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Information, gravity, and geometry

This talk is about limitations on information storage in a volume of space,
and the relationship between information and geometry of space.

e '_6'0‘.‘ /) .-.‘.
Black hole &+ TR
entropy . .

Bekenstein; Hawking; Bousso; Maldacena; t’Hooft, Susskind; Hayden, Preskill, Pastowski, Yoshida, Harlow, Preskill; ...



Information, gravity, and geometry

This talk is about U volume of space,
and the relations String Theory  MiS[eCIeE]

gravity

......

,,,,,

no gravity

Particle Theory

Black hole " - . .
‘e'ntr.opy L 8=A/4

Bekenstein; Hawking; Bousso; Maldacena; t’Hooft, Susskind; Hayden, Preskill, Pastowski, Yoshida, Harlow, Preskill; ...



Information_aravitv_and ceometryv

..........................................................................................................

Also in 1935, Einstein and Rosen (ER) showed that widely separated
black holes can be connected by a tunnel through space-time now
often known as a wormhole.
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Physicists suspect that the connection in a wormhole
and the connection in quantum entanglement

are the same thing, just on a vastly different scale
Aside from their size there is no fundamental difference.
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Quantum error correcting codes

No gravity in this talk, only codes, information, and geometry.
An [|n,k,d]] guantum error correcting code is defined by three parameters:

number of physical qubits n
number of logical qubits k

code distance d

Obviously, k < n and d < n, but not all triples are possible.

However, it is known that random codes can achieve k = Q(n) and d = Q2(n).

What happens when we insist that our code
has additional locality structure?



Topological codes

Distance d relates to the systole of the
geometry, and we get tradeoff bounds for
n = LP in a Euclidean lattice:
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Topological codes

Distance d relates to the systole of the

geometry, and we get tradeoff bounds for
n = LP in a Euclidean lattice:
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Bravyi, Poulin, Terhal
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Subsystem codes
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. kd"2<cn exact error correction.
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=xact vs. approximate QEC

An exact quantum code can perfectly correct d-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore
NO code can correct more than t < n/4 errors (cf. classical codes).
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=xact vs. approximate QEC

An exact quantum code can perfectly correct d-1 erasure errors.

Equivalently, it can perfectly correct any t = (d-1)/2 arbitrary single-qubit errors.

By the no-cloning theorem, no code can correct n/2 erasure errors, therefore
NO code can correct more than t < n/4 errors (cf. classical codes).

However, approximate quantum codes can correct t = n/2 errors...
with exponential accuracy!

Crépeau, Gottesman, Smith (2005)

The CGS codes are highly nonlocal. But this example suggests that the
approximate case can differ dramatically from the exact case.



Commuting projector codes

m=[[s c={w)mw) =) B
J

=) C isthe code space = A is the lattice
=) Consider erasure errors on the region A

A
R Is a purifying system

There are several different ways we might define correctability of
m) the code space that would naturally lead to a notion of
topological code



Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is at least ¢ > w, the interaction range (e.g. as in Fig. 3.) Then the
following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O 4 with support on A, any two ground states
) and |[¢) give the same expectation value, (¢| O? |¢) = (| OA ).

(it) Decoupling: For any p € C we have I,(A: CR) = 0.

(#4i) Error correction: There exists a recovery map acting on AB such that RgB (pBC) = pABC for any
p € II.
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for some state w? B,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VBC such that U| ; =
VBCI |
C
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Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C 1is at least £ > w, the interaction range (e.g. as in Fig. 3.) Then the
following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O 4 with support on A, any two ground states
) and ) give the same expectation value, (¢| O |p) = (1| OA ).
(i2) Decoupling: For any p € C we have I,(A: CR) = 0.
(#5i) Error correction: There exists a recovery map acting on AB such that R4B(pPC) = pABC for any
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ByC

(iv) Disentangling unitary: For any p € C there exists a unitary UP, such that UPpU®P T = wAB1 g pB2C
for some state w™P1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VB¢ such that U| ; =
VBC

C
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(iv) Disentangling unitary

v) Cleaning



Cleanabillity

Given a correctable region with a logical operator, we can clean it
so that the logical operator does not touch the region.
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that the distance between A and C 1is at least £ > w, the interaction range (e.g. as in Fig. 3.) Then the
following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O 4 with support on A, any two ground states
) and ) give the same expectation value, (¢| O |p) = (1| OA ).

