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Quantum-inspired superresolution, electro-optics

0 Quantum-inspired superresolution: Tsang,

(G
Nair, Lu, PRX (2016) . -
A -
— 304 experiments so far A"_ . . Iﬁ(k)
— https://online kitp.ucsb.edu/online/ nonoront. @ BN <
gmetro23/tsang/ system estimetor
measurement
O Tsang, “Cavity quantum electro-optics,”
PRA (2010,2011). Microwave

Circuitry

—  Quantum transduction

— Experiments: Rueda et al. (Schwefel, Er-
langen), Optica (2016); Fan et al. (Tang,
Yale), Sci. Adv. (2018); Sahu et al. (Fink,
IST Austria), Science (2023), etc.
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Sensing with a dynamical system

X (t) \2??‘

-
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Q

 ——

X(1)

!

Modulator

—

Dynamical system: time-varying parameter (waveform) X (¢), continuous input
field, continuous measurement of output field (many modes).

Hamiltonian:

H=H,—QX(t).

Examples:
Classical X(t) | Generator () Measurement

Optomech. classical force mechanical po- optical homo-
/LIGO sition dyne
Optical inter- phase modula- photon flux heterodyne,
ferometer tion homodyne, etc.
Atomic magne- | magnetic field atomic spin optical
tometer

3/23



Quantum estimation and detection theory

0 Quantum limits for any measurement?

— Helstrom's book (1976)
0 Best measurement?

— Homodyne? Backaction evasion? Photon counting? In what optical modes?
0 Best data processing: classical statistics

—  Maximum-likelihood? Bayesian? Filtering/smoothing? Likelihood-ratio test?

[

Best input state?
Best dynamics?

[
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Statistical tasks

X(t) \%‘
A N
—_— | —
—F—)
=
Q
1. Waveform estimation [Tsang, Wiseman, Caves, PRL (2011), etc]

0 Estimate unkown X (t).
2. Noise spectroscopy [Ng et al., PRA (2016); Tsang, PRA (2023)]

0 X(t) is stochastic, estimate parameters of its power spectral density

3. Waveform detection [Tsang & Nair, PRA (2012); Tsang, PRA (2023)]

0 Hypothesis testing: Null hypothesis: X (¢) = 0. Alternative hypothesis:
X (t) = something.
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Waveform estimation

[

(I I A

Waveform X (¢): many many parameters.
M ikelihood_tmbiased CramérR
botund-—ete::

— Rely on asymptotics: many observations all
conditioned on a static parameter.

— Doesn’t work for waveform: X (t) doesn't
repeat.

Classical (e.g., radar): Bayesian [Kolmogorov
(1941), Wiener (1949), Van Trees' books
(1968-)], X (¢) is random process:

~

MSE = Ey {]Ey|X [ X (V) —X\ﬂ } (1)

X (Y) is estimator given observation Y.
£ x Is expectation using a prior.

(Norm for waveform: || f|* = . OT | f(t)]|%dt)

(minimax: worst-case error)

EXTRAPOLATION,
INTERPOLATION,
AND SMOOTHING oF
STATIONARY

TIME SERIES

With Engineering Applications

by Norbert Wiener

PROFESSOR OF MATHEMATICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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Quantum measurement theory

O Introduction by Chantasri
O Larger Hilbert space + principle of deferred measurement:
(a) (b)

CP—|CP— <+ —|CP[— U U coe —U—

O U W, %

S
Py x(y|z) = tr [E(y)ps) . px = Ux [¥) (| UL, (2)
szTeXp [—i/Tﬂx(t)dt] , HX:HO—QX(t). (3)

O |¢) is the initial state of everything (input light, mechanical object,

environment)
0  Hp is the rest of all dynamics (optics, mechanics, interactions with probe and

environment).
O State at final time: px. Final measurement: POVM FE.
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Bayesian Quantum Bound [Tsang, Wiseman, Caves, PRL
(2011)]

O Tasteful assumptions:

1. Quantum: stationary (not bad for optomech/LIGO).
2. prior Px: Gaussian, stationary, with PSD Sx (w).
3. Long observation time (relative to correlation time of X (t))

0 For any POVM FE, any biased/unbiased estimator, Bayesian quantum
Cramér-Rao:

o© 1 dw
> MSEquantum = :
MSE = MSEquant t[;w4ﬁbﬁu)+]/5k(w)2ﬂ

So(w) = PSD of AQ(t) = Q(t) — (¥| Q(t) |¥)) in Heisenberg picture.

