THE SKELEETON OF INFORMATION SCRAMBLING

NICOLE YUNGER HALPERN
CALTECH, INST. FOR QUANTUM INFORMATION \& MATTER

NYH, Phys. Rev. A 95, 012120 (2017).
NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).

QRIM

DIstilled
 ESSENCE

DISTILLED
 ESSENCE

BARE

 BONES

DISTILLED
 ESSENCE

BARE

 BONES

OF AN IDEA

DISTILLED ESSENCE

BARE

BONES

OF AN IDEA

$$
\downarrow
$$

Quantum-information
scrambling

QUANTUM-INFORMATION SCRAMBLING

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs
- Quantum chaos

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs
- Quantum chaos
- Out-of-time-ordered correlator (OTOC)

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs
- Quantum chaos
- Out-of-time-ordered correlator (OTOC)

- What's its essence?

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs
- Quantum chaos
- Out-of-time-ordered correlator (OTOC)

QUANTUM-INFORMATION SCRAMBLING

- Quantum many-body system
- Dynamics \rightarrow
- Highly entangled
- Information scrambled across many DOFs
- Quantum chaos
- Out-of-time-ordered correlator (OTOC)

- Quasiprobability

OUTLINE

OUTLINE

- Out-of-time-ordered correlator (OTOC)

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC
- Quasiprobabilities

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC
- Quasiprobabilities \rightarrow Kirkwood-Dirac

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC
- Quasiprobabilities \rightarrow Kirkwood-Dirac
- The quasiprobability behind the OTOC

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC
- Quasiprobabilities \rightarrow Kirkwood-Dirac
- The quasiprobability behind the OTOC
- Weak-measurement scheme for inferring the OTOC experimentally

OUTLINE

- Out-of-time-ordered correlator (OTOC)
- Decomposing the OTOC
- Quasiprobabilities \rightarrow Kirkwood-Dirac
- The quasiprobability behind the OTOC
- Weak-measurement scheme for inferring the OTOC experimentally
- Opportunities

THE OUT-OF-TIME-ORDERED CORRELATOR (OTOC)

OTOC: SET-UP

OTOC: SET-UP

- Quantum many-body system

OTOC: SET-UP

- Quantum many-body system
- Examples

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

- (2) Chain of N spins

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

- (2) Chain of N spins

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

- (2) Chain of Nspins $\boldsymbol{+}$

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

- (2) Chinin of spins 4 - -H —————世

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

OTOC: SET-UP

- Quantum many-body system
- Examples
- (1) Black hole

- (2) Chainof Sspins $\uparrow+1+\mathbb{C - 1}+1+$

OTOC: SET-UP

- Hamiltonian (H)

OTOC: SET-UP

- Hamiltonian $(H) \longrightarrow$ Time evolution: $U:=e^{-i H t}$

OTOC: SET-UP

- Hamiltonian $(H) \longrightarrow$ Time evolution: $U:=e^{-i H t}$
- State
- $\rho=\sum_{j} p_{j}|j\rangle\langle j|$

OTOC: SET-UP

- Hamiltonian $(H) \longrightarrow$ Time evolution: $U:=e^{-i H t}$
- State
- $\rho=\sum_{j} p_{j}|j\rangle\langle j|$
- Often assumed to be thermal: $e^{-H / T} / Z$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis
- Hermitian and/or unitary

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis
- Hermitian and/or unitary
- Eigenvalue decompositions

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis
- Hermitian and/or unitary
- Eigenvalue decompositions
- $\mathcal{W}=\sum_{w_{\ell}} w_{\ell} \Pi_{w_{\ell}}^{\mathcal{W}}$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Simple example: far-apart 1-qubit Paulis
- Hermitian and/or unitary
- Eigenvalue decompositions
- $\mathcal{W}=\sum_{w_{\ell}} w_{\ell} \Pi_{w_{\ell}}^{\mathcal{W}} \quad \cdot V=\sum_{v_{\ell}} v_{\ell} \Pi_{v_{\ell}}^{V}$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute
- Heisenberg Picture: $\mathcal{W}(t)=U^{\dagger} \mathcal{W} U$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute
- Heisenberg Picture: $\mathcal{W}(t)=U^{\dagger} \mathcal{W} U$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute
- Heisenberg Picture: $\mathcal{W}(t)=U^{\dagger} \mathcal{W} U$

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute
- Heisenberg Picture: $\mathcal{W}(t)=U^{\dagger} \mathcal{W} U$
- $\mathcal{W}(t)$ and V quit playing together nicely.

