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What’s a quasiprobability?

• Like a probability

• Used mostly in quantum optics

• Most famous example: Wigner function

• Think: statistical-mechanics phase-space distribution, but for quantum systems

• But can assume negative and nonreal values
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Kirkwood-Dirac (KD) 
quasiprobability

• Discovered in 1933 and 1945

• Can be inferred from weak measurements ⇒  can be used to measure the OTOC

• Obeys Bayes-type theorem

• Interesting mathematical properties

• Can be nonreal
• Straightforwardly defined for discrete systems

enjoying a comeback

even qubits
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• NYH, Phys. Rev. A 95, 012120 (2017).

• NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).
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FIG. 10: Real and imaginary parts of F (t) as a function of
time. T = 1 thermal state. Integrable parameters, N = 10,
W = �

z
1 , V = �

z
N .

FIG. 11: Real part of Ã⇢ as a function of time. T = 1
thermal state. Integrable parameters, N = 10, W = �

z
1 ,

V = �

z
N .

tively similar.

C. Product states

Finally, we consider the product |+xi⌦N of N copies
of the +1 �x eigenstate (Figures 15–17). We continue

FIG. 12: Real and imaginary parts of F (t) as a function of
time. Random pure state. Nonintegrable parameters,
N = 10, W = �

z
1 , V = �

z
N .
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FIG. 13: Real part of Ã⇢ as a function of time. Random
pure state. Nonintegrable parameters, N = 10, W = �

z
1 ,

V = �

z
N .

FIG. 14: Imaginary part of Ã⇢ as a function of time.
Random pure state. Nonintegrable parameters, N = 10,
W = �

z
1 , V = �

z
N .

to use W = �z
1 and V = �z

N . For the Hamiltonian pa-
rameters chosen, this state lies far from the ground state.
The state therefore should correspond to a large e↵ective
temperature. Figures 15, 16, and 17 show F (t) and Ã⇢

for nonintegrable parameters.

The real part of F (t) decays significantly from its ini-
tial value of one. The imaginary part of F (t) is nonzero
but remains small. These features resemble the infinite-
temperature features. However, the late-time F (t) values
are substantially larger than in the T = 1 case and os-
cillate significantly.

Correspondingly, the real and imaginary components

of Ã⇢ oscillate significantly. <
⇣

Ã⇢

⌘

exhibits dynamics

before scrambling begins, as when ⇢ is a random pure
state. The real and imaginary parts of Ã⇢ di↵er more
from their T = 1 counterparts than F (t) di↵ers from its
counterpart. Some of this di↵ering is apparently washed
out by the averaging needed to construct F (t) [Eq. (59)].

We expected pure product states to behave roughly like
random pure states. The data support this expectation
very roughly, at best. Whether finite-size e↵ects cause
this deviation, we leave as a question for further study.

Visualizing the OTOC quasiprobability

Ã⇢(v1, w2, v2, w3)
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• Superconducting qubits, cavity QED, ultracold atoms, …

• Etc.

• The OTOC, quasiprobability theory, and quantum thermodynamics  
feed back on each other.

arXiv:1704.01971 (2017).

• Channels

• What is the OTOC quasiprobability’s imaginary part telling us?

• Leggett-Garg inequalities

• Meaning of “”maximal noncommutation”
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Thanks for your time!

NYH, Phys. Rev. A 95, 012120 (2017).

NYH, B. Swingle, and J. Dressel, arXiv:1704.01971 (2017).



Measuring the OTOC quasiprobability 
with weak measurements

• No, we needn’t discard data.

•  

Weak measurement

Tr
⇣
⇧W(t)

w3
⇧V

v2⇧
W(t)
w2

⇧V
v1⇢
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How should we think of the KD quasiprobability?

|ii

F =
X

f

f |fihf |

A =
X

a

a|aiha|

hf |

•  

•  

(A?)

