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Overview

Chiral phases in driven systems. 

arXiv:1701.01440. Chiral Floquet 
phases. Po, Fidkowski, Morimoto, Potter, 
AV. Phys. Rev. X 6, 041070 (2016)

The Driven Toric code. 

arXiv:1701.01440. `Radical’ chiral 
Floquet phases in a driven Kitaev 
model. Po, Fidkowski, AV, Potter
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Introduction: A gapped Hamiltonian
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energy

4
low energy physics

H = ⌦sites iHi
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Introduction: Entanglement Signatures

Gapped Phases Gapless Phases Thermal Phases

R

S(⇢R) ⇠ ↵|@R|� 1

2

logD + · · · log @R

Area Law

Area Law*

Volume Law

S ⇠ Volume(R)



Introduction: Entanglement Signatures

Gapped Phases Gapless Phases Thermal Phases

R

S(⇢R) ⇠ ↵|@R|� 1

2

logD + · · · log @R

Area Law

Area Law*

Volume Law

S ⇠ Volume(R)



Introduction: Classifying Gapped 
Quantum Phases
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How do we classify 
gapped  

ground states? 

No symmetry except  
t -> t+a



Introduction: Classifying Gapped 
Quantum Phases

Ground states of gapped local Hamiltonians

How do we classify 
gapped  

ground states? 

No symmetry except  
t -> t+a



Example 1:Quantum Hall Phases

• Different integers - different phases. 
• Need to cool to low temperatures - protected by energy gap. 
• Also differentiated by Thermal-Hall. Integer in the right units.
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n=2$

n=3$
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Example 2:Topological Order
• Topological order (Witten, Wen). eg. Fractional 

Quantum Hall & Toric Code/Z2 Gauge theory
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Example 2:Topological Order
• Topological order (Witten, Wen). eg. Fractional 

Quantum Hall & Toric Code/Z2 Gauge theory

topological ground state degeneracy on a torus

anyonic excitations

topological entanglement entropy

S(⇢R) ⇠ ↵|@R|� 1

2

logD + · · ·

Banerjee et al.1710.00492

Half quantized  
thermal Hall 

c=5/2 



Can we observe topological properties at finite 
energy density?

ground state

energy ⇠ J ·Volume

finite energy density

Deutsch 91, Srednicki 94 

Eigenstate  
Thermalization  

Hypothesis 
(ETH)

Conventional answer: No

A
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Can we observe topological properties at finite 
energy density?

ground state

energy ⇠ J ·Volume

finite energy density | i

s=0

⇢a = e�H/kBT

s = SA/NA

Deutsch 91, Srednicki 94 

Eigenstate  
Thermalization  

Hypothesis 
(ETH)

Conventional answer: No

A



Avoiding thermalization

- Hamiltonian made of commuting terms:

Pauli z matrix on site j

(could also do e.g. toric code)

- BUT unstable to small perturbations due to translation symmetry:

all eigenstates of H are area law entangled

H = h
X

j

�z

j

+ J
X

j

�x

j

�x

j+1 + · · ·

finite energy density eigenstates are volume law entangled

H0 = h
X

j

�z
j
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Avoiding thermalization

- can make H diagonal in z-basis using finite depth local unitary U

- Hamiltonian made of commuting terms with disordered coefficients:

- perturb with

(Imbrie)

U =

if X is a local operator, then                 ‘dressed’ quasi-local operator. U †XU



- can make H diagonal in z-basis using finite depth unitary U:

- eigenstates of H are all of the form           ;

Many-body localization
(Anderson, Mirlin et al., Basko, Aleiner, Altschuler; Oganesyan, Huse, Pal)

U | i product state in z-basis

in particular, area law entangled - excited states `like’ ground states!

`l-bits’
(Huse, Nandkishore, Oganesyan 
Serbyn, Papic, Abanin,  
Vosk&Altman )

-                   forms complete set of quasi-local conserved quantities

U†HU =
X

i

h0
i⌧

z
i +

X

ij

J 0
ij⌧

z
i ⌧

z
j + . . .

U⌧zi U
†



Many-body localization and topological phases

- replace ‘gapped’ with ‘many-body localized’ (MBL)

MBL Hamiltonians

generic Hamiltonians

- topological order / symmetry protected topological phases  at 
finite energy density 

- BUT no chiral (quantum hall) phases allowed in MBL excited 
states. Commuting projectors incompatible with thermal Hall

(Bahri, Vosk, Altman, AV; Chandran, Khemani, Laumann, Sondhi, Huse, Nandkishore, Oganesyan, Pal)

- (Kitaev, Levin, Potter-AV)



Floquet driving

H(t+ T ) = H(t) UF = T exp

 
i

Z T

0
H(t)dt

!

