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Outline

• Tensor networks: symmetries

– Symmetry protected topological phases 

– Matrix product operator algebras

– Topological phases

– Topological sectors and the Drinfield center

• Edge physics

– Entanglement Hamiltonians

– Strange correlators: from TQFT to CFT

– Revisiting real-space renormalization group methods
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Tensor Networks

• Mantra of tensor networks:

– Model entanglement structure of many body wavefunctions

– Different phases of matter can be distinguished by the different ways 
in which symmetries can act on those entanglement degrees of 
freedom

• Landau’s paradigm: phase transition = symmetry breaking

• Those symmetries can act in a local or nonlocal (anomalous) way on the 
auxiliary Hilbert space, but in both cases we can represent them using 
matrix product operators



Entanglement Hamiltonians and edge physics

• PEPS / MERA yield a natural tensor product structure for the 
entanglement Hamiltonian and for describing physics at the edge

• The entanglement and edge Hamiltonian inherit all symmetries of the 
physical system (but can exhibit more symmetries!)

=



Example 1: MPS

• In case of gapped 1D quantum spin systems with a global symmetry, the 
entanglement degrees of freedom transform according to a projective 
representation of the global symmetry:

– Second cohomology group H2(G,U(1)) classifies the different projective 
representations, and 2 wavefunctions transforming according to a 
different representation cannot adiabatically be connected without 
crossing a phase transition: SPT classification of 1D quantum spin 
chains 

– Similar argument for reflection, time reversal, …

• Caveat: argument only works when the MPS is injective
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= Vg V-1
g

Perez-Garcia, Wolf, Sanz, FV, Cirac ‘08
Pollmann, Turner, Berg, Oshikawa ’10; Chen, Gu, Wen ‘11; Schuch, Perez-Garcia, Cirac ’11



Graded MPS: Majorana modes

• In case of 1D fermionic systems: Z2 graded tensor product

– Leads to 2 different classes of “irreducible” MPS, namely the ones carrying 
even and odd parity (2 types of simple Z2 graded algebras):

– The second type represents Majorana physics, and corresponds to “cat” states 
protected by superselection rules  

– Combined with time-reversal: yields Z8 classification of Kitaev and Fidkowski

Bultinck, Williamson, FV  ’16; Kapustin, Turzillo, You ‘16



Symmetries in PEPS

• Not good enough: the Vg’s do not have to form a representation
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Symmetries in PEPS

• Not good enough: the Vg’s do not have to form a representation

• Correct way: pulling through of matrix product operators which form 
representation of group:
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• MPOs form representation of the group:

• Fundamental theorem of MPS: zipper condition

• Associativity leads to existence of F-symbols which satisfy the 3-cocycle condition

• MPO representation of a group are equivalent to Chen, Gu, Liu and Wen’s 
classification of SPT phases in terms of 

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ

= λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ λμ

λ

μ

λ.μ=



PEPS and SPT phases

• Nontrivial SPT phases can hence be represented by PEPS with a nontrivial 
MPO symmetry

– If the 3-cocycle is nontrivial, then this symmetry is represented in a  
NONLOCAL way on the entanglement degrees of freedom, and hence 
also on the edge

• Xie Chen’s theorem (X. Chen ’11):

– A local  1D Hamiltonian with a discrete MPO symmetry corresponding 
to a nontrivial 3-cocycle must be either gapless or symmetry broken

• Argument goes by proving that an injective MPS cannot exhibit a 
nontrivial MPO symmetry

– Discrete analogue of gaplessness of WZW model

• Consequence: the entanglement Hamiltonian and edge of an SPT PEPS will 
be gapless !



Example: Z2 SPT phase

• CZX model (Chen et al.) is the ground state of a frustration free model, 
hence  the entanglement spectrum is bimodal.

• We considered a PEPS wich is a perturbutation of that model such that 
symmetries are preserved, but with a correlation length and hence 
dynamics, and calculate its entanglement spectrum

– Numerics indicate that the entanglement Hamiltonian is indeed 
described by a CFT (compactified boson c=1,R=2)

Bultinck, Vanhove, Haegeman, FV ‘17



Grading the MPO algebra: SET phases

• Just as in case of MPS, we can relax the requirement of injectivity, and 
define the group elements as sums of injective (irreducible) MPOs

• Example:

– Suppose I can find set of MPOs satisfying

– Then we can form a graded MPO algebra of Z2 by defining

• Consistency (associativity) conditions of those sets of MPOs leads to the 
concept of graded tensor fusion categories and symmetry enhanced 
topological order (SET)

Barkeshli, Bonderson, Cheng, Wang ‘14
Williamson, Bultinck, FV ‘17



• Topological phases are obtained by having just 1 group element:

• The point is now that the theory of PEPS imposes that all          have to satisfy 
the pulling through equation without an action on the physical level

• This immediately implies a topological correction to the area law for the 
entanglement entropy:  

=

(Kitaev, Preskill ‘06; Levin Wen ’06)



• The equality                                            combined with the fundamental theorem  
of MPS implies the existence of integers         and the existence of fusion tensors
such that  

• Associativity implies the existence of F-symbols, and those on their turn have to 
satisfy the pentagon equation 

• Just like what happens in the case of Yang-Baxter equations, we can find 
solutions to all those equations by using the fundamental representation

