Extensions of the cubic code model

Jeongwan Haah QuArc, Microsoft Research

Oct. 13, 2017
Frontiers of Quantum Information Physics KITP, UCSB

Cubic code model in 3D

$$
\begin{aligned}
H=-J \sum_{i \in \Lambda} & \left(\sigma_{i, 1}^{x} \sigma_{i, 2}^{x} \sigma_{i+\hat{x}, 1}^{x} \sigma_{i+\hat{y}, 1}^{x} \sigma_{i+\hat{z}, 1}^{x} \sigma_{i+\hat{y}+\hat{z}, 2}^{x} \sigma_{i+\hat{z}+\hat{x}, 2}^{x} \sigma_{i+\hat{x}+\hat{y}, 2}^{x}\right. \\
& \left.+\sigma_{i, 1}^{z} \sigma_{i, 2}^{z} \sigma_{i-\hat{x}, 2}^{z} \sigma_{i-\hat{y}, 2}^{z} \sigma_{i-\hat{z}, 2}^{z} \sigma_{i-\hat{y}-\hat{z}, 1}^{z} \sigma_{i-\hat{z}-\hat{x}, 1}^{z} \sigma_{i-\hat{x}-\hat{y}, 1}^{z}\right)
\end{aligned}
$$

- Robustly degenerate ground state subspace.
- Any topological excitations are point-like and immobile.
- The immobility is also robust.
- G.S. has a branching MERA that live in 5-space.
- Flat along 3D, Negatively curved along the emergent dimension.

Phases of matter for thermal Q memory in 3D?

- Want to remove point-like mobile particles.
- Thermally excited deconfined particles may destroy encoded qubit
- Only mobility removed, not the particle!
- Minimal energy barrier for any logical operator is only $\log L$.
- WISH:
- (1) Higher energy barrier,
- (2) Higher dimensionality of excitations

"Dimensional duality"

- Operators that act on the ground space have duality in dimension.
- In 2D, conj. op. of a string op. (1) is a string (1).
- In 3D, conj. op. of a string op. (1) is a membrane (2).
- In 4D, conj. op. of a membrane op. (2) is a membrane (2).
- Operator's min. dim. $\leq\left\lfloor\frac{D}{2}\right\rfloor$
- Excitation's min. dim. $\leq\left\lfloor\frac{D}{2}\right\rfloor-1$

Results

- In 5D, there exists a qubit gapped model without any point-like or string-like excitation, which must've existed under "dimensional duality."
- In 3D, there exists a rotor model where the energy barrier of isolating a charge is exponential** in the separation distance ℓ. ("Flux" can be arbitrarily small.)
. ** if the anti-particle is contained in a proper cone, and a charge q has energy $q^{\alpha>0}$.
- ** if a charge q has energy $\log (1+q)$, then energy barrier is $\geq \Omega(\ell)$.

Polynomial Representation and Extensions of Models

Cellular homology

$$
\begin{aligned}
& H_{k}(M)=\frac{\operatorname{ker} \partial_{k}}{i m \partial_{k+1}} \\
& H_{1}(\text { 珢来洮 }) ~ \\
& =\mathbb{Z}_{2}{ }^{2}
\end{aligned}
$$

Blind calculation of homology

- Polynomial representation of cells and boundary maps (all over $\mathbb{z} / 2 \mathbb{z}$)

$$
\begin{aligned}
& C_{0}=\left(x^{2}+x^{2} y+x y^{2}+x^{2} y^{2}+x^{3} y^{2}+x^{3} y^{3}\right) \\
& C_{1}=\binom{x y^{2}}{x^{2}+x^{3} y^{2}} \\
& \partial_{1}=(1+x, 1+y)
\end{aligned}
$$

subject to boundary conditions $x^{L}=1, y^{L}=1$

Hamiltonians realizing chain complexes

$$
\begin{aligned}
& \partial_{1}=(1+x 1+y), \quad \partial_{2}=\binom{1+y}{1+x}
\end{aligned}
$$

- Plaquette term is ∂_{2}.
- ∂_{1} describes the star-term violation upon action by σ^{z}.
- $\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=0$ without boundary \Leftrightarrow No local observable on G.S.
 \Leftrightarrow Error correcting code

Hamiltonians realizing chain complexes

$$
\partial_{1}=(1+x+y+z, 1+x y+y z+z x)
$$

$$
\partial_{2}=\binom{1+x y+y z+z x}{1+x+y+z}
$$

$\cdot \operatorname{ker} \partial_{1}=\operatorname{im} \partial_{2}$ without boundary

H from chain complex with coeff. in \mathbb{F}_{p}

Degeneracy $=p^{2 k}$

- The formula is uniform over p. Unless $p \mid L$, we have

$$
\begin{aligned}
\frac{k+1}{2}= & \operatorname{deg}_{t} \operatorname{gcd}\left[(1+t)^{L}-1,(1+\omega t)^{L}-1,\left(1+\omega^{2} t\right)^{L}-1\right] \\
& =1 \text { for all sufficiently large } p
\end{aligned}
$$

Hence, in $p \rightarrow \infty$,
G.S. consists of two rotors.