0 Compare with vanilla QCRB:

Uy = QX AX2? > L
4 (Y| AQ? )

(4)
(5)

(6)

0 Optomech: Sg(w) is PSD of mechanical position. Optical phase: Sg(w) is PSD

of photon flux.
0 1/Sx(w) is prior information.
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Optimal measurement & data processing

O

Assume coherent or squeezed input light (stationary, Gaussian).
Optomech: Measurement backaction noise (radiation-pressure noise,
ponderomotive squeezing) negligible or removed.

—  Kimble et al., PRD (2001).
— Tsang & Caves, PRL (2010); PRX (2012).

> “Quantum noise cancellation,” “quantum-mechanics-free subsystems”
> see also Polzik (2001-), Hammerer (2009-), Heurs, etc.

Optical homodyne

Classical data processing: minimum MSE estimator = conditional expectation

= “smoothing’

o 1 d 1
~ Shoise (W) >

M Esmoo ing — 3
> thing /_ . 1/Snoise(w) + 1/Sx (w) 27

~ 45q(w)

— Kolmogorov, Wiener, Van Trees' books, etc.
— Magnetometry, linear Gaussian: Petersen & Mglmer, PRA (2006).
— General quantum theory: Tsang, PRL (2009); PRA (2009, 2010).

(7)
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Proof-of-concept experiment

O lwasawa, Makino, Yonezawa, Tsang, Davidovic, Huntington, Furusawa,
“Quantum-Limited Mirror-Motion Estimation,” PRL 111, 163602 (2013).

Mirror
(a) Motion

(g,p, f)

Position MSE
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O Spin squeezing, magnetometry by smoothing: Bao, Mglmer, Xiao et al., Nature
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0  “Energetic quantum limit” [Braginsky et al. (1992, 1999)]:
— bound on SNR:

SNR</ / X(t EQtt)X(t’)dtdt’:/OO SQ(w)|X(w)|2;l—::, (8)
El(t.t (W] AQ)AQ(L) 1) . (9)

—  Since WWII: Error doesn’t depend only on SNR, also depends on

1. task (estimation, detection, spectroscopy, etc.)
2. type of statistics (Gaussian, Poisson, etc.)
3. data processing

0 Tighter quantum bounds with optical loss: Tsang, NJP (2013).
— “Unfavorable purification” technique by Escher, Filho, Davidovich (2011).
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Noise spectroscopy

[

e—be(wW)—PX()

estimate

) >,m.
randomly
\— data displaced
measurement fields
estimator

Assume X (t) is zero-mean stationary Gaussian random process. Examples:

— Stochastic gravitational-wave background
— Gravity-induced decoherence

— Optical phase noise

— Stochastic magnetic field

estimate unknown parameter 6 of PSD Sx (w|6) of X (¢).

6 is static; maximum-likelihood/Cramér-Rao bound/asymptotics make sense

again [Whittle (1953); Shumway & Stoffer, Time Series Analysis]

Focus on weak optical phase modulation (i.e., interferometer) 12 / 23



Quantum limit to noise spectroscopy

CRB: A2 > 1/J.
Upper quantum bound on Fisher information J [Ng et al.,, PRA (2016)]:

e](e) f§=]duanUHn(9)

oo

1

0

T/_oo 2+ 1/[5q(w)Sx (wlf)]

|

00

In S (w|«9)]

% dw
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L’ ’ Jhomodyne

quantum limit!

—_
<
no

107! 10°
6 (square root of spectral SNR)

10!

o LOG-LOG PLOT

‘0 Homodyne is much worse than

(10)

derived using extended convexity of QFI [Alipour & Rezakhani, PRA (2015)].
Optical phase noise spectroscopy, flat photon-flux PSD Sg(w), flat
Sx (w]@) oc 62 with bandwidth B [Tsang, PRA (2023)]:
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Optimal measurement: spectral photon counting

O Assume coherent-state input.

0 Ng et al.,, PRA (2016): Spectrometer
(diffraction grating or resonator array) + ¢ —»5x(w !9>—>X()

photon counting: Fisher information = \est.mate
quantum bound.
R i
Jspectral photon counting — Y quantum randomly
data displaced
o 10 PR 1 measurement  fields
) L’ estimator
S L | (b)
= ’
E 107 e
g L’ Jhomodyne '
£ 108, L7 _
: 1
—_
10+ ‘ ‘ —
1072 107t 100 10! ,
0 (square root of spectral SNR)
[0 Cannot be explained by “energetic quantum ©
limit.” R " X 1 " X 1 1
: : : e O] O O] Ol I
[0 Joint estimation of phase and phase diffusion: Ol OO O O
Vidrighin, Datta et al., NC (2014). VYWY WWY

— Single mode | |
— POVMs, homodyne, “displaced Sagnac Y (w)

) ) ) ., 14 / 23
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Caltech/LIGO proposed experiment

0 Lee McCuller (Caltech/LIGO), “Single-Photon Signal Sideband Detection for
High-Power Michelson Interferometers,” arXiv:2211.04016 (2022).