OTOC: SET-UP

- Local operators (\mathcal{W}, V)
- Commute
- Heisenberg Picture: $\mathcal{W}(t)=U^{\dagger} \mathcal{W} U$
- $\mathcal{W}(t)$ and V quit playing together nicely.
- The OTOC tracks the commutator's growth.

- The OTOC tracks the commutator's growth.
$[\mathcal{W}(t), V]^{\dagger}[\mathcal{W}(t), V]$

- The OTOC tracks the commutator's growth.

$[\mathcal{W}(t), V]^{\dagger}[\mathcal{W}(t), V] \longrightarrow 4$ terms

- The OTOC tracks the commutator's growth.

$[\mathcal{W}(t), V]^{\dagger}[\mathcal{W}(t), V] \longrightarrow 4$ terms

Focus on the most important. \rightarrow

- The OTOC tracks the commutator's growth.

OTOC DEFINITION

$$
F(t):=\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle
$$

OTOC DEFINITION

$$
\begin{aligned}
F(t) & :=\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

OTOC DEFINITION

$$
\begin{aligned}
F(t) & :=\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

OTOC DEFINITION

$$
\begin{aligned}
F(t) & : \\
& =\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

OTOC DEFINITION

$$
\begin{aligned}
F(t): & =\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

OTOC DEFINITION

$$
\begin{aligned}
& F(t): \\
&=\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

OTOC DEFINITION

$$
\begin{aligned}
F(t) & : \\
& =\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \\
& \equiv \operatorname{Tr}\left(\rho \mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right)
\end{aligned}
$$

WHAT'S CHAOS GOT TO DO WITH IT?

WHAT'S CHAOS GOT TO DO WITH IT?

- Previously known connections

WHAT'S CHAOS GOT TO DO WITH IT?

- Previously known connections
- Sensitivity to "perturbation in initial conditions"
- Semiclassical

WHAT'S CHAOS GOT TO DO WITH IT?

- Previously known connections
- Sensitivity to "perturbation in initial conditions"
- Semiclassical
- New insight from the skeleton in the OTOC

Decomposition of the OTOC

Decomposition of The OTOC

\longleftarrow Doesn't decompose

Decomposition of the OTOC

\longleftarrow Doesn't decompose
$\left\langle\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V\right\rangle \longleftarrow$ Decomposes

DECOMPOSING THE OTOC

DECOMPOSING THE OTOC

$$
F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right)
$$

DECOMPOSING THE OTOC

$$
F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right)
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
F(t) & :=\operatorname{Tr}\left(\mathscr{\mathcal { W }}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right)
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
F(t) & :=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right) \\
\longmapsto & \mapsto
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right)
$$

