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- Couple the spin to the transverse modes of the crystal (phonons)
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All-to-All Ising Model: One-body Observables

Coherent spin demagnetization observed 
experimentally: collapse of rescaled data

Decoherence

Bohnet et al., Science 352, 1297(2016)
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Can we understand what 
the system is doing in 
more detail with global 

measurements? 

A

LA = 1

Coherent spin demagnetization observed 
experimentally: collapse of rescaled data



 

 

N=40,60

All-to-All Ising Model: Entanglement

Entanglement entropy for the half-chain: features 
instead of the plateau
Caveats:
- Single site resolution (quantum gas microscope)

- Limited to ~10 ions
- Intractable for large systems

Experiments: A. Kaufman et al Science 353, 794 (2016) 



 

 

N=40,60

All-to-All Ising Model: Entanglement

Entanglement entropy for the half-chain: features 
instead of the plateau
Caveats:
- Single site resolution (quantum gas microscope)

- Limited to ~10 ions
- Intractable for large systems

Experiments: A. Kaufman et al Science 353, 794 (2016) 

Large system + absence of single site 
resolution? 
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Information stored in the initial (local) state is distributed , through the interactions, over 
many-body degrees of freedom of the system.

 

MQC in All-to-all Ising Model



Detailed structure of the state without 
single-site resolution

Information stored in the initial (local) state is distributed , through the interactions, over 
many-body degrees of freedom of the system.
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MQC in All-to-all Ising Model



Many-body Loschmidt echo

Fidelity Measurement 

tPrepare MeasureEvolve Time reverseRotate

e�iHt eiSx� eiHt�̂0 Tr [�̂0�̂f ]

 

 

 

 

Quantum Fisher Information (QFI)

- How much that state changes with respect to a rotation 

- Can show 

- MQC has even more information since not limited to small angles 

OTOC measurement but also connected to a multi-partite entanglement witness:  

FQ(�, A) � �2
d2

d�2
Tr[�̂0�̂f ]|�=0



Fidelity Measurement: Experimental Result 

Gärttner, Bohnet, ASN, Wall, Rey, Bollinger, Nature Physics 2017

→ OTOC witnesses multi-
particle entanglement! 
→ Experimentally measured 
the OTOC 
→ Fully benchmarked 
experimental system: spins + 
phonons + decoherence
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Light scattering

 

Not a fast scrambler

Obstacle: 

limited to 6.5% cat time 
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Magnetization 

tPrepare MeasureEvolve Time reverseRotate

e�iHt eiSx� eiHt�̂0 �Ŝx�

   

At least m terms

Fourier 
components of 
magnetization 
OTOC

How do the correlations propagate? 
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- Signals the buildup of at least 
m-body correlations

- Far less sensitive to 
decoherence

C0(�) � e���Cpure
0



Magnetization OTOC: Experimental Results 

HSS =
J

N
Ŝ2

z

J � 5kHz

N = 111

� = 93Hz

Global measurements + Time reversal
• OTOC 
• Benchmark the simulator 

• Decoherence and Hamiltonian 
• Characterization of the final 

state 
• Dynamics of correlations

Gärttner, Bohnet, ASN, Wall, Rey, Bollinger, Nature Physics 2017



Transverse Magnetic Field
- The most straight-forward next step experimentally:  

- Add a transverse field: non-commuting term

Ĥ = ��â†â � g(â + â†)Ŝz + B(t)Ŝx

Non-perturbative Magnus
XY
Transverse-field Ising

B/�

�t/(2�)

Wall, ASN, Rey, PRA 2017
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FIG. 3. Poincaré sections generated by monitoring the pair (l
x

, l
y

) at fixed values of the phase  , and at energies �✏ = 0.2|✏0|
above the ground state; only southern hemisphere shown since northern one remains empty. For each parameter value, �, nine
trajectories of di↵erent on-shell initial conditions are sampled. a) � = 0.2, b) � = 0.7, c) � = 0.9, d) � = 1.01, e) � = 1.5. What
looks like crossings in (b, c) is a reflection of the non-uniqueness of I(✏, , cos ✓,�), see App. B. Noteworthy is the predominance
of chaos in (e), for an energy as small as 20% of the maximum energy capacity of the spin.

