Information Loss in Quantum Field Theory

David Poulin

w/ J. Preskill

Institut Quantique & Département de Physique Université de Sherbrooke

Frontiers of Quantum Information Physics Kalvi Institute for Theoretical Physics, Santa Barbara, CA, USA, October 2017

Outline

2 A free field model

- 3 Stochastic Interactions
- 4 Discussion

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - the even of begapes worksmoother something matter problem in the most horizon to the second to the second to the
 - Need to modify space-time geometry.
 - Protect unitarity by holography; AdS-OFT correspondence.
 - NO
 - This breaks OM as we know it...
 - How do we prevent such non-unitary processes from tricking down to every day GM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from Infailing matter somehow escaped the event horizon a Next to provide state of the product of the second state of the
 - Meetric model) space-time geometry.
 - Protect unitarity by holography, AdS-GFT correspondence.
 - NO
 - This breaks OM as we know it:
 - How do we prevent such non-unitary processes from trickling down to every day GM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects.

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects.

- Nothing can escape from the interior of a black hole event horizon.
- Semi-classical calculations predict that black holes evaporate through radiation.
- Is this process unitary?
 - YES
 - Information from infalling matter somehow escaped the event horizon.
 - Need to modify space-time geometry.
 - Protect unitarity by holography, AdS-CFT correspondence.
 - NO
 - This breaks QM as we know it.
 - How do we prevent such non-unitary processes from trickling down to every day QM?
- Current trend is to assume evaporation is unitary.
- I'm going to assume it's not.
 - What assumptions are required for alternative to unitarity.
 - Models to guide experiments in quantum gravitational effects.

Lots of models

- Hawking, Commun. Math. Phys. 1982.
- Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
- Unruh and Wald, Phys. Rev. D 1995.
- etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

Lots of models

- Hawking, Commun. Math. Phys. 1982.
- Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
- Unruh and Wald, Phys. Rev. D 1995.
- etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993

• etc.

• Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.

• Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\dot{\rho} = \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x$$
$$= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x$$

- Lots of models
 - Hawking, Commun. Math. Phys. 1982.
 - Ellis, Hagelin, Nanopoulos, and Srednicki, Nucl. Phys. B 1984.
 - Unruh and Wald, Phys. Rev. D 1995.
 - etc.
- ... and no-go theorems.
 - Banks, Susskind, and Peskin, Nuc. Phys. B 1984
 - Gross, Nuc. Phys. B 1984
 - Srednicki, Nucl. Phys. B 1993
 - etc.
- Also related to collapse models, widely studied.

$$\begin{split} \dot{\rho} &= \int -i[\mathcal{H}(x),\rho] + \sum_{a} L(x)_{a}\rho L_{a}(x)^{\dagger} - \frac{1}{2} \{L_{a}(x)^{\dagger}L_{a}(x),\rho\} d^{3}x \\ &= \int -i[\mathcal{H}(x),\rho] + \mathcal{L}(x)\rho d^{3}x \end{split}$$

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator
 L = I + iA ⇔ H' = H + A.
 - The vacuum is unstable, particle creation at infinite rate.

• Locality: do we need it?

- Locality is how we enforce causality in (unitary) QFT.
- The relation between locality and causality breaks down in irreversible theories.
- E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

• See also Beckman, Gottesman, Nielsen, and Preskill *Phys. Rev.* A 2001; Oppenheim & Reznik arXiv:0902.2361 2009.

D. Poulin (IQ Sherbrooke)

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

• Energy conservation: not even defined!

- Hamiltonian = time translation generator, but not here!
- The Hamiltonian is not uniquely defined: add jump operator $L = I + iA \iff H' = H + A.$
- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator $L = I + iA \iff H' = H + A.$
 - The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

• The vacuum is unstable, particle creation at infinite rate.

Locality: do we need it?

- Locality is how we enforce causality in (unitary) QFT.
- The relation between locality and causality breaks down in irreversible theories.
- E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).
BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

• See also Beckman, Gottesman, Nielsen, and Preskill *Phys. Rev.* A 2001; Oppenheim & Reznik arXiv:0902.2361 2009.

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

• See also Beckman, Gottesman, Nielsen, and Preskill *Phys. Rev.* A 2001; Oppenheim & Reznik arXiv:0902.2361 2009.

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).

• See also Beckman, Gottesman, Nielsen, and Preskill *Phys. Rev.* A 2001; Oppenheim & Reznik arXiv:0902.2361 2009.