Only if $\mathrm{p} \ll L$.

Isolating a charge in U(1) model

$\cdot H=\sum_{c}\left(\sum_{i=1}^{8}-i \frac{\partial}{\partial \theta_{S_{c, i}}}\right)^{\alpha}-\sum_{c} \cos \left(\sum_{i=1}^{8} \theta_{\hat{S}_{c, i}}\right)+\lambda \sum_{s} L_{s}^{2}$

- Charge = violation of the "divergence" term (first term)
- "Anti"-charge at distance d has energy $\exp d$.
- Proof sketch: Energy $=\sum_{a, b, c} n_{a, b, c}^{\alpha}$

1. Overall configuration is created by some finitely supported operator.
2. $1+\sum_{a, b, c} n_{a, b, c,} x^{a} y^{b} z^{c}=u(x+y+z-3)+v(x y+y z+z x-3)$
3. There is a zero of RHS such that if all charges are contained in a cone,

$$
1 \leq \sum_{a, b, c}\left|n_{a, b, c}\right| \cdot\left|x_{0}^{a} y_{0}^{b} z_{0}^{c}\right| \leq(\# \text { terms })(\max n)(A>1)^{-d}
$$

4. $\max (\#$ terms, $\max n) \geq A^{d}$.

Step-back: Backbone chain complex

- ($a b) \circ\binom{b}{-a}: 2 D$ toric code/gauge theory
$\cdot(a b c) \circ\left(\begin{array}{ccc}0 & c & b \\ c & 0 & -a \\ -b & -a & 0\end{array}\right) \circ\left(\begin{array}{l}a \\ b \\ c\end{array}\right): 3 D$ toric code/gauge theory
$\cdot\left(\begin{array}{llll}a & b & c & d\end{array}\right) \circ\left(\begin{array}{cccccc}0 & 0 & 0 & d & c & b \\ 0 & d & c & 0 & 0 & -a \\ d & 0 & -b & 0 & -a & 0 \\ -c & -b & 0 & -a & 0 & 0\end{array}\right) \circ M_{6 \times 4} \circ M_{4 \times 1}$:
4 D gauge theory, two versions.
- As long as the entries are algebraically independent with coefficients in \mathbb{F}_{p}, the spin model under the prescription has robust ground state subspace below a gap.
- Shape of excitation largely depends on the backbone.
- Detail of entries determine whether excitations are fractons.

e.g., 5D model without string excitation

- Fill "4D-complex" with symmetric polynomials in 5 variables.
$\cdot(a b c d) \circ\left(\begin{array}{cccccc}0 & 0 & 0 & d & c & b \\ 0 & d & c & 0 & 0 & -a \\ d & 0 & -b & 0 & -a & 0 \\ -c & -b & 0 & -a & 0 & 0\end{array}\right) \circ M_{6 \times 4} \circ M_{4 \times 1}$
$\cdot \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}=\operatorname{sym}_{1,2,3,4}(x-1, y-1, z-1, v-1, w-1)$.
- Model from $1^{\text {st }}$: Immobile point-like excitations
- Model from $2^{\text {nd }} 0$: No point exc. \& No line exc.

Summary - Type Il fracton phases

- In 3+1D or higher, there exist robust gapped phases that are not captured by (existing) TQFT.
- Point-like charges may not be mobile.
- Not always dimensional duality between Wilson operators
- Minimal dimension of excitations can be $>\left\lfloor\frac{\text { space dim. }}{2}\right\rfloor-1$.
- Should redefine what "phase" is, mathematically.
- Some $U(1)$ analog contains dynamically heavy anticharges.
- Exp. in separation distance when in a cone. Similar to confinement, but totally different reason.
- MBL in a translation-invariant system?
- Do charge insertion op.s have finite energy, generically?

Misc.

Immobile Excitations

$$
\left\langle\psi_{1}\right| O T^{n}\left|\psi_{1}\right\rangle=0 \quad n \geq 1
$$

T is a translation along any direction.
O is supported on a ball that does not touch the boundary of the system

perhaps allowed

* Interaction-driven localization [Kim, JH, 1505.01480]

Braiding of extended charges

Wave function

$$
\begin{align*}
& \sigma^{x}=+ \\
& \sigma^{x}=-
\end{align*}
$$

Ground state is a condensate of "fractals" or "objects."

Entanglement RG

Entanglement RG fixed point

is a ground state of

Branching MERA