FIG. 4. Poincaré sections as in Fig. 3, now sampled at large energies �✏ = 30|✏0|. Values of � as in previous figure. The
projection of the northern hemisphere, now fully covered by trajectories, looks qualitatively similar.

of Q continues, an ever finer, and eventually ’singular’
structure arises, where Q alternates infinitly rapidly be-
tween high and near vanishing values transverse to the
supporting stripe. Inasmuch as no region within the en-
ergy shell appears favored, a constant mean density will
arise. If one were to look at the ’fissured landscape’
formed by Q with finite resolution one would, from a
certain time on, just observe ’flatness’ at the mean value
of Qmentioned. In other words, one would see the micro-
canonical distribution: Q constant within and zero out-
side the energy shell. Expectation values of observables
like low-order powers of the photon number h(a†a)mi will
not register the ruggedness of Q but just ’pick up’ the
microcanonical shape. Somewhat cavalierly said, Q ef-
fectively equilibrates to the microcanonical distribution,
within a time of the order of the Ehrenfest time.

The foregoing scenario changes little if we imagine the
initial coherent state replaced by a squeezed minimum-
uncertainty state. Initial states with larger uncertainties
bring but two changes: (i) equilibration will happen even
faster, the time scale shrinking logarithmically with the
initial width, and (ii) the landscape underlying the e↵ec-
tively microcanonical Q can be smoother.

IV. QUANTUM DIFFUSION

Still confining ourselves to global chaos we now proceed
to studying how quantum di↵usion changes the e↵ective

equlibration just found for the classical drift. We shall
find a smoothing e↵ect of quantum fluctuations which
becomes e↵ective, roughly, at phase space length scales
⇠ p

~. To the best of our knowledge, our analysis of
the Dicke system represents the first case study where
the interplay of quantum fluctuations and nonlinear dy-
namics in the long time behavior of a chaotic quantum
system is resolved in concrete terms. A glance at the
quantum di↵usion operator (9) reveals that L

di↵

couples
oscillator variables to spin variables but does not include
second-order derivatives wrt only oscillator variables nor
wrt only spin variables. That structure is of course pre-
served when the canonical pairs (I, ) and (cos ✓,�) are
employed, as we imagine done here. A real symmetric
4⇥4 di↵usion matrix then arises which has vanishing ’di-
agonal’ 2 ⇥ 2 blocks and mutually Hermitian conjugate

’o↵-diagonal’ 2 ⇥ 2 blocks, D =
⇣

0

d†
d
0

⌘

. We shall not

need the explicit dependence of the o↵-diagonal blocks
d, d† on the variables I, cos ✓,� here but would like to
emphasize the smallness d / 1

j .

The ’chiral’ block structure of D entails a secular equa-
tion for the eigenvalues of the form �4 � �2 tr dd† +
det dd† = 0. The four eigenvalues of D thus come in two
plus/minus pairs ±D

1

,±D
2

where D2

1

, D2

2

are the eigen-
values of the non-negative 2⇥2 matrix dd†. Each of these
pairs is associated with an eigenvector pair defining a
contractive (�) resp. expansive (+) direction. In the ex-
pansive directions we confront normal di↵usion while for
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classical chaos with increasing g



Conclusions and Outlook
Benchmarking of a trapped-
ion simulator of Ising and 
Dicke models of ~100 ions

Observation of the 
dynamics of quantum 
coherences and 
correlations

Future Directions: 
- Scrambling in the Dicke model 
- States outside of the symmetric manifold 
- Dynamical phase transition in the Dicke model 
- Preparation of the spin-phonon cat state 

But what about our relatively simple model? 
• Fine grain information about the state only from global measurements 
• Characterize spread of coherences (Fidelity) and correlations (Magnetization) 
• Connection to entanglement witnesses (Fidelity) 
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Stroboscopic Spin Dynamics
Dynamics generated by: 

• Spin and motion decouple at 
specific times t = 2⇡n/�

U(t) = USP(t)USS(t)

HSP = D̂(�Ŝz) spin-dependent displacement of phonons

x
Re(�)

Im
(�

)

>

tn = 2�n/�

USP(tn) = I

J � 1/�

Stroboscopically measure the same dynamics as the Ising model: 

Uniform couplings when coupled only to the COM 
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