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- Robustly degenerate ground state subspace.
- Any topological excitations are point-like and immobile.

- The immobility is also robust.
- (3.S. has a branching MERA that live in 5-space.

- Flat along 3D, Negatively curved along the emergent dimension.

Bravyi, Fu, JH, Kim, Nandkishore, Prem, Vijay, : 1101.1962, 1105.4159, 1310.4507, 1505.01480, 1603.04442, 1702.02952...



Degeneracy

Under periodic boundary conditions
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Phases of matter for thermal Q memory in 3D7

- Want to remove point-like mobile particles.
- Thermally excited deconfined particles may destroy encoded qubit

- Only mobility removed, not the particle!

- Minimal energy barrier for any logical operator
is only log L.

- WISH:

- (1) Higher energy barrier,
- (2) Higher dimensionality of excitations



‘Dimensional duality”

+ QOperators that act on the ground space have duality in
dimension.

n 2D, conj. op. of a string op. (1) is a string (1).

n 3D, conj. op. of a string op. (1) is a membrane (2).

n 4D, conj. op. of a membrane op. (2) is a membrane (2)

« QOperator’s min. dim. < E‘

o Excitation’s min. dim. < E‘ —1



Results

- In 5D, there exists a qubit gapped model
without any point-like or string-like excitation,
which must've existed under “‘dimensional duality!

- In 3D, there exists a rotor model where the energy barrier
of isolating a charge is exponential** in the separation
distance €. ("Flux” can be arbitrarily small.)

- ** if the anti-particle is contained in a proper cone,
and a charge g has energy q%~°.

- **if a charge g has energy log(1 + q), then energy barrier is = Q(¥).



Polynomial Representation and
Extensions of Models



Cellular homology
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Blind calculation of homology

- Polynomial representation of cells and boundary maps
(all over z/2z)

Co = (x% + x2y + xy? + x2y? + x3y? + x3y3)

co=( -
1 x? + x3y° :r:

subject to boundary conditions x* = 1,y" =1




Hamiltonians realizing chain complexes

Z

_Laz 51=(1+X 1+y), 02=(1+y)

_Z‘%DL 1+ x

- Plaquette term is 0.
- d; describes the star-term violation upon action by o?.

X% = 0 without boundary
im 0-

< No |local observable on G.S.
& Error correcting code



Hamiltonians realizing chain complexes
0o.=0A+x+y+z,1+xy+yz+ zx),

P _(1+xy+yz+zx)
27\ 14+x+y+z

- ker d; = im d, without boundary
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H from chain complex with coeft. in IF,,

0,=x+y+z—-3,xy+yz+zx — 3),
xy+yz+zx—3)

- 02=( x+y+z-—3
-
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Degeneracy = p2¥
- The formula is uniform over p. Unless p|L, we have

k+1
2

=deg, ged [(1+1)" — 1, (1+wt)* =1, (1 +w?t)" —1]

= 1 for all sufficiently large p

Q Hence, In p — oo,

G.S. consists of
two rotors.




Isolating a charge in U(1) model

a
.0
- H = ZC( 1~ i5g. ) —chos(2?=19§ai)+/125L§

- Charge = violation of the “divergence” term (first term)
- "Anti’-charge at distance d has energy exp d.
- Proof sketch: Energy =Yg pc Mo p e

1. Overall configuration is created by some finitely supported operator.
2. 1+ YapcNapcXxy?z¢ =ulx+y+2z—3)+v(xy +yz+zx — 3)

3. There is a zero of RHS such that if all charges are contained in a cone,
1< Zapclnapel - 1x6y52§] < (#terms)(maxn) (A > 1)~

4. max(#terms, maxn) > A%




Step-back: Backbone chain complex

- (ab)o (—ba): 2D toric code/gauge theory

0 C b a
+(abc)o ( c 0 —a) o <b>: 3D toric code/gauge theory

—b —a 0 C
0 0 0 d C b
0 d C 0 0 -—a
(abcd)o d 0 —b 0 —a © Mgxq © Myxq:
—c —b 0 —-—a 0 0

4D gauge theory, two versions.

- As long as the entries are algebraically independent with coefficients in Iy,
the spin model under the prescription has robust ground state subspace below a gap.

- Shape of excitation largely depends on the backbone.
- Detail of entries determine whether excitations are fractons.



e.g., 5D model without string excitation

- Fill "4D-complex”
with symmetric polynomials in 5 variables.

0 O 0 d C b
0 d 0 0 -
- (abcd)o J ¢ “ © Mgxa © Max1

O —-b O —a ©0
—c —-b 0 —a 0 0

+a,b,cd=sym,34,(x—1,y—-1,z—-1Lv—-1,w—-1)

- Model from Tt o: Immobile point-like excitations
- Model from 2" o: No point exc. & No line exc.




Summary — Type Il fracton phases

- In 3+1D or higher, there exist robust gapped phases that
are not captured by (existing) TQFT.

- Point-like charges may not be mobile.
- Not always dimensional duality between Wilson operators

space dim.
- Minimal dimension of excitations can be > { P ‘

- Should redefine what “phase” is, mathematlcally.

- Some U(T) analog contains dynamically heavy anticharges.

- Exp. in separation distance when in a cone.
Similar to confinement, but totally different reason.

- MBL in a translation-invariant system?
- Do charge insertion op.s have finite energy, generically?



MISC.



Immobile Excitations

(Y1|0T™|91) =0 n>1

T is a translation along any direction.
O is supported on a ball that does not touch the boundary of the system

perhaps allowed

» Interaction-driven localization [Kim, JH, 1505.01480]



Braiding of extended charges




Wave function

I 4
£ - 2
-rll |I.:'f
C L )

Ground state is a condensate of “fractals” or “objects.”




Fntanglement RG

R

. Disentangling and then Discarding,
26 2

JH, 1310.4507



Entanglement RG fixed point
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Branching MERA
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Apply quantum circuit of constant depth
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