(i2) Decoupling: For any p € C we have I,(A: CR) = 0.

(iii) Error correction: There exists a recovery map acting on AB such that R3P(pBY) = pBC for any
_p€El

L

(iv) Disentangling unitary: For any p € C there exists a unitary UP, such that UBpUPT = wAB1 g pB2C
for some state w?P.

(v) Cleaning: For any unitary U preserving the code space, tlze#e exists a unitary VBC such that Ul ; =
VBC’
C

Which properties can be extended to approximiate codes”?

=) Focus on topological codes; tradeoff bounds

Take as our basic definition




Approximate QEC

=) Bures distance B(p,0)? =1— F(p,0)
F(p,0) = |lv/pvol

= Stabilized distance; R is a copy of the
logical space.




Approximate QEC

=) state can be recovered without modifying C




Equivalent formulations

5£(A) .= inf sup B((,UA R ,OCR,IOACR)

A
w pABC’R

=) PR isin the code space

—> w? is some fixed state on A
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Equivalent formulations

5;(A) :=inf sup B(w? @ pF, pACHE)

wA pABCR

(Also need to prove B < I(A:R) < & log(1/06) )
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Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C 1is at least ¢ > w, the interaction range (e.g. as in Fig. 3.) Then the
following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O 4 with support on A, any two ground states
) and |v) give the same expectation value, (¢| 04 |p) = (1| O4 [v).

\(}W Decoupling: For any p € C we have I,(A: CR) = 0.

(#4) Error correction: There exists a recovery map acting on AB such that RgB(pBC) = pABC for any
\//pEIl

(iv) Disentangling unitary: For any p € C there exists a unitary UsB , such that U B pU Bt — wyAB1 g p”-’("',

| for some state wP1.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VP such that U| ; =
VBC|
C

Which properties can be extended to approximate codes”

(ill) <=> (iv) | | T~
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(i) <=> (ii) but with different error order > order seems to be

(i) <=> (v) but with different error order

_ different!
and different locality constraints




SPT bound

Tradeoff bound

{ 2 ' .
' kd“ < en |Subspace or commuting projector codes
Bravyi, Poulin, Terhal

=) Toric code saturates the bound in 2D

Proof:
@ Expansion lemma

@ Union lemma

@ (Counting degrees of freedom



Approximate BPT

Tradeoff bound

‘ kd? < en becomes i (1 — celog(l/e))kd2 < nb?

Proof:

@ Approximate expansion bound
m  Need (iv) and (jii)

@ Approximate union bound

=)  Need locality of recovery




1 kd® < en

BPT bound

Proof:
A correctable = pACD —w?® ,OCD (iv)
B correctable = RABC(,OACD) = pABOD i)

Define amap  FABC (pCP) = RABC (A @ p©P)

Show (iii) JT.'ABC( C’D) RABC(LUA ®,OC ) RABC’( AC’D) _ ,OABCD



) kd® < en

BPT bound

Proof:
A correctable = R4 (pM\A) = pt (i)
B correctable =  REIP (pM\B) = ph (i)

Clearly, Rixp’ (pM\AF) = ph



i (1 —celog(1/e))kd® < nt*

Proof: B, B,

Construct the largest square correctible region \
by adding ‘onion’ rings. A

=) |argest square region d?

