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Information, gravity, and geometry

Bekenstein;  Hawking;  Bousso;  Maldacena;  t’Hooft, Susskind;  Hayden, Preskill;  Pastowski, Yoshida, Harlow, Preskill; …

Black hole  
entropy                     S = A/4

This talk is about limitations on information storage in a volume of space, 
and the relationship between information and geometry of space.
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Quantum error correcting codes

An [[n,k,d]] quantum error correcting code is defined by three parameters:

• number of physical qubits n 
• number of logical qubits k 
• code distance d

Obviously, k ≤ n and d ≤ n, but not all triples are possible.  

However, it is known that random codes can achieve k ≥ Ω(n) and d ≥ Ω(n). 

What happens when we insist that our code 
has additional locality structure? 

No gravity in this talk, only codes, information, and geometry.



Topological codes

• k d2/(D-1) ≤ c n 
 

• k d1/(D-1) ≤ c n 
 

• k d1/2 ≤ c n 
 

• k d2 ≤ c n (log k)2

Distance d relates to the systole of the 
geometry, and we get tradeoff bounds for  
n = LD in a Euclidean lattice:

Subspace and commuting projector codes      
Bravyi, Poulin, Terhal

Bravyi, Poulin, Terhal;   
Yoshida

Subspace codes on D=2 hyperbolic lattice
Delfosse

Bravyi;  Bravyi Terhal;  
Bacon, SF, Harrow, Shi

Subsystem codes      

D=2 classical codes
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All of these results assume 
exact error correction. 
What happens when we 
have an ε of room?



Exact vs. approximate QEC

An exact quantum code can perfectly correct d-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore 
no code can correct more than t ≤ n/4 errors (cf. classical codes).
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Exact vs. approximate QEC

Crépeau, Gottesman, Smith (2005)

An exact quantum code can perfectly correct d-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore 
no code can correct more than t ≤ n/4 errors (cf. classical codes).

However, approximate quantum codes can correct t = n/2 errors…  
with exponential accuracy!

The CGS codes are highly nonlocal. But this example suggests that the 
approximate case can differ dramatically from the exact case.



Commuting projector codes

  is the code space

{Sj} [Sj , Sk] = 0 Sj = S2
j

⇧ =
Y

j

Sj C = {| i,⇧| i = | i}

C

A

B

C

⇤

Consider erasure errors on the region A
  is the lattice⇤

There are several different ways we might define correctability of 
the code space that would naturally lead to a notion of 
topological code

R is a purifying system
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(i) Topological order
(ii) Decoupling
(iii) Error correction
(iv) Disentangling unitary
(v) Cleaning



Cleanability

Given a correctable region with a logical operator, we can clean it 
so that the logical operator does not touch the region.
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Focus on topological codes; tradeoff bounds

Take as our basic definition



Approximate QEC

There exists a recovery map          such that for any code state  
                 the following holds:

A

B

R

Bures distance

Stabilized distance;      is a copy of the 
logical space.

B(⇢ABR,RAB
B (⇢BR))  �

⇢ABR 2 C
RAB

B

B(⇢,�)2 = 1� F (⇢,�)

R

Definition (approximate correctability):

F (⇢,�) = kp⇢
p
�k1



Approximate QEC

There exists a recovery map          such that for any code state  
                   the following holds:

state can be recovered without modifying        

RAB
B

Definition (local approximate correctability):

A

B

C

R

B(⇢ABCR,RAB
B (⇢BCR))  �

⇢ABCR 2 C

C

`



Equivalent formulations

               is in the code space        

Theorem (information-disturbance tradeoff):

⇢ABCR

         is some fixed state on       !A A

�`(A) := inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR)

A

B

C

R`

inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR) = inf
RAB

B

sup
⇢ABCR

B(RAB
B (⇢BCR), ⇢ABCR)
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Equivalent formulations

Theorem (information-disturbance tradeoff):

�`(A) := inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR)

Theorem (decoupling):
1

9
�`(A)2  sup

⇢ABCR

B(⇢ACR, ⇢A ⌦ ⇢CR)  2�`(A)

inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR) = inf
RAB

B

sup
⇢ABCR

B(RAB
B (⇢BCR), ⇢ABCR)

A

B

C
R

`

(Also need to prove B2 ≤ I(A:R) ≤ δ log(1/δ) )
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(iii) <=> (iv)
(iii) <=> (ii) but with different error order

Which properties can be extended to approximate codes?



Error correction      cleanability:)
If    is locally correctable: B(RAB

B (⇢BCR), ⇢ABCR)  �A

Then for any logical unitary         , the pull-back                            
satisfies

UABC V BC = (RAB
B )⇤(UABC)

||(UABC � V BC)⇧||  4
p
�

If for any        there exists a                  on     s.t. UAB ||V B ||  1 B ||(UABC � V BC)⇧||  �

Then there exists        s.t. !A ||⇢AB � !A ⌦ ⇢R||1  5�

A

B

C
R A

B

R

Error correction      cleanability:(

()
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(iii) <=> (iv)
(iii) <=> (ii) but with different error order
(iii) <=> (v) but with different error order 
and different locality constraints

Topological quantum 
order seems to be 
different!

