

Topology & Entanglement in Driven (Floquet) Many Body Quantum Systems

Ashvin Vishwanath Harvard University

Adrian Po Harvard

Lukasz Fidkowski Seattle

Andrew Potter Texas

Overview

$$\nu = \log p - \log q$$

Chiral phases in driven systems.

arXiv:1701.01440. Chiral Floquet phases. Po, Fidkowski, Morimoto, Potter, AV. Phys. Rev. X 6, 041070 (2016)

$$\nu = \frac{1}{2}\log 2$$

The Driven Toric code.

arXiv:1701.01440. `Radical' chiral Floquet phases in a driven Kitaev model. Po, Fidkowski, AV, Potter

Overview

$$\nu = \log p - \log q$$

Chiral phases in driven systems.

arXiv:1701.01440. Chiral Floquet phases. Po, Fidkowski, Morimoto, Potter, AV. Phys. Rev. X 6, 041070 (2016)

$$\nu = \frac{1}{2}\log 2$$

The Driven Toric code.

arXiv:1701.01440. `Radical' chiral Floquet phases in a driven Kitaev model. Po, Fidkowski, AV, Potter

Introduction: A gapped Hamiltonian

Introduction: A gapped Hamiltonian

Introduction: A gapped Hamiltonian

Introduction: Entanglement Signatures

Area Law

Introduction: Entanglement Signatures

Area Law

Volume Law

Introduction: Classifying Gapped Quantum Phases

Ground states of gapped local Hamiltonians

How do we classify gapped ground states?

No symmetry except t -> t+a

Introduction: Classifying Gapped Quantum Phases

Ground states of gapped local Hamiltonians

How do we classify gapped ground states?

No symmetry except t -> t+a

Example 1:Quantum Hall Phases

- Different integers different phases.
- Need to cool to low temperatures protected by energy gap.
- Also differentiated by Thermal-Hall. Integer in the right units.

Example 2:Topological Order

 Topological order (Witten, Wen). eg. Fractional Quantum Hall & Toric Code/Z₂ Gauge theory

$$S(\rho_R) \sim \alpha |\partial R| - \frac{1}{2} \log D + \cdots$$

Example 2:Topological Order

 Topological order (Witten, Wen). eg. Fractional Quantum Hall & Toric Code/Z₂ Gauge theory

topological ground state degeneracy on a torus anyonic excitations

topological entanglement entropy

$$S(\rho_R) \sim \alpha |\partial R| - \frac{1}{2} \log D + \cdots$$

Example 2:Topological Order

 Topological order (Witten, Wen). eg. Fractional Quantum Hall & Toric Code/Z₂ Gauge theory

topological ground state degeneracy on a torus

anyonic excitations

topological entanglement entropy

$$S(\rho_R) \sim \alpha |\partial R| - \frac{1}{2} \log D + \cdots$$

Half quantized thermal Hall c=5/2

Banerjee et al.1710.00492

Can we observe topological properties at finite energy density?

Conventional answer: No

Can we observe topological properties at finite energy density?

Conventional answer: No

Can we observe topological properties at finite energy density?

Conventional answer: No

$$\rho_a = e^{-H/k_B T}$$
$$s = S_A/N_A$$

Deutsch 91, Srednicki 94

Thermalization Hypothesis

- Hamiltonian made of commuting terms:

$$H_0 = h \sum_j \sigma_j^z$$
 — Pauli z matrix on site j

all eigenstates of H are area law entangled (could also do e.g. toric code)

- BUT unstable to small perturbations due to translation symmetry:

$$H = h \sum_{j} \sigma_{j}^{z} + J \sum_{j} \sigma_{j}^{x} \sigma_{j+1}^{x} + \cdots$$

finite energy density eigenstates are volume law entangled

- Hamiltonian made of commuting terms with disordered coefficients:

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

- Hamiltonian made of commuting terms with disordered coefficients:

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

- Hamiltonian made of commuting terms with disordered coefficients:

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

- Hamiltonian made of commuting terms with disordered coefficients:

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

- Hamiltonian made of commuting terms with disordered coefficients:

disordered couplings

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

- can make H diagonal in z-basis using finite depth local unitary U

- Hamiltonian made of commuting terms with disordered coefficients:

disordered couplings

$$H_0 = \sum_{i} h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

$$= U_2$$

$$U_1$$

- can make H diagonal in z-basis using finite depth local unitary U

- Hamiltonian made of commuting terms with disordered coefficients:

disordered couplings

$$H_0 = \sum_{i} h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

$$U = U_2$$

$$U_1$$

- can make H diagonal in z-basis using finite depth local unitary U (Imbrie)

$$U^{\dagger}XU$$

- Hamiltonian made of commuting terms with disordered coefficients:

disordered couplings

$$H_0 = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{i,j} \sigma_i^z \sigma_j^z + \dots$$

- perturb with
$$H_1 = \sum_i c_i \sigma_i^x$$

$$H = H_0 + H_1$$

- can make H diagonal in z-basis using finite depth local unitary U (Imbrie)

if $\emph{\textbf{X}}$ is a local operator, then $U^\dagger X U$ 'dressed' quasi-local operator.