BPS (and others)

Local, Lorentz-covariant Lindblad field theory cannot preserve energy.

- Energy conservation: not even defined!
 - Hamiltonian = time translation generator, but not here!
 - The Hamiltonian is not uniquely defined: add jump operator

$$L = I + iA \quad \Leftrightarrow \quad H' = H + A.$$

- The vacuum is unstable, particle creation at infinite rate.
- Locality: do we need it?
 - Locality is how we enforce causality in (unitary) QFT.
 - The relation between locality and causality breaks down in irreversible theories.
 - E.g. relaxation into singlet state is non-local but does not enable signaling (PR box).
- See also Beckman, Gottesman, Nielsen, and Preskill *Phys. Rev. A* 2001; Oppenheim & Reznik arXiv:0902.2361 2009.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Our goal

- I do not mind breaking theoretical constructs that build on the premise that QM is unitary.
 - Noether's theorem.
 - Cluster decomplsition, etc.
- I do mind breaking these relations under well tested conditions: recover ordinary QFT at low energy and/or flat space.
 - Theory in which non-unitary terms are irrelevant under RG flow?
 - A fault-tolerant quantum computer provides an example of how, in principle, unitary evolution can emerge as a 'low energy' limit of an intrinsically noisy theory.

Outline

- A free field model
- 3 Stochastic Interactions
- 4 Discussion

In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:

• For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.

• For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_b(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.

- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_b(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_b(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_{b}(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_{b}(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_{b}(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- In ordinary field theory, *H* transforms like the 0-th component of a 4-vector *T^μ* = (*H*, **P**), so evolution is covariant:
 - For a 4-vector b_{μ} , define CPTP map $\mathcal{E}_b(\rho) = e^{-ib_{\mu}T^{\mu}}\rho e^{ib_{\mu}T^{\mu}}$.
 - For Lorentz transform Λ , we have $U_{\Lambda}\mathcal{E}_{b}(\rho)U_{\Lambda}^{\dagger} = \mathcal{E}_{\Lambda^{-1}b}(U_{\Lambda}\rho U_{\lambda}^{\dagger})$.
- Generalizing, we need a superoperator *L* that transforms like the 0-th component of a 4-vector.
 - Space-like translations use ordinary displacement operators.
 - Time-like translations use such Lindblad translation superoperators.
 - Poincaré transformations no longer form a group.

- Start with a free scalar theory $H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (\pi^2 + m^2\phi^2 + (\nabla\phi)^2).$
- Consider positive frequency component of field operators π⁺(x).
 Use them as jump operators

$$\dot{\rho} = -i[H,\rho] + \gamma \int d^3x \left[2\pi^-\rho\pi^+ - \{\pi^+\pi^-,\rho\}\right]$$

In momentum space,

$$\dot{\rho} = \int \frac{d^3p}{(2\pi)^3} \omega_p \Big(\gamma a_p \rho a_p^{\dagger} - \frac{\gamma}{2} \{ a_p^{\dagger} a_p, \rho \} - i[a_p^{\dagger} a_p, \rho] \Big)$$

- Start with a free scalar theory $H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (\pi^2 + m^2\phi^2 + (\nabla\phi)^2).$
- Consider positive frequency component of field operators π⁺(x).
 Use them as jump operators

$$\dot{\rho} = -i[H,\rho] + \gamma \int d^3x \left[2\pi^-\rho\pi^+ - \{\pi^+\pi^-,\rho\}\right]$$

In momentum space,

$$\dot{\rho} = \int \frac{d^3p}{(2\pi)^3} \omega_p \Big(\gamma a_p \rho a_p^{\dagger} - \frac{\gamma}{2} \{ a_p^{\dagger} a_p, \rho \} - i[a_p^{\dagger} a_p, \rho] \Big)$$

- Start with a free scalar theory $H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (\pi^2 + m^2\phi^2 + (\nabla\phi)^2).$
- Consider positive frequency component of field operators $\pi^+(x)$.
- Use them as jump operators

$$\dot{
ho} = -i[H,
ho] + \gamma \int d^3x \left[2\pi^-
ho \pi^+ - \{\pi^+ \pi^-,
ho\} \right]$$

In momentum space,

$$\dot{\rho} = \int \frac{d^3p}{(2\pi)^3} \omega_p \Big(\gamma a_p \rho a_p^{\dagger} - \frac{\gamma}{2} \{ a_p^{\dagger} a_p, \rho \} - i[a_p^{\dagger} a_p, \rho] \Big)$$

