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Quantum-inspired superresolution, electro-optics
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� Quantum-inspired superresolution: Tsang,
Nair, Lu, PRX (2016)

– 30+ experiments so far
– https://online.kitp.ucsb.edu/online/

qmetro23/tsang/

� Tsang, “Cavity quantum electro-optics,”
PRA (2010,2011).

– Quantum transduction
– Experiments: Rueda et al. (Schwefel, Er-

langen), Optica (2016); Fan et al. (Tang,
Yale), Sci. Adv. (2018); Sahu et al. (Fink,
IST Austria), Science (2023), etc.



Sensing with a dynamical system

3 / 23

 

Modulator

� Dynamical system: time-varying parameter (waveform) X(t), continuous input
field, continuous measurement of output field (many modes).

� Hamiltonian: H = H0 − Q̂X(t).

� Examples:

Classical X(t) Generator Q̂ Measurement
Optomech.
/LIGO

classical force mechanical po-
sition

optical homo-
dyne

Optical inter-
ferometer

phase modula-
tion

photon flux heterodyne,
homodyne, etc.

Atomic magne-
tometer

magnetic field atomic spin optical



Quantum estimation and detection theory
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� Quantum limits for any measurement?

– Helstrom’s book (1976)

� Best measurement?

– Homodyne? Backaction evasion? Photon counting? In what optical modes?

� Best data processing: classical statistics

– Maximum-likelihood? Bayesian? Filtering/smoothing? Likelihood-ratio test?

� Best input state?
� Best dynamics?



Statistical tasks
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1. Waveform estimation [Tsang, Wiseman, Caves, PRL (2011), etc.]

� Estimate unkown X(t).

2. Noise spectroscopy [Ng et al., PRA (2016); Tsang, PRA (2023)]

� X(t) is stochastic, estimate parameters of its power spectral density
(PSD) SX(ω|θ).

3. Waveform detection [Tsang & Nair, PRA (2012); Tsang, PRA (2023)]

� Hypothesis testing: Null hypothesis: X(t) = 0. Alternative hypothesis:
X(t) = something.



Waveform estimation
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� Waveform X(t): many many parameters.
� Maximum-likelihood, unbiased, Cramér-Rao

bound, etc.:

– Rely on asymptotics: many observations all
conditioned on a static parameter.

– Doesn’t work for waveform: X(t) doesn’t
repeat.

� Classical (e.g., radar): Bayesian [Kolmogorov
(1941), Wiener (1949), Van Trees’ books
(1968–)], X(t) is random process:

MSE = EX

{

EY |X

[

∥

∥X̌(Y )−X
∥

∥

2
]}

. (1)

� X̌(Y ) is estimator given observation Y .
� EX is expectation using a prior.

� (Norm for waveform: ‖f‖2 ≡ 1

T

∫ T

0
|f(t)|2dt)

� (minimax: worst-case error)



Quantum measurement theory
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� Introduction by Chantasri
� Larger Hilbert space + principle of deferred measurement:

PY |X(y|x) = tr [E(y)ρx] , ρX = UX |ψ〉 〈ψ|U†
X , (2)

UX = T exp

[

−i
∫ T

0

HX(t)dt

]

, HX = H0 − Q̂X(t). (3)

� |ψ〉 is the initial state of everything (input light, mechanical object,
environment)

� H0 is the rest of all dynamics (optics, mechanics, interactions with probe and
environment).

� State at final time: ρX . Final measurement: POVM E.



Bayesian Quantum Bound [Tsang, Wiseman, Caves, PRL
(2011)]
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� Tasteful assumptions:

1. Quantum: stationary (not bad for optomech/LIGO).
2. prior PX : Gaussian, stationary, with PSD SX(ω).
3. Long observation time (relative to correlation time of X(t))

� For any POVM E, any biased/unbiased estimator, Bayesian quantum
Cramér-Rao:

MSE ≥ MSEquantum ≡
∫ ∞

−∞

1

4SQ(ω) + 1/SX(ω)

dω

2π
. (4)

SQ(ω) = PSD of ∆Q̂(t) ≡ Q̂(t)− 〈ψ| Q̂(t) |ψ〉 in Heisenberg picture. (5)

� Compare with vanilla QCRB:

Uφ = eiQ̂X , ∆X2 ≥ 1

4 〈ψ|∆Q̂2 |ψ〉
. (6)

� Optomech: SQ(ω) is PSD of mechanical position. Optical phase: SQ(ω) is PSD
of photon flux.