– Turns out to coincide with Turaev-Viro state sums or Levin-Wen string nets

Bultinck, Marien, Sahinoglu, Williamson, Haegeman, FV ‘17



• Closed algebras of MPOs form representations of tensor fusion categories, 
labeled by the triple ; in other words: the only consistent 
MPO symmetries of PEPS are  precisely the ones studied in tensor fusion 
category 

– Topological order is completely characterized by the LOCAL 
symmetries of the entanglement degrees of freedom

– But PEPS yields more than just the symmetries: there are plenty of 
variational parameters left open which give rise to correlation lengths 
and dynamics / dispersion relations / interesting edge physics

• We can start studying topological phase transitions, …

Marien, Haegeman, Fendley, FV ‘16

Condensation of the 
boson in the perturbed 
Fibonacci string net; 
critical point 
corresponds to minimal 
rational model (9,10)



Topological sectors in PEPS

• Ground state degeneracy depends on genus: different ground states 
obtained by putting MPOs on nontrivial loops (acting purely on the 
entanglement degrees of freedom)

• All topological sectors can be obtained by considering the idempotents of 
an MPO algebra with 2 extra fusion tensors (a C* algebra):

- Construction parallels construction of   
Drinfeld center and  Ocneanu’s tube algebra
- Similar for SET phases!

Bultinck, Marien, Sahinoglu, Williamson, Haegeman, FV ‘17



• This C* algebra contains all information about the anyon excitations in the 
theory: those anyons realize the Drinfeld center of the input category

– Topological spin, braiding, fusion all have clear meanings in terms of 
MPO algebras

= 



Strange correlators

• We have already seen that entanglement Hamiltonians (or edge physics) 
of (perturbed) topological phases gives rise to CFTs

– Is there a more direct way of making this connection?

– We have fusion rules, topological spins, topological sectors, … for the  
emerging anyons; how to map this to the corresponding data in CFTs? 

– Can we make mapping from 3D TQFT to 2D CFT explicit in terms of 
tensor networks?

• YZ You, Z Bi, A Rasmussen, K Slagle, Cenke Xu ‘14 (see also T Scaffidi, Z 
Ringel ’16)  introduced a concept which allows for such a mapping: the 
strange correlator

– Their motivation: detection of SPT phases

– Construction: take overlap of a nontrivial SPT phase with a product 
state with the same symmetry



Strange Correlators

• The overlap between the SPT wavefunction and the product state with the 
same symmetry yields a partition function of a “classical” spin system

• The corresponding transfer matrix inherits all MPO symmetries of the SPT 
phase, hence Chen’s theorem implies that this partition function will be 
either gapless or symmetry breaking for nontrivial SPTs

– As those are the 2 only possibilities, the critical phase will not have to 
be fine-tuned! 

– You also do not have to know the MPOs; their existence is enough



• Example: eigenvalues of transfer matrix of perturbed CZX model: free 
boson (c=1, R=         ) with periodic and twisted boundary conditions

• Defect line represents a semion topological defect

• Equivalent to                  Wess-Zumino-Witten model; Z2 symmetry action is 
equivalent to exchanging g <-> -g  which is anomalous 



• By taking overlap between PEPS with nontrivial MPO symmetry and a 
trivial product state, we hence get the partition function of a CFT

– All conformal boundary conditions can readily be implemented by 
putting MPO strings on the original PEPS

– The different topological sectors correspond to the different heighest
weight vectors in the CFT towers  

• This PEPS strange correlator construction seems to be an explicit 
representation forthe theory of Fuchs, Runkel and Schweigert in which 
they describe CFTs using TQFT data

• It is also related to the recent work of Aasen, Mong and Fendley (‘16), 
where conformal sectors in classical spin systems where constructed using 
concepts of tensor fusion category 



Classical Ising model from SET

• Partition function of classical Ising can exactly be written as a strange correlator 
of the Ising SET, including all defects (duality defects)

– The product state by the requirement of the Z2 symmetry

– By including MPOs, we can realize all 9 topological/conformal sectors

– All information about scaling exponents, primary fields, etc. is encoded 
algebraically in the MPO tube-algebras



Real-Space RG revisited

• This picture of a critical spin system as an overlap of 2 zero-correlation 
length quantum spin systems yields a new way of looking at RG:

– The string net is a renormalization group fixed point: we can always 
remove/add  sites without changing the topological nature (see e.g. 
Koenig, Reichardt, Vidal ‘09); this gives us exact “disentanglers”

– A real space RG scheme is then obtained by applying those isometries 
to the product state; this way the topological/conformal sectors are 
always exactly conserved, and the exact critical exponents are 
preserved

– Different real-space RG schemes use different ways of throwing away 
information such that the bond dimension does not blow up

Bal, Williamson, Bultinck, Haegeman, FV ‘17



• Kadanoff blocking = mean field ansatz: product state remains product state

• TRG: local SVD truncation of the bonds (simple update PEPS)

• TNR: keep larger unit cells, and remove entanglement in loops (but still s.u.)

• PEPS: approximate flow of product state using full information of environment



Conclusion

• Quantum phases of matter can be characterized by the symmetries of the 
entanglement degrees of freedom

• PEPS yield a very natural framework for studying those entanglement 
degrees of freedom, as they exhibit a natural tensor product structure 

• Framework of tensor fusion categories emerges naturally from study of 
matrix product operator algebras, leading to wavefunctions representing 
SPT, SET and topological order, both for the spin case and the fermionic 
case

• Through the concept of strange correlators, PEPS provide an explicit link 
between 3D TQFTs and 2D CFTs, 

– Which CFTs can be described like that?

– What about supersymmetric CFTs?




