broadening were all fitted. The Gaus-
sian pulse width (FWHM) is 3.0 ± 0.5 ms, and we found
an upper limit of τd < 1.5 ms at 1.4 GHz. The residual
DM smearing within a frequency channel is 0.5 ms and
0.9ms at the top and bottom of the band, respectively.
The best-fit value was α = 11 but could be as low as α
= 7. The fit for α is highly covariant with the Gaussian
amplitude.
Every PALFA observation yields many single-pulse

events that are not associated with astrophysical sig-
nals. A well-understood source of events is false positives
from Gaussian noise. These events are generally isolated
(i.e. no corresponding event in neighboring trial DMs),
have low S/Ns, and narrow temporal widths. RFI can
also generate a large number of events, some of which
mimic the properties of astrophysical signals. Nonethe-
less, these can be distinguished from astrophysical pulses
in a number of ways. For example, RFI may peak in S/N
at DM = 0pc cm−3, whereas astrophysical pulses peak
at a DM > 0 pc cm−3. Although both impulsive RFI
and an astrophysical pulse may span a wide range of
trial DMs, the RFI will likely show no clear correlation
of S/N with trial DM, while the astrophysical pulse will
have a fairly symmetric reduction in S/N for trial DMs
just below and above the peak value. RFI may be seen
simultaneously in multiple, non-adjacent beams, while a
bright, astrophysical signal may only be seen in only one
beam or multiple, adjacent beams. FRB 121102 exhib-
ited all of the characteristics expected for a broadband,
dispersed pulse, and therefore clearly stood out from all
other candidate events that appeared in the pipeline out-
put for large DMs.

For T~m3 primordial black hole give signals  
in the cosmic ray spectrum

For T~m2 primordial black hole give signals  
in the radio: Fast Radio Bursts?

Fast Radio Bursts and White Hole Signals  
Aurélien Barrau, Carlo Rovelli, Francesca Vidotto. 
Phys.Rev. D90 (2014) 12, 127503 

Planck star phenomenology  
Aurelien Barrau, Carlo Rovelli.  
Phys.Lett. B739 (2014) 405 

Fast Radio Bursts

http://inspirehep.net/record/1316456
http://inspirehep.net/author/profile/Barrau%2C%20Aur%C3%A9lien?recid=1316456&ln=en
http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1316456&ln=en
http://inspirehep.net/author/profile/Vidotto%2C%20Francesca?recid=1316456&ln=en
http://inspirehep.net/record/1291921
http://inspirehep.net/author/profile/Barrau%2C%20Aurelien?recid=1291921&ln=en
http://inspirehep.net/author/profile/Rovelli%2C%20Carlo?recid=1291921&ln=en
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Main message: A quantum-gravity transition 
amplitude calculation can be done in the bulk.
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