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Hamiltonian () ——— Time evolution: U := e~ "

State
v =5 ]
J

Often assumed to be thermal: e_H/T/Z
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Simple example: far-apart 1-qubit Paulis

Hermitian and/or unitary

Eigenvalue decompositions
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* Previously known connections

* Sensitivity to “perturbation in initial conditions”

e Semiclassical

* New insight from the skeleton in the OTOC
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Used mostly in quantum optics

Think: statistical-mechanics phase-space distribution, but for quantum systems
Like a probability

But can assume negative and nonreal values

Most famous example: Wigner function 0
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QUASIPROBABILITY |

Discovered in 1933 and 1945 — enjoying a comeback

B )
i

Interesting mathematical properties

Obeys Bayes-type theorem

Can be nonreal

Straightforwardly defined for discrete systems — even qubits

Can be inferred from weak measurements = can be used to measure the OTOC
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THE QUASIPROBABILITY BEHIND THE OTOC

* NYH, Phys. Rev.A95,012120(2017).

* NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).



VISUALIZING THE OTOC QUASIPROBABILITY
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FIG. 13: Real part of &7, as a function of time. Random
pure state. Nonintegrable parameters, N = 10, WW = o7,
V =o0o%.
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Use weak measurements to infer the quasiprobability and OTOC.

Superconducting qubits, cavity QED, ultracold atoms, ...

What is the OTOC quasiprobability’s imaginary part telling us?

The OTOC, quasiprobability theory, and quantum thermodynamics
feed back on each other.

Channels
Leggett-Garg inequalities

i

Meaning of ““maximal noncommutation”

Etc. — arXiv:1704.01971(2017).
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THANKS FOR YOUR TIME!

NYH, Phys. Rev. A 95,012120(2017).
NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).



MEASURING THE OTOC QUASIPROBABILITY
WITH WEAK MEASUREMENTS

rl DY A

N
\ —— DY D

Weak measurement

Tr (0PI, YO, p)

No, we needn't discard data.



ANNOUNCEMENT

COMPARISON OF

OTOC-MEASUREMENT SCHEMES

R
Yunger Halpern/| Yunger Halpern Swingle Yao Zhu
our weak meas. | interferometry et al. et al. et al.
Key tools Weak Interference Interference, Ramsey interfer., |Quantum
measurement Lochschmidt echo |Rényi-entropy meas.| clock
What's inferable| (1) F(t), 4,, | F“9)(t), A%, R(F(t)) Regulated F(t)
from the mea- & p or & p VK or |F(t)|? correlator
surement? (2) F(t) & .as;;, Freg(t)
Generality Arbitrary Arbitrary Arbitrary Thermal: Arbitrary
of p p € D(H) p € D(H) p € D(H) e a7 p € D(H)
Ancilla Yes Yes Yes for R(F(t)), Yes Yes
needed? no for |F(t)|*
Ancilla coup- No Yes No No Yes
ling global?
How long must 1 weak Whole Whole Whole Whole
ancilla stay measurement protocol protocol protocol protocol
coherent?
# time 2 0 1 0 2
reversals
# copies of p 1 1 1 2 1
needed / trial
Signal-to- To be deter- To be deter- Constant Y T Constant
noise ratio mined [114] mined [114] in N in N
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1

¢ t’ 0

(f] (A7) 1)
F=) I

A=) ala){al
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What value is most reasonably attributable to A retrodictively,
given that we prepared |)
and that our F measurement outcome yielded f?
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: Za p(ali, f) —- Za plali, f)

Conditional...probability?

9
R.

/':1 7—?

s ¥



HOwW SHOULD WE THINK OF
THE KD QUASIPROBABILITY?

 Construct a best guess.

» Y a plali,f) = > a Balif)
a : ! a : T

Conditional...probability? Conditional quasiprobability

5 O
/n"'?
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HoOw SHOULD WE THINK OF
THE KD QUASIPROBABILITY?

(|.f)
Conditional quasiprobability f “ G

(Flay(ali) _ o ({iLF)la)ali
1) ) o ( GG )

plali.f) = Re

_ Re((i]f){fla)(ali))
ik

Nontrivial part of conditional quasiprobability:

(¢| f){f|a){a|t) =Kirkwood-Dirac quasiprobability
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Pure-state KD quasiprobability: (i| f){fla){(ali) = (f|a){a|){i|f)

—

Mix it up: me'}(z —

Mixed-state KD quasiprobability:

(fla)alplf) = Te(|f)(fla){alp) = Tr(I1;TL,p) >

Tr (Hw(t)HV I W(t)HV
ws (¥

OTOC quasiprobability




THE OTOC AS A SIGNATURE OF CHAOS



THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions



THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.



THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.

(1) %)



THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.

(1) ) = V |¥)




THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.

(1) ) = UV |¢)




THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.

M) = WUV [




THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.

() ) = U'W UV [




THE OTOC AS A SIGNATURE OF CHAOS

» (Chaos «— sensitivity to initial conditions

» Compare 2 protocols that differ by an initial perturbation.

M) [y = UTW UV [¢) =)




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.

(1) [) = UTW UV |¥) = |4
(2) |2b)




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [¥) = UTW UV [|¢) = @)
2) |¢) = U )




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) ) = U'WUV [|¢) = |¢)
2) [¢) ~ W U |y




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) ) = U'WUV [|¢) = |¢)
2) ¥y =  U'W U




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) ) = U'WUV [|¢) = |¢)
2) |) = VUIW U )




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) ) = U'WUV [|¢) = |¢)
2) |y = VUtw Ul =¥




THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [¢) = UTW UV |[¢) = i)
2) ¥y —» VUtw Ul =¥

How much does an initial perturbation change the final state?



THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [¢) = UTW UV |[¢) = i)
2) ¥y —» VUtw Ul =¥

How much does an initial perturbation change the final state?

Overlap: |{p"|¢")]

B B B e e e e



THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [¢) = UTW UV |[¢) = i)
2) ¥y —» VUtw Ul =¥

How much does an initial perturbation change the final state?

Overlap: [(4"[9')| = |F(2)]

B B B e e e e



THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [y = U'WUV |¥) =)
2) [p) = VUIW UIp) =)

How much does an initial perturbation change the final state?

Ouetap: | (4" |y')] = |F(t)] ~ 1 — (mumber)e™

B B B e e e e



THE OTOC AS A SIGNATURE OF CHAOS

Chaos «— sensitivity to initial conditions

Compare 2 protocols that differ by an initial perturbation.
(1) [y = U'WUV |¥) =)
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How much does an initial perturbation change the final state?

Ouetap: | (" |4')] = |F(t)] ~ 1 — (mumber)e-

f
Lyapunov-type
exponent
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FLUCTUATION RELATIONS .

* Field of physics: nonequilibrium statistical mechanics

* Broad strokes

* Describe systems arbitrarily far from equilibrium

* Relate to irreversibility, Second Law, loss of information

o Tested experimentally — DNA, single-electron boxes, ion traps, ...

o Useful — used to infer a free-energy difference AF



JARZYNSKI’S EQUALITY

Jarzynski, Phys. Rev. Lett. 78,2690 (1997).

<6—6W> e 6—5AF



JARZYNSKI’S EQUALITY: (e W)

& @
S
=gl /7 P(W) Nonequilibrium state

_ —BAF



FREE-ENERGY DIFFERENCE AF

:‘Mﬁ"\‘
!.‘(‘{ H;, % o Hy, P
8 . . “K
1 1
BN Fei=——In~Zz
AF = [l = I

» Applied in pharmacology, biology, and chemistry
» Difficult to measure — idealized equilibrium quantity

* Inferred from nonequilibrium trials, via Jarzynski's Equality



JARZYNSKI’S EQUALITY AND THE OTOC

"Useful” form of Jarzynski's Equality: AF = & e 7

B

0* o
Jarzynski-like equality for the OTOC: F'(t) = 9307 <e_(5W+5 4 )>

5,8'=0

From different fields of physics
Both related to time reversal, loss of information. ..

They must be combinable!



JARZYNSKI-LIKE EQUALITY
FOR THE OTOC

NYH, B. Swingle, and J. Dressel,
arXiv:1704.01971(2017).



()
STRATEGY ‘5

Start with a paper that casts Jarzynski's Eq. in terms of a correlation function.

i

7,4/

T 14
6"'.‘

Talkner et al., Phys. Rev. E75,050102(R) (2007).

2-point, time-ordered correlator

Deform the proof such that the OTOC pops out.
Build definitions by analogy.

Interpret physically. (Construct measurement protocols.)

Discover: probabilities — quasiprobabilities



DEFINITIONS

F(t) =

B0

5’6 0Jox < hettl

W, W — measurable random variables analogous to thermodynamic work

<.> — average w.r.t. complex distribution

Constructed from quasiprobability

B,B' — real parameters



THE QUASIPROBABILITY
BEHIND THE OTOC

Jarzynski's Equality casts AF in terms of
the characteristic function of a probability distribution.

<€—BW> B3 G—BAF

The Jarzynski-like equality casts the OTOC in terms of
the characteristic function of a summed quasiprobability distribution.

Signals

Signals .
J noncomutation

nonclassical behavior