Many-body localization

(Anderson, Mirlin et al., Basko, Aleiner, Altschuler; Oganesyan, Huse, Pal)

- can make H diagonal in z-basis using finite depth unitary U:

$$U^{\dagger}HU = \sum_{i} h'_{i}\tau_{i}^{z} + \sum_{ij} J'_{ij}\tau_{i}^{z}\tau_{j}^{z} + \dots$$

- eigenstates of H are all of the form $U|\psi\rangle$; ____product state in z-basis in particular, area law entangled excited states `like' ground states!
- $U au_i^z U^\dagger$ forms complete set of quasi-local conserved quantities

`l-bits'

(Huse, Nandkishore, Oganesyan Serbyn, Papic, Abanin, Vosk&Altman)

Many-body localization and topological phases

- replace 'gapped' with 'many-body localized' (MBL)

 topological order / symmetry protected topological phases at finite energy density

(Bahri, Vosk, Altman, AV; Chandran, Khemani, Laumann, Sondhi, Huse, Nandkishore, Oganesyan, Pal)

- BUT no chiral (quantum hall) phases allowed in MBL excited states. Commuting projectors incompatible with thermal Hall
- (Kitaev, Levin, Potter-AV)

Floquet driving

- periodic time dependent Hamiltonian:

$$H(t+T) = H(t)$$
 $U_F = T \exp\left(i \int_0^T H(t)dt\right)$

- diagonalize the 'Floquet unitary' U_F Energy not conserved.

Only `quasi-energy' mod $\hbar\omega=rac{h}{T}$

Floquet systems: heating problem

- generically, system will absorb energy until it is at infinite temperature:

$$\rho_A(t) = \operatorname{Tr}_{\bar{\mathbf{A}}} |\Psi(\mathbf{t})\rangle \langle \Psi(\mathbf{t})|$$

$$\rho_A(t) \to \mathbf{1} \quad \left(= \frac{1}{Z} e^{-\beta H} \right)$$

$$as \beta \to 0$$

- entropy has been maximized,
- no energy constraint.
- Temperature ->∞

MBL in Floquet systems:

- MBL can be stable upon turning on a time dependent periodic perturbation:

Ponte, Papic, Huveneers, Abanin; Lazarides, Das, Moessner

$$U_F = e^{-iTH_{\rm eff}}$$

with

$$U^{\dagger}H_{\text{eff}}U = \sum_{i} h'_{i}\sigma_{i}^{z} + \sum_{i,j} J'_{i,j}\sigma_{i}^{z}\sigma_{j}^{z}$$

- schematically,

 $U_F = \prod_{lpha} U_{lpha}$ quasi-local commuting unitaries

- Can we find MBL Floquet phases that have no equilibrium analogue? What distinguishes them? No symmetries.

Floquet SPTs in 1D & 3D: Else, Bauer, Nayak. Kayserlingk, Sondhi, Potter, Morimoto, AV. Potter, AV, Fidkowski. Free fermions (here bosons/Spins): Kitagawa, Demler, Rudner, Lindner, Berg, Levin. Rafael. Harper, Roy.

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

BULK: Reset to original state each period

 $U = U_1 U_2 U_3 U_4$ SWAP operation along different links

BULK: Reset to original state each period

EDGE: Advances one unit in each period

Independent of particle distribution!

Note: if SWAPs are not perfect - heating. MBL gives a stable phase.

Classification of Chiral Unitaries

- Y is locality preserving: for any local operator \mathcal{O} , $Y^{\dagger}\mathcal{O}Y$ is a (quasi)-local operator supported nearby.
- is Y the Floquet operator of some (quasi)-local 1d Hamiltonian?
- OR is it anomalous NO local 1D Hamiltonian such that:

$$Y_{1D} = e^{-i \int_0^T H_{1D}(t') dt'}$$

Classification of Locality Preserving 1D Unitaries

Commun. Math. Phys. 310, 419–454 (2012) Digital Object Identifier (DOI) 10.1007/s00220-012-1423-1 Communications in Mathematical Physics

Index Theory of One Dimensional Quantum Walks and Cellular Automata

D. Gross^{1,2}, V. Nesme^{1,3}, H. Vogts¹, R.F. Werner¹

$$\nu = \log(p/q) = \log p - \log q \notin Z$$

characterizes the chiral flow of quantum information along the edge, and is a quantized invariant distinguishing different Floquet-MBL phases