DECOMPOSING THE OTOC

$$
F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right)
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
F(t) & :=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right)
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
& F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
&=\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right) \\
& \sum_{w_{3}} w_{3}^{*} \Pi_{w_{3}}^{\mathcal{W}} \sum_{v_{2}} v_{2}^{*} \Pi_{v_{2}}^{V} \sum_{w_{2}} w_{2} \Pi_{w_{2}}^{\mathcal{W}} \sum_{v_{1}} v_{1} \Pi_{v_{1}}^{V}
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
& F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right) \\
& \sum_{w_{3}} w_{3}^{*} \Pi_{w_{3}}^{\mathcal{W}} \sum_{v_{2}} v_{2}^{*} \Pi_{v_{2}}^{V} \sum_{w_{2}} w_{2} \Pi_{w_{2}}^{\mathcal{W}} \sum_{v_{1}} v_{1} \Pi_{v_{1}}^{V} \\
& =\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr}\left(U^{\dagger} \Pi_{w_{3}}^{v} U \Pi_{v_{2}}^{V} U^{\dagger} \Pi_{w_{2}}^{w} U \Pi_{v_{1}}^{V} \rho\right)
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
F(t) & :=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right) \\
& =\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr} \xrightarrow[w_{3}]{\left(U^{\dagger} \Pi_{w_{3}}^{\mathcal{W}} U \Pi_{v_{2}}^{V} U^{\dagger} \Pi_{w_{2}}^{\mathcal{W}} U \Pi_{w_{3}}^{\mathcal{W}} \sum_{v_{1}}^{V} \rho\right)} v_{2}^{*} \Pi_{v_{2}}^{V} \sum_{w_{2}} w_{2} \Pi_{w_{2}}^{\mathcal{W}} \sum_{v_{1}} v_{1} \Pi_{v_{1}}^{V}
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
\begin{aligned}
& F(t):=\operatorname{Tr}\left(\mathcal{W}^{\dagger}(t) V^{\dagger} \mathcal{W}(t) V \rho\right) \\
& =\operatorname{Tr}\left(\left[U^{\dagger} \mathcal{W}^{\dagger} U\right] V^{\dagger}\left[U^{\dagger} \mathcal{W} U\right] V \rho\right) \\
& \sum_{w_{3}} w_{3}^{*} \Pi_{w_{3}}^{\mathcal{W}} \sum_{v_{2}} v_{2}^{*} \Pi_{v_{2}}^{V} \sum_{w_{2}} w_{2} \Pi_{w_{2}}^{\mathcal{W}} \sum_{v_{1}} v_{1} \Pi_{v_{1}}^{V} \\
& \left.=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr} \underset{\downarrow}{\left(U^{\dagger} \Pi_{w_{3}}^{\mathcal{W}} U\right.} \Pi_{v_{2}}^{V} U^{\dagger} \Pi_{w_{2}}^{\mathcal{W}} U \Pi_{v_{1}}^{V} \rho\right) \\
& \Pi_{w_{3}}^{\mathcal{W}(t)} \quad \Pi_{w_{2}}^{\mathcal{W}(t)}
\end{aligned}
$$

DECOMPOSING THE OTOC

$$
F(t)=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)
$$

DECOMPOSING THE OTOC

$$
F(t)=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)
$$

DECOMPOSING THE OTOC

$$
F(t)=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \underset{!}{\stackrel{\operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)}{\longmapsto}}
$$

DECOMPOSING THE OTOC

$$
F(t)=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr}_{\longmapsto}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)
$$

$\tilde{\mathcal{A}}_{\rho}\left(v_{1}, w_{2}, v_{2}, w_{3}\right)$

OTOC quasiprobability

DECOMPOSING THE OTOC

$$
F(t)=\sum_{v_{1}, w_{2}, v_{2}, w_{3}} w_{3}^{*} v_{2}^{*} w_{2} v_{1} \operatorname{Tr}_{\longmapsto}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)
$$

$\tilde{\mathcal{A}}_{\rho}\left(v_{1}, w_{2}, v_{2}, w_{3}\right)$

OTOC quasiprobability

BACKGROUND:
 QUASIPROBABILITIES

WHAT'S A QUASIPROBABILITY?

- Used mostly in quantum optics

WHAT'S A QUASIPROBABILITY?

- Used mostly in quantum optics
- Think: statistical-mechanics phase-space distribution, but for quantum systems

WHAT'S A QUASIPROBABILITY?

- Used mostly in quantum optics
- Think: statistical-mechanics phase-space distribution, but for quantum systems
- Like a probability

WHAT'S A QUASIPROBABILITY?

- Used mostly in quantum optics
- Think: statistical-mechanics phase-space distribution, but for quantum systems
- Like a probability
- But can assume negative and nonreal values

WHAT'S A QUASIPROBABILITY?