- Start with a free scalar theory $H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (\pi^2 + m^2\phi^2 + (\nabla\phi)^2).$
- Consider positive frequency component of field operators $\pi^+(x)$.
- Use them as jump operators

$$\dot{\rho} = -i[H, \rho] + \gamma \int d^3x \left[2\pi^- \rho \pi^+ - \{\pi^+ \pi^-, \rho\} \right]$$

In momentum space,

$$\dot{\rho} = \int \frac{d^3p}{(2\pi)^3} \omega_{\rho} \Big(\gamma a_{\rho} \rho a_{\rho}^{\dagger} - \frac{\gamma}{2} \{ a_{\rho}^{\dagger} a_{\rho}, \rho \} - i[a_{\rho}^{\dagger} a_{\rho}, \rho] \Big)$$

- Start with a free scalar theory $H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (\pi^2 + m^2\phi^2 + (\nabla\phi)^2).$
- Consider positive frequency component of field operators $\pi^+(x)$.
- Use them as jump operators

$$\dot{\rho} = -i[H, \rho] + \gamma \int d^3x \left[2\pi^- \rho \pi^+ - \{\pi^+ \pi^-, \rho\} \right]$$

In momentum space,

$$\dot{\rho} = \int \frac{d^3p}{(2\pi)^3} \omega_p \Big(\gamma a_p \rho a_p^{\dagger} - \frac{\gamma}{2} \{ a_p^{\dagger} a_p, \rho \} - i[a_p^{\dagger} a_p, \rho] \Big)$$

• Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$

- All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
- Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

- Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$
 - All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
 - Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

• Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$

- All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
- Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

- Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$
 - All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
 - Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

- Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$
 - All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
 - Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

- Vacuum is stable, in fact, it is the fixed point: $\mathcal{E}(\Omega) = \Omega$
 - All (most?) previous models had only considered Hermitian jump operators, in which case the resulting CPTP map is unital: *E*(*I*) = *I*.
 - Previous no-go results ⇔ unital CPTP map have infinite temperature fixed point, hence no stable vacuum.
- Decay rate of mode p is $\gamma \omega_p$.
 - By setting γ small enough, we can imagine having negligible decay in everyday experiments, but fast entropy production at Plankian energies or on cosmological scales.
 - Theory is almost unitary at low energy.

This is NOT a local Lindblad equation, π⁺(x) is not a local operator.

- $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
- $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. $m = m_P$?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L}=\mathcal{H}_{ ext{Ordinary fields}}+\mathcal{L}_{ ext{Heavy, damped field}}+\mathcal{H}_{ ext{Hybridization}}$

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. m = m_P?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L}=\mathcal{H}_{ ext{Ordinary fields}}+\mathcal{L}_{ ext{Heavy, damped field}}+\mathcal{H}_{ ext{Hybridization}}$

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. $m = m_P$?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L}=\mathcal{H}_{ ext{Ordinary fields}}+\mathcal{L}_{ ext{Heavy, damped field}}$ field $+\mathcal{H}_{ ext{Hybridization}}$

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. m = m_P?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L} = \mathcal{H}_{\text{Ordinary fields}} + \mathcal{L}_{\text{Heavy, damped field}} + \mathcal{H}_{\text{Hybridization}}$

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. $m = m_P$?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L} = \mathcal{H}_{\textit{Ordinary fields}} + \mathcal{L}_{\textit{Heavy, damped field}} + \mathcal{H}_{\textit{Hybridization}}$

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. $m = m_P$?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L} = \mathcal{H}_{\textit{Ordinary fields}} + \mathcal{L}_{\textit{Heavy, damped field}} + \mathcal{H}_{\textit{Hybridization}}$
Locality and Causality

- This is NOT a local Lindblad equation, π⁺(x) is not a local operator.
 - $[\pi^+(x), \phi(y)]$ does not vanish when $x \neq y$, but decays exponentially with range 1/m.
 - $[\mathcal{E}_t^{\dagger}(\phi(x)), \phi(y)]$ has an exponential tail outside the lightcone.
- Causality is violated on a microscopic length scale 1/m.
 - Motivation to consider heavy field, e.g. $m = m_P$?
 - Information loss on other species would be highly suppressed at low energy since this heavy field is far off shell.

 $\mathcal{L} = \mathcal{H}_{\textit{Ordinary fields}} + \mathcal{L}_{\textit{Heavy, damped field}} + \mathcal{H}_{\textit{Hybridization}}$

• What's the shortest scale on which causality has been tested?