� 1/SX(ω) is prior information.



Optimal measurement & data processing

9 / 23

� Assume coherent or squeezed input light (stationary, Gaussian).
� Optomech: Measurement backaction noise (radiation-pressure noise,

ponderomotive squeezing) negligible or removed.

– Kimble et al., PRD (2001).
– Tsang & Caves, PRL (2010); PRX (2012).

⊲ “Quantum noise cancellation,” “quantum-mechanics-free subsystems”
⊲ see also Polzik (2001–), Hammerer (2009–), Heurs, etc.

� Optical homodyne
� Classical data processing: minimum MSE estimator = conditional expectation

= “smoothing”

MSEsmoothing =

∫ ∞

−∞

1

1/Snoise(ω) + 1/SX(ω)

dω

2π
, Snoise(ω) ≥

1

4SQ(ω)
. (7)

– Kolmogorov, Wiener, Van Trees’ books, etc.
– Magnetometry, linear Gaussian: Petersen & Mølmer, PRA (2006).
– General quantum theory: Tsang, PRL (2009); PRA (2009, 2010).



Proof-of-concept experiment
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� Iwasawa, Makino, Yonezawa, Tsang, Davidovic, Huntington, Furusawa,
“Quantum-Limited Mirror-Motion Estimation,” PRL 111, 163602 (2013).

� Spin squeezing, magnetometry by smoothing: Bao, Mølmer, Xiao et al., Nature
(2020).
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� “Energetic quantum limit” [Braginsky et al. (1992, 1999)]:

– bound on SNR:

SNR ≤
∫ T

0

∫ T

0

X(t)ΣQ(t, t
′)X(t′)dtdt′ =

∫ ∞

−∞

SQ(ω)|X̃(ω)|2 dω
2π
, (8)

ΣQ(t, t
′) ≡ Re 〈ψ|∆Q(t)∆Q(t′) |ψ〉 . (9)

– Since WWII: Error doesn’t depend only on SNR, also depends on

1. task (estimation, detection, spectroscopy, etc.)
2. type of statistics (Gaussian, Poisson, etc.)
3. data processing

� Tighter quantum bounds with optical loss: Tsang, NJP (2013).

– “Unfavorable purification” technique by Escher, Filho, Davidovich (2011).



Noise spectroscopy
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� Assume X(t) is zero-mean stationary Gaussian random process. Examples:

– Stochastic gravitational-wave background
– Gravity-induced decoherence
– Optical phase noise
– Stochastic magnetic field

� estimate unknown parameter θ of PSD SX(ω|θ) of X(t).
� θ is static; maximum-likelihood/Cramér-Rao bound/asymptotics make sense

again [Whittle (1953); Shumway & Stoffer, Time Series Analysis]
� Focus on weak optical phase modulation (i.e., interferometer)



Quantum limit to noise spectroscopy
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� CRB: ∆θ2 ≥ 1/J .
� Upper quantum bound on Fisher information J [Ng et al., PRA (2016)]:

J(θ) ≤ Jquantum(θ) ≡ T

∫ ∞

−∞

1

2 + 1/[SQ(ω)SX(ω|θ)]

[

∂

∂θ
lnSX(ω|θ)

]2
dω

2π
.

(10)

� derived using extended convexity of QFI [Alipour & Rezakhani, PRA (2015)].
� Optical phase noise spectroscopy, flat photon-flux PSD SQ(ω), flat

SX(ω|θ) ∝ θ2 with bandwidth B [Tsang, PRA (2023)]:

� LOG-LOG PLOT
� Homodyne is much worse than

quantum limit!



Optimal measurement: spectral photon counting
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� Assume coherent-state input.
� Ng et al., PRA (2016): Spectrometer

(diffraction grating or resonator array) +
photon counting: Fisher information =
quantum bound.

� Cannot be explained by “energetic quantum
limit.”

� Joint estimation of phase and phase diffusion:
Vidrighin, Datta et al., NC (2014).

– Single mode
– POVMs, homodyne, “displaced Sagnac

polarization interferometer”

measurement

randomly 
displaced

fields

data

estimate

estimator

 



Caltech/LIGO proposed experiment
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� Lee McCuller (Caltech/LIGO), “Single-Photon Signal Sideband Detection for
High-Power Michelson Interferometers,” arXiv:2211.04016 (2022).