- Used mostly in quantum optics
- Think: statistical-mechanics phase-space distribution, but for quantum systems
- Like a probability
- But can assume negative and nonreal values
- Most famous example: Wigner function

Kirkwood-Dirac (KD) QUASIPROBABILITY

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

Kirkwood-Dirac (KD) QUASIPROBABILITY

- Discovered in 1933 and 1945

Kirkwood-Dirac (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties
- Obeys Bayes-type theorem

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties
- Obeys Bayes-type theorem
- Can be nonreal

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties
- Obeys Bayes-type theorem
- Can be nonreal
- Straightforwardly defined for discrete systems \longrightarrow even qubits

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties
- Obeys Bayes-type theorem
- Can be nonreal
- Straightforwardly defined for discrete systems \longrightarrow even qubits
- Can be inferred from weak measurements

KIRKWOOD-DIRAC (KD) QUASIPROBABILITY

- Discovered in 1933 and $1945 \longrightarrow$ enjoying a comeback

- Interesting mathematical properties
- Obeys Bayes-type theorem
- Can be nonreal
- Straightforwardly defined for discrete systems \longrightarrow even qubits
- Can be inferred from weak measurements \Rightarrow can be used to measure the OTOC

RELEVANCE OF THE KD QUASIPROBABILITY

RELEVANCE OF THE KD QUASIPROBABILITY

An extended KD quasiprobability is the

in the OTOC.

RELEVANCE OF THE KD QUASIPROBABILITY

An extended KD quasiprobability is the

in the OTOC.

THE QUASIPROBABILITY BEHIND THE OTOC

- NYH, Phys. Rev. A 95, 012120 (2017).
- NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).

Visualizing the OTOC QUASIPROBABILITY

FIG. 13: Real part of $\tilde{\mathscr{A}}_{\rho}$ as a function of time. Random pure state. Nonintegrable parameters, $N=10, \mathcal{W}=\sigma_{1}^{z}$, $V=\sigma_{N}^{z}$.

$$
\tilde{\mathcal{A}}_{\rho}\left(v_{1}, w_{2}, v_{2}, w_{3}\right)
$$

OPPORTUNITIES

OPPORTUNITIES

- Use weak measurements to infer the quasiprobability and OTOC.
- Superconducting qubits, cavity QED, ultracold atoms, ...

OPPORTUNITIES

- Use weak measurements to infer the quasiprobability and OTOC.
- Superconducting qubits, cavity QED, ultracold atoms, ...
- What is the OTOC quasiprobability's imaginary part telling us?

OPPORTUNITIES

- Use weak measurements to infer the quasiprobability and OTOC.
- Superconducting qubits, cavity QED, ultracold atoms, ...
- What is the OTOC quasiprobability's imaginary part telling us?
- The OTOC, quasiprobability theory, and quantum thermodynamics feed back on each other.
- Channels
- Leggett-Garg inequalities
- Meaning of ""maximal noncommutation"

OPPORTUNITIES

- Use weak measurements to infer the quasiprobability and OTOC.
- Superconducting qubits, cavity QED, ultracold atoms, ...
- What is the OTOC quasiprobability's imaginary part telling us?
- The OTOC, quasiprobability theory, and quantum thermodynamics feed back on each other.
- Channels
- Leggett-Garg inequalities
- Meaning of ""maximal noncommutation"
- Etc. \longrightarrow arXiv:1704.01971 (2017).

RECAP

RECAP

- Out-of-time-ordered correlator (OTOC) \longrightarrow

RECAP

- Out-of-time-ordered correlator (OTOC) \longrightarrow
- Decomposing the OTOC \longrightarrow
\square

RECAP

- Out-of-time-ordered correlator (OTOC) $\longrightarrow \mathrm{OO}$
- Decomposing the OTOC \longrightarrow

- Quasiprobabilities \rightarrow Kirkwood-Dirac \longrightarrow 正

RECAP

- Out-of-time-ordered correlator (OTOC) \longrightarrow
- Decomposing the OTOC \longrightarrow

- Quasiprobabilities \rightarrow Kirkwood-Dirac \longrightarrow 亚
- The quasiprobability behind the OTOC $\longrightarrow \operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)$

RECAP

- Out-of-time-ordered correlator (OTOC) \longrightarrow
- Decomposing the OTOC \longrightarrow