• What value is most reasonably attributable to A retrodictively,
given that we prepared
and that our F measurement outcome yielded f?

|ii

Ut0,0U†
t00,t0

t

0t0t00
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• Conditional quasiprobability
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• Conditional quasiprobability

•  Re

✓
hf |aiha|ii

hf |ii

◆

=
Re(hi|fihf |aiha|ii)

|hf |ii|2

• Nontrivial part of conditional quasiprobability:

hi|fihf |aiha|ii = Kirkwood-Dirac quasiprobability

p̃(a|i, f) =

How should we think of  
the KD quasiprobability?
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Generalizing the KD quasiprobability 
to mixed states

• Pure-state KD quasiprobability:

hf |aiha|⇢|fi Tr(⇧f⇧a⇢)Tr(|fihf |aiha|⇢)= =

OTOC quasiprobability

hi|fihf |aiha|ii hf |aiha|iihi|fi=

• Mixed-state KD quasiprobability:

Tr
⇣
⇧W(t)

w3
⇧V

v2⇧
W(t)
w2

⇧V
v1⇢

⌘

X

i

pi|iihi| = ⇢Mix it up:
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The OTOC as a signature of chaos

• Chaos ⟷ sensitivity to initial conditions
• Compare 2 protocols that differ by an initial perturbation.

(1) | i | i7! VUWU † =: | 0i

(2) | i | i7! V UWU † =: | 00i

• How much does an initial perturbation change the final state?

• Overlap: |h 00| 0i| = |F (t)| ⇠ 1� (number)e�Lt

Lyapunov-type 
exponent



Fluctuation relations

• Broad strokes

• Describe systems arbitrarily far from equilibrium

• Relate to irreversibility, Second Law, loss of information

• Tested experimentally  ⟶  DNA, single-electron boxes, ion traps, …

• Useful  ⟶  used to infer a free-energy difference ΔF

• Field of physics: nonequilibrium statistical mechanics



Jarzynski’s Equality

Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
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Jarzynski’s equality: he��W i = e���F

t

Hi Hf

H(t)

⇢i = e��Hi/Zi Nonequilibrium state

W

P (W )

⌦
e��W

↵
= e���F



Free-energy difference ΔF

Fi := � 1

�
lnZi Ff := � 1

�
lnZf

Hi, �
Hf , �

�F := Ff � Fi

• Applied in pharmacology, biology, and chemistry
• Difficult to measure —— idealized equilibrium quantity

• Inferred from nonequilibrium trials, via Jarzynski’s Equality



Jarzynski’s equality and the otoc

• “Useful” form of Jarzynski’s Equality: �F = � 1

�
lnhe��W i

• Jarzynski-like equality for the OTOC: F (t) =
@2

@� @�0

D
e�(�W+�0W 0)

E �����
�,�0=0

• From different fields of physics

• They must be combinable!
• Both related to time reversal, loss of information…



Jarzynski-like equality  
for the otoc

NYH, Phys. Rev. A 95, 012120 (2017).

Fluctuation 
relations

Quantum chaos 
(information
scrambling)

Quasiprobability

NYH, B. Swingle, and J. Dressel, 
arXiv:1704.01971 (2017).



Strategy

• Talkner et al., Phys. Rev. E 75, 050102(R) (2007).

• 2-point, time-ordered correlator

• Deform the proof such that the OTOC pops out.

• Build definitions by analogy.

• Discover: probabilities  ⟼  quasiprobabilities

• Interpret physically. (Construct measurement protocols.)

• Start with a paper that casts Jarzynski’s Eq. in terms of a correlation function.



F (t) =
@2

@� @�0

D
e�(�W+�0W 0)

E �����
�,�0=0

• W, W’  →  measurable random variables analogous to thermodynamic work

• < . >  →  average w.r.t. complex distribution

• Constructed from quasiprobability

• β, β’  →  real parameters

Definitions



• Jarzynski’s Equality casts ΔF in terms of  
the characteristic function of a probability distribution.

• The Jarzynski-like equality casts the OTOC in terms of  
the characteristic function of a summed quasiprobability distribution.

The quasiprobability 
behind the OTOC

Signals  
noncomutationSignals  

nonclassical behavior

he��W i = e���F