14

- periodic time dependent Hamiltonian:

- diagonalize the ‘Floquet unitary’ UF

Energy not conserved.  

Only `quasi-energy’ mod ~! =
h

T



Floquet systems: heating problem

A

Ā

- generically, system will absorb energy until it is at infinite 
temperature:

⇢A(t) = TrĀ | (t)ih (t)|

⇢A(t) ! 1

- entropy has been maximized,  
- no energy constraint. 
- Temperature ->∞

=
1

Z
e��H)(

as� ! 0

15



MBL in Floquet systems:

- MBL can be stable upon turning on a time dependent periodic 
perturbation:

UF = e�iTHeff

U†He↵U =
X

i

h0
i�

z
i +

X

i,j

J 0
i,j�

z
i �

z
j

with

- schematically, 

UF =
Y

↵

U↵

quasi-local commuting unitaries

Ponte, Papic, Huveneers, Abanin; 
Lazarides, Das, Moessner

- Can we find MBL Floquet phases that have no equilibrium analogue?  
What distinguishes them? No symmetries. 

Floquet SPTs in 1D & 3D: Else, Bauer, Nayak. Kayserlingk, Sondhi, Potter, Morimoto, AV. Potter, AV, Fidkowski. 
Free fermions (here bosons/Spins): Kitagawa, Demler, Rudner,Lindner, Berg, Levin. Rafael. Harper, Roy. 
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One$Floquet period

Bulk:
& Returns-to-starting-

position-after-every-
Floquet period

U = U1 U2 U3U4 SWAP operation along different links

MODEL of a CHIRAL Floquet phase:

BULK: Reset to original  
state each period 

EDGE: Advances one unit  
in each period 

Note: if SWAPs are not perfect - heating.  
MBL gives a stable phase.

Independent'of'
particle'distribution!

Rudner,Lindner, Berg, Levin.



Y acts on spins in red region

- Y is locality preserving: for any local operator      ,O
Y †OY is a (quasi)-local operator supported nearby.

- is Y the Floquet operator of some (quasi)-local 1d Hamiltonian? 
- OR is it anomalous - NO local 1D Hamiltonian such that:

A

Classification of Chiral Unitaries

Y1D = e�i
R T
0 H1D(t0)dt0



Classification of Locality Preserving 1D Unitaries
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characterizes the chiral flow of quantum information along the edge, and is a 
quantized invariant distinguishing different Floquet-MBL phases
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Classification of Locality Preserving 1D Unitaries

! = log &/( = log & − log ( ∉ +

Dimension of microscopic Hilbert space enters
e.g. 𝑝=2, 𝑞=3: a qubit cannot cancel a qutrit!

Po, Fidkowski, Morimoto, Potter AV,Roy&Harper,  
 Cirac, Perez-Garcia, Schuch & Verstraete;Şahinoğlu, Shukla, Feng Bi & Xie Chen

characterizes the chiral flow of quantum information along the edge, and is a 
quantized invariant distinguishing different Floquet-MBL phases



zero temperature 2d 
topological phase MBL Floquet system

Low energy field 
theory for the 1d edge Locality preserving unitary Y on the 1d edge

Bulk gap Bulk MBL

lack of 1d UV 
completion for low 
energy edge theory 
(e.g. chiral anomaly)

Impossibility of writing Y as the Floquet 
evolution of a 1d driving Hamiltonian

Analogy with Quantum Hall Effect
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Floquet Enriched Toric Code

Bulk Eigenstates have  
Z2 topological order. 

Furthermore  - half shift  
of Majoranas at the edge

AND - duality in each period e-m exchange.
Connection to discrete Floquet time crystals
Wilczek, Khemani, von Keyserlingk, Sondhi; Else, Nayak; Yao et al. 
experiment: Monroe group (trapped ions), Lukin group (NV centers)



Future Directions
Towards Experimental realization - in shaken optical lattices (with 
quasi periodic disorder). What to measure? Could this be an 
entanglement `bus’?

How important is Many body localization? More stable in quasi 
periodic systems OR work in prethermal regime?

- incorporate fermions and symmetries
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