- Quasiprobabilities \rightarrow Kirkwood-Dirac \longrightarrow T)
- The quasiprobability behind the ОTOC $\longrightarrow \operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)$
- Weak-measurement scheme for inferring the OTOC experimentally

RECAP

- Out-of-time-ordered correlator (OTOC) \longrightarrow
- Decomposing the OTOC \longrightarrow

- Quasiprobabilities \rightarrow Kirkwood-Dirac \longrightarrow 罗
- The quasiprobability behind the OTOC $\longrightarrow \operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)$
- Weak-measurement scheme for inferring the OTOC experimentally
- Opportunities \longrightarrow,

THANKS FOR YOUR TIME!

NYH, Phys. Rev. A 95, 012120 (2017).
NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).

MEASURING THE OTOC QUASIPROBABILITY WITH WEAK MEASUREMENTS

Weak measurement
$-\operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)$

- No, we needn't discard data.

COMPARISON OF

OTOC-MEASUREMENT SCHEMES

	Yunger Halpern/ our weak meas.	Yunger Halpern interferometry	Swingle et al.	Yao et al.	Zhu et al.
Key tools	Weak measurement	Interference	Interference, Lochschmidt echo	Ramsey interfer., Rényi-entropy meas.	Quantum clock
What's inferable from the mea- surement?	$(1) F(t), \tilde{A}_{\rho}$, $\& \rho$ or $(2) F(t) \& \tilde{\mathscr{A}}_{\rho}$	$F^{(\mathscr{X})}(t), \tilde{A}_{\rho}^{\mathcal{K}}$, $\& \rho \forall \mathcal{K}$	$\Re(F(t))$ or $\|F(t)\|^{2}$	Regulated correlator $F_{\text {reg }}(t)$	$F(t)$
Generality of ρ	Arbitrary $\rho \in \mathcal{D}(\mathcal{H})$	Arbitrary $\rho \in \mathcal{D}(\mathcal{H})$	Arbitrary $\rho \in \mathcal{D}(\mathcal{H})$	Thermal: $e^{-H / T} / Z$	Arbitrary $\rho \in \mathcal{D}(\mathcal{H})$
Ancilla needed?	Yes	Yes	Yes for $\Re(F(t))$, no for $\|F(t)\|^{2}$	Yes	Yes
Ancilla coup- ling global?	No	Yes	No	No	Yes
How long must ancilla stay coherent?	1 weak measurement	Whole protocol	Whole protocol	Whole \# time reversals	2
\# copies of ρ needed / trial	1	0	1	Whole protocol	
Signal-to- noise ratio	To be deter- mined $[114]$	To be deter- mined $[114]$	Constant in N	$\sim e^{-N}$	2

How should we think of the KD quasiprobability?

How should we think of the KD quasiprobability?

How should we think of the KD quasiprobability?

$|i\rangle$

How should we think of the KD quasiprobability?

|i)

$$
\cdot F=\sum_{f} f|f\rangle\langle f|
$$

How should we think of the KD Quasiprobability?

|i)

$$
\text { - } F=\sum_{f} f|f\rangle\langle f|
$$

How should we think of the KD Quasiprobability?

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- What value is most reasonably attributable to A retrodictively, given that we prepared $|i\rangle$
and that our F measurement outcome yielded f ?

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

$$
\sum_{a} a
$$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.
- $\sum_{a} a p(a \mid i, f)$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

Conditional...probability?

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

Conditional...probability?

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

$$
\sum_{a} a \tilde{p}(a \mid i, f)
$$

Conditional...probability?

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Construct a best guess.

Conditional...probability?