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 The action of our model does not guite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

where
$$\phi_q = (\phi_L - \phi_R)/\sqrt{2}$$
 and $\phi_c = (\phi_L + \phi_R)/\sqrt{2}$.

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on $V(\phi)$, we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on V(φ), we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

- Is the theory stable when we add interactions, e.g. ϕ^4 ?
 - In general, Lindblad QFT can be renormalized, see e.g. Avinash, Jana, Loganayagam, and Rudra 2017 (based on DP&Preskill).
 - The action of our model does not quite fit the formalism

$$\int d^4x \left(\partial_\mu \phi_c \partial^\mu \phi_q + i\gamma (m^2 \phi_q^2 + \dot{\phi}_q^2 + (\nabla \phi_q)^2) - V(\phi_L) + V(\phi_R) \right),$$

- Heuristically, if there is a gap and we adiabatically turn on V(φ), we should dress the vacuum and the jump operators simultaneously, and preserve a stable vacuum.
- This remains an important open question.
- Non-unitary QFT with irrelevant jump operators?
 - In principle, jump operators with large mass dimension.
 - Emerging unitarity.

Outline

2 A free field model

4 Discussion

 In unitary QM, if A is quantum mechanical and the state of A influences the evolution of B, then B must be quantum mechanical:

$$\begin{array}{c} \psi_{A}^{1}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{1}\Lambda_{B}^{1} \\ \psi_{A}^{2}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{2}\Lambda_{B}^{2} \end{array} \right\} \Rightarrow (|\psi_{A}^{1}\rangle + |\psi_{A}^{2}\rangle)|\Omega_{B}\rangle \xrightarrow{\text{time}} |\phi_{A}^{1}\rangle|\Lambda_{B}^{1}\rangle + |\phi_{A}^{2}\rangle|\Lambda_{B}^{2}\rangle$$

- With a Lindbladian, it is possible to couple quantum A to classical B, such that the state of A influences the evolution of B and vice versa:
 - ρ_{AB} is block-diagonal in some classical basis of B:

$$\rho_{AB}(t) = \sum_{\alpha} \rho_A^{\alpha}(t) \otimes |\alpha\rangle \langle \alpha|_B.$$

 In unitary QM, if A is quantum mechanical and the state of A influences the evolution of B, then B must be quantum mechanical:

$$\begin{array}{c} \psi_{A}^{1}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{1}\Lambda_{B}^{1} \\ \psi_{A}^{2}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{2}\Lambda_{B}^{2} \end{array} \right\} \Rightarrow (|\psi_{A}^{1}\rangle + |\psi_{A}^{2}\rangle)|\Omega_{B}\rangle \xrightarrow{\text{time}} |\phi_{A}^{1}\rangle|\Lambda_{B}^{1}\rangle + |\phi_{A}^{2}\rangle|\Lambda_{B}^{2}\rangle$$

• With a Lindbladian, it is possible to couple quantum A to classical B, such that the state of A influences the evolution of B and vice versa:

• *ρ_{AB}* is block-diagonal in some classical basis of B:

$$\rho_{AB}(t) = \sum_{\alpha} \rho_A^{\alpha}(t) \otimes |\alpha\rangle\!\langle \alpha|_B.$$

 In unitary QM, if A is quantum mechanical and the state of A influences the evolution of B, then B must be quantum mechanical:

$$\begin{array}{c} \psi_{A}^{1}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{1}\Lambda_{B}^{1} \\ \psi_{A}^{2}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{2}\Lambda_{B}^{2} \end{array} \right\} \Rightarrow (|\psi_{A}^{1}\rangle + |\psi_{A}^{2}\rangle)|\Omega_{B}\rangle \xrightarrow{\text{time}} |\phi_{A}^{1}\rangle|\Lambda_{B}^{1}\rangle + |\phi_{A}^{2}\rangle|\Lambda_{B}^{2}\rangle$$

- With a Lindbladian, it is possible to couple quantum A to classical B, such that the state of A influences the evolution of B and vice versa:
 - *ρ_{AB}* is block-diagonal in some classical basis of B:

$$\rho_{AB}(t) = \sum_{\alpha} \rho_A^{\alpha}(t) \otimes |\alpha\rangle \langle \alpha|_B.$$