Decompose the lattice as in Fig 2.
X andY are correctable
I(X:R)=5X)+S(R)—S(XR)=0 VA
SY)+S(R)—S(YR)=0

Sum the two and use subadditivity to get
S(R) < 5(2) Fig 2

Take identity state on code space
S(R) =klog(2) and S(Z)<en/d® = kd* <cn N



i (1 —celog(1/e))kd® < nt*

Proof: B, B,

———————— \\

Construct the largest square correctible region X

by adding ‘onion’ rings. A
=) |argest square region d?

Decompose the lattice as in Fi

=
"

Need (i) = (v)

X andY are correctable

I(X :R) = S(X) + S(R) — S(XR) =0 A

Fig 2

Take identity state on code space
S(R) =klog(2) and S(Z)<en/d® = kd* <cn N



Finite anyon types

If the unitaries that commute with the code space are “flexible
strings”, then the code space has bounded degeneracy.

Thus we can derive one of the key assumptions of the
algebraic theory of anyons, namely that there are only a
bounded number of simple objects (anyon types).

Definition 14. A subspace Il on a two-dimensional system admits flexible (logical) operators if
for any logical unitary operator UXY 4 there exist operators ‘f"",} Z supported on YZ and \2\ Z onXZ
such that |V;|| < 1, ||I(U — V;)|| < €¢, and ||(U — V;)I1|| < €7, where i = 1,2 and ¢; is independent of

system size and vanishes as { — o0.

Assuming flexible logical operators, we find that:

dimC < exp(O()




Further applications

Support of logical operators

Theorem  For any (6, f)-correctable code C with dim C > 1 on a D-dimensional lattice of linear size
L, if 10L3 < ¢, then the code distance is bounded from above by 5¢LP~1.

Theorem . For any (6,£)-correctable code of code distance d on a D-dimensional lattice with Euclidean

geometry of linear size L, there exists a region Y that contains d qubits such that every logical operator
U can be approxzimated by an operator V- on Y where




Saturating these bounds: From Circuits to Codes

% Begin with a stabilizer

Code Of yOur Cholce Circuit element Gauge generators
|
: : — 7 — XX, 27
% Write a Clifford guantum ! ’
CIrCU.I’[. for measuring the el IX. X2
stabilizers of this code.
. . | p— YX. ZZ
% Turn the circuit elements il

X1’ XX’ 11’ ZZ

into input/output qubits l XX 11 22 71

% Add gauge generators via
Pauli circuit identities (0] — Z

s This defines the code — |0) Z

Bacon, SF, A. Harrow, J. Shi, 2014



Circuits to codes

Holographic information encoding

e e e e e e e e T I e e e e e I T I e I I T 27
S L S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
A A A A A A S A A A A~
S L S S S S S S S S S S S S S S S S S S S S S S S S S S S S S -
gyttt
S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S -

% (Concatenation of codes,
localized on a 3D lattice

AL A A A A A A A A A A A A A A ey
A A A A A A A A A A A A A A A ey
A A S A A A A A A S A A A A~

I
Z/\

A

\

Local subsystem codes
exist with e A A

////////////////////
VA AL e
VAR s—————

o D-1-¢ e A — i
d o O(L ) /////////////////

and //////////////
e = O(1/ylog n) ST T T

# These codes reliably / / /

encode almost as much
Information as there i1s on
the boundary. Total volume isn = LP

A\
]\

VAL m———
VAL LS ———a— /// / /
L L L L L L L L L L L L L L L ///

Highest level of concatenation

Bacon, SF, A. Harrow, J. Shi, 2014



Conclusions

Consistent definition of approximate topological guantum codes

Geometry alone constrains information storage, even with an € .

Fractional quantum Hall states?

Applications to Holography”? (MERA codes, Kastoryano & Kim?)

Approximate Eastin-Knill theorem®?

Subsystem code version?

Sk J. Haah, M. Kastoryano, |. Kim, Quantum 1, 4 (2017), arXiv:1610.06169

Bacon, SF, A. Harrow, J. Shi, [EEE Tr. Inf. Th. 63, 2464 (2017), arXiv:1411.3334
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