Conditional quasiprobability

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability
- $\tilde{p}(a \mid i, f)$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

$$
\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)
$$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

- $\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

$$
\int \times \frac{\langle i \mid f\rangle}{\langle i \mid f\rangle}
$$

$$
\text { - } \tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)=\operatorname{Re}\left(\frac{\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle}{|\langle f \mid i\rangle|^{2}}\right)
$$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

- $\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)=\operatorname{Re}\left(\frac{\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle}{|\langle f \mid i\rangle|^{2}}\right)$

$$
=\frac{\operatorname{Re}(\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle)}{|\langle f \mid i\rangle|^{2}}
$$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

- $\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)=\operatorname{Re}\left(\frac{\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle}{|\langle f \mid i\rangle|^{2}}\right)$

$$
=\frac{\operatorname{Re}(\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle)}{|\langle f \mid i\rangle|^{2}}
$$

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability

- $\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)=\operatorname{Re}\left(\frac{\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle}{|\langle f \mid i\rangle|^{2}}\right)$

$$
=\frac{\operatorname{Re}(\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle)}{|\langle f \mid i\rangle|^{2}}
$$

- Nontrivial part of conditional quasiprobability:

HOW SHOULD WE THINK OF THE KD QUASIPROBABILITY?

- Conditional quasiprobability $\int \times \frac{\langle i \mid f\rangle}{\langle i \mid f\rangle}$ - $\tilde{p}(a \mid i, f)=\operatorname{Re}\left(\frac{\langle f \mid a\rangle\langle a \mid i\rangle}{\langle f \mid i\rangle}\right)=\operatorname{Re}\left(\frac{\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle}{|\langle f \mid i\rangle|^{2}}\right)$

$$
=\frac{\operatorname{Re}(\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle)}{|\langle f \mid i\rangle|^{2}}
$$

- Nontrivial part of conditional quasiprobability:
$\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=$ Kirkwood-Dirac quasiprobability

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

Generalizing The KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:
$\langle f \mid a\rangle\langle a| \rho|f\rangle$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:

$$
\langle f \mid a\rangle\langle a| \rho|f\rangle=\operatorname{Tr}(|f\rangle\langle f \mid a\rangle\langle a| \rho)
$$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:

$$
\langle f \mid a\rangle\langle a| \rho|f\rangle=\operatorname{Tr}(|f\rangle\langle f \mid a\rangle\langle a| \rho)=\operatorname{Tr}\left(\Pi_{f} \Pi_{a} \rho\right)
$$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:

$$
\langle f \mid a\rangle\langle a| \rho|f\rangle=\operatorname{Tr}(|f\rangle\langle f \mid a\rangle\langle a| \rho)=\operatorname{Tr}\left(\Pi_{f} \Pi_{a} \rho\right)
$$

GENERALIZING THE KD QUASIPROBABILITY TO MIXED STATES

- Pure-state KD quasiprobability: $\langle i \mid f\rangle\langle f \mid a\rangle\langle a \mid i\rangle=\langle f \mid a\rangle\langle a \mid i\rangle\langle i \mid f\rangle$

Mix it up: $\sum_{i} p_{i}|i\rangle\langle i|=\rho$

- Mixed-state KD quasiprobability:

$$
\langle f \mid a\rangle\langle a| \rho|f\rangle=\operatorname{Tr}(|f\rangle\langle f \mid a\rangle\langle a| \rho)=\operatorname{Tr}\left(\Pi_{f} \Pi_{a} \rho\right)
$$

$$
\operatorname{Tr}\left(\Pi_{w_{3}}^{\mathcal{W}(t)} \Pi_{v_{2}}^{V} \Pi_{w_{2}}^{\mathcal{W}(t)} \Pi_{v_{1}}^{V} \rho\right)
$$

OTOC quasiprobability

THE OTOC AS A SIGNATURE OF CHAOS

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation. (1) $|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto$
$V|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.

$$
\text { (1) }|\psi\rangle \mapsto \quad U V|\psi\rangle
$$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.

$$
\text { (1) }|\psi\rangle \mapsto \quad \mathcal{W} U V|\psi\rangle
$$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.

$$
\begin{array}{lll}
\text { (1) }|\psi\rangle & \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle \\
\text { (2) }|\psi\rangle & \mapsto & U|\psi\rangle
\end{array}
$$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto \quad \mathcal{W} U|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto \quad U^{\dagger} \mathcal{W} U|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$
- How much does an initial perturbation change the final state?