Which properties can be extended to approximate codes?



BPT bound

Tradeoff bound

Toric code saturates the bound in 2D

Proof:

kd2  cn Subspace or commuting projector codes      
Bravyi, Poulin, Terhal

Expansion lemma
Union lemma
Counting degrees of freedom



Approximate BPT
Tradeoff bound

becomes

Proof:

kd2  cn

Approximate union bound

Approximate expansion bound
Need (iv) and (iii)

Need locality of recovery

A BC
D

A

C

B

✏ =
�

d/n

�
1� c ✏ log(1/✏)

�
kd2  c0n`4



BPT bound
kd2  cn

Expansion Lemma:

A B C

⇤

If    is correctable and     is correctable, then            is correctable.A B A [B

Proof:

correctableA

B

)

correctable )
D

⇢ACD = !A ⌦ ⇢CD

Define a map

(iv)

(iii)

FABC
C (⇢CD) = RABC

AC (!A ⌦ ⇢CD)

RABC
AC (⇢ACD) = ⇢ABCD

Show (iii) FABC
C (⇢CD) = RABC

AC (!A ⌦ ⇢CD) = RABC
AC (⇢ACD) = ⇢ABCD



BPT bound
kd2  cn

Union Lemma:

A

C ⇤

If    is correctable and     is correctable, then            is correctable.A B A [B

Proof:

correctableA

B

)

correctable )

(iii)

(iii)
B

@A @B

RB@B
@B (⇢⇤\B) = ⇢⇤

Clearly, RAB@B
@AB (⇢⇤\AB) = ⇢⇤

RA@A
@A (⇢⇤\A) = ⇢⇤



⇤

Proof:
Construct the largest square correctible region 
by adding ‘onion’ rings. A

B1 B2

Largest square region d2

Decompose the lattice as in Fig 2. 

X Y

ZI(X : R) = S(X) + S(R)� S(XR) = 0

   and     are correctable

S(Y ) + S(R)� S(Y R) = 0

X Y

Sum the two and use subadditivity to get
S(R)  S(Z)

Take identity state on code space
S(R) = k log(2) S(Z)  cn/d2and ) kd2  cn

Fig 2

�
1� c ✏ log(1/✏)

�
kd2  c0n`4
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Proof:
Construct the largest square correctible region 
by adding ‘onion’ rings. A

B1 B2

Largest square region d2

Decompose the lattice as in Fig 2. 

X Y

ZI(X : R) = S(X) + S(R)� S(XR) = 0

   and     are correctable

S(Y ) + S(R)� S(Y R) = 0

X Y

Sum the two and use subadditivity to get
S(R)  S(Z)

Take identity state on code space
S(R) = k log(2) S(Z)  cn/d2and ) kd2  cn

Fig 2

Need (iii) = (iv)

continuity of mutual information

�
1� c ✏ log(1/✏)

�
kd2  c0n`4



If the unitaries that commute with the code space are “flexible 
strings”, then the code space has bounded degeneracy.  
 
Thus we can derive one of the key assumptions of the 
algebraic theory of anyons, namely that there are only a 
bounded number of simple objects (anyon types). 

Finite anyon types

dim C  exp

�
O(`2)

�
Assuming flexible logical operators, we find that:



Further applications
Support of logical operators

C C



Saturating these bounds: From Circuits to Codes

Begin with a stabilizer 
code of your choice 
Write a Clifford quantum 
circuit for measuring the 
stabilizers of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities 
This defines the code

Circuit element Gauge generators

I XX,ZZ

H ZX,XZ

P Y X,ZZ

XX
X I ,

I I
XX , ZZ

I I ,
Z I
ZZ

h0| Z

|0i Z

Bacon, SF, A. Harrow, J. Shi, 2014



Circuits to codes

Concatenation of codes, 
localized on a 3D lattice 
Local subsystem codes 
exist with  
             d = O(LD-1-ε)  
and  
          ε = O(1/√log n) 
These codes reliably 
encode almost as much 
information as there is on 
the boundary.

Holographic information encoding

Highest level of concatenation

Total volume is n = LD

Bacon, SF, A. Harrow, J. Shi, 2014



Conclusions

Geometry alone constrains information storage, even with an ε .

Approximate Eastin-Knill theorem?

Applications to Holography? (MERA codes, Kastoryano & Kim?)

Fractional quantum Hall states?

Subsystem code version?

SF, J. Haah, M. Kastoryano, I. Kim, Quantum 1, 4 (2017), arXiv:1610.06169

Consistent definition of approximate topological quantum codes

Bacon, SF, A. Harrow, J. Shi, IEEE Tr. Inf. Th. 63, 2464 (2017), arXiv:1411.3334