 In unitary QM, if A is quantum mechanical and the state of A influences the evolution of B, then B must be quantum mechanical:

$$\begin{array}{c} \psi_{A}^{1}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{1}\Lambda_{B}^{1} \\ \psi_{A}^{2}\Omega_{B} \xrightarrow{\text{time}} \phi_{A}^{2}\Lambda_{B}^{2} \end{array} \right\} \Rightarrow (|\psi_{A}^{1}\rangle + |\psi_{A}^{2}\rangle)|\Omega_{B}\rangle \xrightarrow{\text{time}} |\phi_{A}^{1}\rangle|\Lambda_{B}^{1}\rangle + |\phi_{A}^{2}\rangle|\Lambda_{B}^{2}\rangle$$

- With a Lindbladian, it is possible to couple quantum A to classical B, such that the state of A influences the evolution of B and vice versa:
 - *ρ_{AB}* is block-diagonal in some classical basis of B:

$$\rho_{AB}(t) = \sum_{\alpha} \rho_A^{\alpha}(t) \otimes |\alpha\rangle \langle \alpha|_B.$$

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system AB is a semidefiniteoperator-valued distribution on the phase space ρ(α, t)
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is ρ(α, t)/P_B(α, t).
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system AB is a semidefiniteoperator-valued distribution on the phase space ρ(α, t)
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system AB is a semidefiniteoperator-valued distribution on the phase space ρ(α, t)
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system *AB* is a semidefiniteoperator-valued distribution on the phase space $\rho(\alpha, t)$
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system *AB* is a semidefiniteoperator-valued distribution on the phase space $\rho(\alpha, t)$
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system AB is a semidefiniteoperator-valued distribution on the phase space ρ(α, t)
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha],\rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system AB is a semidefiniteoperator-valued distribution on the phase space ρ(α, t)
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha], \rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

- Assume now that *B* is a classical system, and that *α* label a phase space coordinate, e.g., *α* = (*x*, *p*).
- The state of a quantum-classical system *AB* is a semidefiniteoperator-valued distribution on the phase space $\rho(\alpha, t)$
 - State of the classical system is $P_B(\alpha, t) = \text{Tr}\rho(\alpha, t)$.
 - State of the quantum system conditioned on classical system taking value α is $\rho(\alpha, t)/P_B(\alpha, t)$.
- For instance, when $\alpha = (x, p)$,

$$\dot{\rho}(\alpha) = \mathcal{L}(\alpha)[\rho(\alpha)] + \sum_{j} \mathcal{L}_{j}(\alpha) \left[\frac{\partial}{\partial \alpha_{j}}\rho(\alpha)\right] + \left\{H[\alpha],\rho(\alpha)\right\}_{\text{Poisson}}$$

- Evolution of mutually influencing quantum-classical system, causal, and fully consistent with QM.
 - Quantum evolution with arbitrary dependence on classical state.
 - Classical rate equation depends linearly on quantum expectation values.

Classical-Quantum field theory

- In field theory, there is a sub-normalized density matrix of some quantum field Ψ_q(x) associated to every configuration of a classical field φ_c and its conjugate momentum π_c:
 ⟨Ψ_q|ρ(φ_c, π_c)|Ψ'_q⟩ = ρ(φ_c, π_c, Ψ_q, Ψ'_q).
- Local equation $\alpha(x) = (\phi(x), \pi(x)),$

$$\dot{\rho}(\alpha) = \int d^3x \left[\mathcal{L}(x)[\rho(\alpha)] + \sum_j \mathcal{L}_j(x) \left[\frac{\partial}{\partial \alpha_j(x)} \rho(\alpha) \right] + \left\{ H(x), \rho(\alpha) \right\}_{\text{Poisson}} \right]$$

• In principle possible if coupling is dissipative.

- No constraint on how gravity influences matter.
- Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_p, rate equation of gravitational field is controlled by energy density (L[†]L) = (a[†]_pa_p).
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu}, \rho\} \right)$$

• In principle possible if coupling is dissipative.