Classification of Locality Preserving 1D Unitaries

Commun. Math. Phys. 310, 419–454 (2012) Digital Object Identifier (DOI) 10.1007/s00220-012-1423-1 Communications in Mathematical Physics

Index Theory of One Dimensional Quantum Walks and Cellular Automata

D. Gross^{1,2}, V. Nesme^{1,3}, H. Vogts¹, R.F. Werner¹

$$\nu = \log(p/q) = \log p - \log q \notin Z$$

characterizes the chiral flow of quantum information along the edge, and is a quantized invariant distinguishing different Floquet-MBL phases

Classification of Locality Preserving 1D Unitaries

Commun. Math. Phys. 310, 419–454 (2012) Digital Object Identifier (DOI) 10.1007/s00220-012-1423-1 Communications in Mathematical Physics

Index Theory of One Dimensional Quantum Walks and Cellular Automata

D. Gross^{1,2}, V. Nesme^{1,3}, H. Vogts¹, R.F. Werner¹

$$\nu = \log(p/q) = \log p - \log q \notin Z$$

characterizes the chiral flow of quantum information along the edge, and is a quantized invariant distinguishing different Floquet-MBL phases

Dimension of microscopic Hilbert space enters

e.g. p=2, q=3: a qubit cannot cancel a qutrit!

Po, Fidkowski, Morimoto, Potter AV, Roy& Harper, Cirac, Perez-Garcia, Schuch & Verstraete; Şahinoğlu, Shukla, Feng Bi & Xie Chen

Analogy with Quantum Hall Effect

zero temperature 2d topological phase

MBL Floquet system

Bulk gap

←

Bulk MBL

Low energy field theory for the 1d edge

←

Locality preserving unitary Y on the 1d edge

lack of 1d UV completion for low energy edge theory (e.g. chiral anomaly)

Impossibility of writing Y as the Floquet evolution of a 1d driving Hamiltonian

$$U(T) = e^{-ih^{[x]}}e^{-ih^{[y]}}e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4}\sum_{\langle rr'\rangle \in j}S^j_rS^j_{r'}$$

Bulk Eigenstates have Z₂ topological order.

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

$$U(T) = e^{-ih^{[x]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j.$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

$$U(T) = e^{-ih^{[x]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j,$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

$$\nu = \frac{1}{2}\nu_{2T} = \log \sqrt{2}$$
,

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

$$U(T) = e^{-ih^{[z]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j.$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

$$\nu = \frac{1}{2}\nu_{2T} = \log \sqrt{2}$$
,

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

AND - duality in each period e-m exchange.

$$U(T) = e^{-ih^{[x]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j,$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

$$\nu = \frac{1}{2}\nu_{2T} = \log \sqrt{2}$$
,

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

AND - duality in each period e-m exchange.

Connection to discrete Floquet time crystals

$$U(T) = e^{-ih^{[x]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j.$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

$$\nu = \frac{1}{2}\nu_{2T} = \log \sqrt{2}$$
,

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

AND - duality in each period e-m exchange.

Connection to discrete Floquet time crystals

Wilczek, Khemani, von Keyserlingk, Sondhi; Else, Nayak; Yao et al.

$$U(T) = e^{-ih^{[z]}} e^{-ih^{[y]}} e^{-ih^{[x]}}, \quad h^{[j]} = \frac{\pi J}{4} \sum_{\langle rr' \rangle \in j} S_r^j S_{r'}^j.$$

Bulk Eigenstates have Z₂ topological order.

Furthermore - half shift of Majoranas at the edge

$$\nu = \frac{1}{2}\nu_{2T} = \log \sqrt{2}$$
,

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po, 1,2 Lukasz Fidkowski, 3,4 Ashvin Vishwanath, 1,2 and Andrew C. Potter⁵

AND - duality in each period e-m exchange.

Connection to discrete Floquet time crystals

Wilczek, Khemani, von Keyserlingk, Sondhi; Else, Nayak; Yao et al.

experiment: Monroe group (trapped ions), Lukin group (NV centers)

Future Directions

Towards Experimental realization - in shaken optical lattices (with quasi periodic disorder). What to measure? Could this be an entanglement `bus'?

How important is Many body localization? More stable in quasi periodic systems OR work in prethermal regime?

- incorporate fermions and symmetries

Future Directions

Towards Experimental realization - in shaken optical lattices (with quasi periodic disorder). What to measure? Could this be an entanglement `bus'?

How important is Many body localization? More stable in quasi periodic systems OR work in prethermal regime?

- incorporate fermions and symmetries