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$
- How much does an initial perturbation change the final state?
- Overlap: $\left|\left\langle\psi^{\prime \prime} \mid \psi^{\prime}\right\rangle\right|$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$
- How much does an initial perturbation change the final state?
- Overlap: $\left|\left\langle\psi^{\prime \prime} \mid \psi^{\prime}\right\rangle\right|=|F(t)|$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$
- How much does an initial perturbation change the final state?
- Overlap: $\left|\left\langle\psi^{\prime \prime} \mid \psi^{\prime}\right\rangle\right|=|F(t)| \sim 1-$ (number) $e^{\lambda_{\mathrm{L}} t}$

THE OTOC AS A SIGNATURE OF CHAOS

- Chaos \longleftrightarrow sensitivity to initial conditions
- Compare 2 protocols that differ by an initial perturbation.
(1) $|\psi\rangle \mapsto U^{\dagger} \mathcal{W} U V|\psi\rangle=:\left|\psi^{\prime}\right\rangle$
(2) $|\psi\rangle \mapsto V U^{\dagger} \mathcal{W} U|\psi\rangle=:\left|\psi^{\prime \prime}\right\rangle$
- How much does an initial perturbation change the final state?
- Overlap: $\left|\left\langle\psi^{\prime \prime} \mid \psi^{\prime}\right\rangle\right|=|F(t)| \sim 1-$ (number) $e^{\lambda_{\mathrm{L}} t}$

Lyapunov-type exponent

FLUCTUATION RELATIONS

- Field of physics: nonequilibrium statistical mechanics
- Broad strokes
- Describe systems arbitrarily far from equilibrium
- Relate to irreversibility, Second Law, loss of information
- Tested experimentally \longrightarrow DNA, single-electron boxes, ion traps, \ldots
- Useful \longrightarrow used to infer a free-energy difference ΔF

JARZYNSKI'S EQUALITY

Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}
$$

JARZYNSKI'S EQUALITY: $\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}$

FREE-ENERGY DIFFERENCE ΔF

- Applied in pharmacology, biology, and chemistry
- Difficult to measure -- idealized equilibrium quantity
- Inferred from nonequilibrium trials, via Jarzynski's Equality

JARZYNSKI'S EQUALITY AND THE OTOC

- "Useful" form of Jarzynski's Equality: $\Delta F=-\frac{1}{\beta} \ln \left\langle e^{-\beta W}\right\rangle$
- Jarzynski-like equality for the OTOC: $F(t)=\left.\frac{\partial^{2}}{\partial \beta \partial \beta^{\prime}}\left\langle e^{-\left(\beta W+\beta^{\prime} W^{\prime}\right)}\right\rangle\right|_{\beta, \beta^{\prime}=0}$
- From different fields of physics
- Both related to time reversal, loss of information...
- They must be combinable!

JARZYNSKI-LIKE EQUALITY FOR THE OTOC

NYH, Phys. Rev. A 95, 012120 (2017).

NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).

STRATEGY

- Start with a paper that casts Jarzynski's Eq. in terms of a correlation function.
- Talkner etal., Phys. Rev. E75, 050102(R) (2007).
- 2-point, time-ordered correlator
- Deform the proof such that the OTOC pops out.
- Build definitions by analogy.
- Interpret physically. (Construct measurement protocols.)
- Discover: probabilities \longmapsto quasiprobabilities

DEFINITIONS

$$
\left.F(t)=\frac{\partial^{2}}{\partial \beta \partial \beta^{\prime}}\left\langle e^{-\beta} v+\sqrt{\beta^{\prime}} W^{\prime}\right)\right\rangle\left.\right|_{\beta, \beta^{\prime}=0}
$$

- $W, W^{\prime} \rightarrow$ measurable random variables analogous to thermodynamic work
- <.> \rightarrow average w.r.t. complex distribution
- Constructed from quasiprobability
- $\beta, \beta^{\prime} \rightarrow$ real parameters

THE QUASIPROBABILITY BEHIND THE OTOC

- Jarzynski's Equality casts ΔF in terms of the characteristic function of a probability distribution.

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}
$$

- The Jarzynski-like equality casts the OTOC in terms of the characteristic function of a summed quasiprobability distribution.

Signals
nonclassical behavior