� To detect signatures of quantum gravity (GQuEST):

1. https://www.caltech.edu/about/news/at-the-edge-of-physics

2. https://magazine.caltech.edu/post/quantum-gravity

https://www.caltech.edu/about/news/at-the-edge-of-physics
https://magazine.caltech.edu/post/quantum-gravity


Heuristic, ad-hoc explanation
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� Consider dark port of Michelson (nulled
mean field)

� Average output photon number per mode
ǫ≪ 1 . (Number of temporal modes
M = BT )

– With random phase, vacuum state
most of the time.

� Photon counting:

– when there is no photon, variance = 0
– ∼ Poisson, variance = Θ(ǫ)

� Homodyne/heterodyne/linear amplifiers:

– vacuum fluctuations all the time.
– ∼ additive Gaussian, variance = Θ(1)

� Different from waveform estimation!

– estimating X versus θ =
√

E(X2).

measure



Superiority of photon counting for random signals
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� Thermal radiation (random fields):

– photon counting ≫ linear detectors (heterodyne, homodyne, linear amplifiers)
when ǫ≪ 1

– Siegman (1966), Kingston (1978), Prasad (1994), Townes, etc.

� Axion dark matter search:

– dark matter = random field, may convert to thermal microwave
– random displacements in both microwave quadratures
– Photon counting ≫ linear detectors when ǫ≪ 1 [Lamoreaux et al., PRD

(2003); Dixit et al. PRL (2021)]

� Phase noise spectroscopy:

– coherent input, random displacement of optical phase quadrature.

� Incoherent imaging:

– Random fields + randomly displaced photons
– Photon counting ≫ linear detectors when ǫ≪ 1 [Yang et al., PRA (2017)]
– Hermite-Gaussian mode basis (SPADE) ≫ position basis for sub-Rayleigh

sources [Tsang et al. (2016–)]



Optimal measurement for squeezed input
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� Unsqueeze + spectral photon
counting

– Tsang, “Quantum noise spec-
troscopy as an incoherent imaging
problem,” PRA (2023).

� Similar ideas by Gorecki et al., PRL
(2023); Shi & Zhuang, NPJQI (2023).

� Time reversal in quantum metrology
[discussion by Davidovich]



Deterministic waveform detection
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� Binary hypothesis testing:

– Error probabilities: miss, false-alarm, average error probability
≈ C exp(−Γ).

– Γ is error exponent, ∝ time T , SNR, photon number, etc.
– Classical: Neyman-Pearson, Bayesian, likelihood-ratio test, Chernoff, etc. [Van

Trees’ books]

� Assume

1. Null hypothesis: X(t) = 0
2. Alt. hypothesis: known X(t).

� Upper quantum bound on error exponent via fidelity F ≡ (tr
√√

ρ1ρ0
√
ρ1)

2

[Nair & Tsang, PRA (2012)]:

Γ ≤ Γquantum = − lnF =

∫ T

0

∫ T

0

X(t)ΣQ(t, t
′)X(t′)dtdt′, (11)

ΣQ(t, t
′) ≡ Re 〈ψ|∆Q(t)∆Q(t′) |ψ〉 . (12)

� Γhomodyne = Γquantum/2 (suboptimal but pretty good)
� Coherent-state input: Γnulling + photon counting = Γquantum (Kennedy receiver)



Stochastic waveform detection
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� Assume

1. Null hypothesis: X(t) = 0
2. Alt. hypothesis: stochastic X(t) (stationary Gaussian).

� Upper quantum bound on error exponent [Tsang & Nair, PRA (2012)]:

Γ ≤ Γquantum = − lnF =
T

2

∫ ∞

−∞

ln [1 + 2SQ(ω)SX(ω)]
dω

2π
. (13)

� LOG-LOG PLOT
� Homodyne is terrible
� Unsqueeze + spectral photon count-

ing is optimal [Tsang, PRA (2023)].



Quantum Technology 1.5
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Experimental Difficulties
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� Caves, PRD (1980):



Conclusion
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� Quantum limits to waveform sensing
∼ laws of thermodynamics

� Optimal measurements, data processing
∼ Carnot engine

� Optimal measurement depends on the task.

– Photon counting far superior for noise
spectroscopy/detection.

� National Research Foundation, Singapore

– Fellowship (NRF-NRFF-2011-07, 2011–2016)
– Quantum Engineering Programme (QEP-P7,

2019–2024)

� Ministry of Education, Singapore (R-263-000-C06-

112, 2016–2019)

� mankei@nus.edu.sg,
https://blog.nus.edu.sg/mankei/

 

LOG-LOG PLOTS

https://blog.nus.edu.sg/mankei/
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