- No constraint on how gravity influences matter.
- Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_p, rate equation of gravitational field is controlled by energy density (L[†]L) = (a[†]_pa_p).
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu}, \rho\} \right)$$

- In principle possible if coupling is dissipative.
 - No constraint on how gravity influences matter.
 - Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_p, rate equation of gravitational field is controlled by energy density (L[†]L) = (a[†]_pa_p).
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu}, \rho\} \right)$$

- In principle possible if coupling is dissipative.
 - No constraint on how gravity influences matter.
 - Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_p, rate equation of gravitational field is controlled by energy density (L[†]L) = (a[†]_pa_p).
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu},\rho\} \right)$$

- In principle possible if coupling is dissipative.
 - No constraint on how gravity influences matter.
 - Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_p, rate equation of gravitational field is controlled by energy density (L[†]L) = (a[†]_pa_p).
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu}, \rho\} \right)$$

- In principle possible if coupling is dissipative.
 - No constraint on how gravity influences matter.
 - Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_ρ, rate equation of gravitational field is controlled by energy density ⟨L[†]L⟩ = ⟨a[†]_ρa_ρ⟩.
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu},\rho\} \right)$$

- In principle possible if coupling is dissipative.
 - No constraint on how gravity influences matter.
 - Matter has only stochastic effect on gravity.
- In our free-field theory example, we can imagine that the decay rate γ is a gravitational degree of freedom, e.g. scalar curvature.
 - Unitary evolution in flat space, high decoherence near black hole singularity.
 - With Lindblad term L(p) = a_ρ, rate equation of gravitational field is controlled by energy density ⟨L[†]L⟩ = ⟨a[†]_ρa_ρ⟩.
- Classical-Quantum coupling

$$g^{\mu\nu} \left(2\pi^{-}_{\mu}\rho\pi^{+}_{\nu} - \{\pi^{+}_{\nu}\pi^{-}_{\nu},\rho\} \right)$$

Outline

- 2 A free field model
- 3 Stochastic Interactions

• Covariant vs invariant field equations: need for a background?

- Action does not appear to be a scalar despite covariant Lindbladian.
- Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

• Covariant vs invariant field equations: need for a background?

- Action does not appear to be a scalar despite covariant Lindbladian.
- Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

- Covariant vs invariant field equations: need for a background?
 - Action does not appear to be a scalar despite covariant Lindbladian.
 - Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

• Covariant vs invariant field equations: need for a background?

- Action does not appear to be a scalar despite covariant Lindbladian.
- Recover invariance when decay rate are gravitational degrees of freedom.

Gravity without energy conservation?

- Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

- Covariant vs invariant field equations: need for a background?
 - Action does not appear to be a scalar despite covariant Lindbladian.
 - Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.
Some potential problems

- Covariant vs invariant field equations: need for a background?
 - Action does not appear to be a scalar despite covariant Lindbladian.
 - Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

Some potential problems

- Covariant vs invariant field equations: need for a background?
 - Action does not appear to be a scalar despite covariant Lindbladian.
 - Recover invariance when decay rate are gravitational degrees of freedom.
- Gravity without energy conservation?
 - Happens in 'mainstream' theories, e.g. gauge field leaves brane.
- In the theory we sketched, these only occur in extreme conditions, e.g. high energy or high curvature.
- Not necessarily in contradiction with experiments.

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

- Gravitational force cannot create entanglement.
- Black holes: they evaporate from the inside.
 - Entangled partner of photon in Hawking radiation disapears near singularity, so Hawking radiation becomes truly mixed.
- Black hole entropy still counts micro-states.
- Inflation: dissipation as a mean to obtain smooth, isotropic universe with no heavy magnetic monopoles?
- Offset in astronomical distance measures: what if photons had a finite dissipation rate?
- Dark matter: what if the vacuum is not exactly a fixed point of the dynamics?

Models of information loss that

- do not violently break well established principles;
- are well formulated mathematically; and
- agree with experiments;

have not been ruled out.

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.

- Explicitly write rate equation for gravitational field.
- Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.
- To do:
 - Explicitly write rate equation for gravitational field.
 - Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.
- To do:
 - Explicitly write rate equation for gravitational field.
 - Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.
- To do:
 - Explicitly write rate equation for gravitational field.
 - Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.

- Explicitly write rate equation for gravitational field.
- Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.

- Explicitly write rate equation for gravitational field.
- Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.

To do:

Explicitly write rate equation for gravitational field.

Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.

- Explicitly write rate equation for gravitational field.
- Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.
- To do:
 - Explicitly write rate equation for gravitational field.
 - Work out model details to provide experimental test to refute.

- Models of information loss that
 - do not violently break well established principles;
 - are well formulated mathematically; and
 - agree with experiments;

- The secret sauce in our model is violation of causality at microscopic scales.
- Fundamental non-unitary evolution opens up new possibilities for quantum-classical evolution:
 - Further justifies non-unitary evolution since dissipative terms can be controlled by classical gravitational variables: turn on only in extreme conditions.
- To do:
 - Explicitly write rate equation for gravitational field.
 - Work out model details to provide experimental test to refute.