VII. OUTLOOK

This work establishes and analyzes photon counting as
a promising methodology for using Michelson interferom-
eters to search for new physics. The analysis focuses on
incoherent stochastic-noise-like signals, yet utilizes an or-
thonormal Fourier-like temporal basis to decompose down
the observables and statistics for both kinds of searches.
The focus on incoherent signals avoids known quantum
Fisher information limits in signal detection. This key

00 To detect signatures of quantum gravity (GQUEST):

1. https://www.caltech.edu/about/news/at-the-edge-of-physics
2. https://magazine.caltech.edu/post/quantum-gravity
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Heuristic, ad-hoc explanation

0 Consider dark port of Michelson (nulled
mean field)

O Average output photon number per mode

e < 1| (Number of temporal modes

M = BT) - —
—  With random phase, vacuum state
most of the time. Ux
0 Photon counting:
v N

— when there is no photon, variance = 0 _} b

— ~ Poisson, variance = O(e¢) 4 ’
0 Homodyne/heterodyne/linear amplifiers:

— vacuum fluctuations all the time. T l

— ~ additive Gaussian, variance = O(1) [vac) measure

0 Different from waveform estimation!

— estimating X versus 6 = /E(X?).
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Superiority of photon counting for random signals

0 Thermal radiation (random fields):

— photon counting >> linear detectors (heterodyne, homodyne, linear amplifiers)
when € < 1
— Siegman (1966), Kingston (1978), Prasad (1994), Townes, etc.

0 Axion dark matter search:

— dark matter = random field, may convert to thermal microwave
— random displacements in both microwave quadratures
— Photon counting > linear detectors when ¢ < 1 [Lamoreaux et al., PRD

(2003); Dixit et al. PRL (2021)]

O Phase noise spectroscopy:
— coherent input, random displacement of optical phase quadrature.

O Incoherent imaging:

— Random fields + randomly displaced photons
— Photon counting > linear detectors when ¢ < 1 [Yang et al., PRA (2017)]
— Hermite-Gaussian mode basis (SPADE) > position basis for sub-Rayleigh

sources [Tsang et al. (2016-)] 17 / 23
,



Optimal measurement for squeezed input

O Unsqueeze + spectral photon Ux
counting

— Tsang, “Quantum noise spec- M

@ e
troscopy as an incoherent imaging ' D > |
pr0b|em," PRA (2023) _ D-I— 4 ’

O Similar ideas by Gorecki et al., PRL
(2023); Shi & Zhuang, NPJQI (2023). T l

O Time reversal in quantum metrology
[vac)

[discussion by Davidovich]
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Deterministic waveform detection

[

Binary hypothesis testing:

— Error probabilities: miss, false-alarm, average error probability
~ Cexp(—T).

— TI'is error exponent, < time 1", SNR, photon number, etc.

— Classical: Neyman-Pearson, Bayesian, likelihood-ratio test, Chernoff, etc. [Van
Trees’ books]

Assume

1. Null hypothesis: X (t) =0
2. Alt. hypothesis: known X (1).

Upper quantum bound on error exponent via fidelity F' = (tr \/\/Epo\/p_l)2
[Nair & Tsang, PRA (2012)]:

[ < Topantum = — In F = //X (DSt )X (#)dtd,| (1)

Yq(t,t') = Re (¥| AQ(H)AQ (12)

Ihomodyne = I'quantum/2 (suboptimal but pretty good)



Stochastic waveform detection

0 Assume

1. Null hypothesis: X (t) =0
2. Alt. hypothesis: stochastic X () (stationary Gaussian).

0 Upper quantum bound on error exponent [Tsang & Nair, PRA (2012)]:

dw

o (13)

[ < Tommam =~ F =5 [ In[1 4 280(0)Sx ()] 57

102

—_
S
=)
T

>—~
=
)

o LOG-LOG PLOT

Homodyne is terrible
Unsqueeze + spectral photon count-
ing is optimal [Tsang, PRA (2023)].

O O

1070 ¢

Chernoff exponent/(BT)
2

1078 ¢

7 — USPC
= Homodyne

1072 107! 10° 10*
¢ (square root of spectral SNR)
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Quantum Technology 1.5

v1.0

Quantum Processing

Electronics
Lasers
Optical Comm.

v1l.5

Quantum Processing

Quantum Measurement

Sensing
Imaging

v2.0

Quantum Source

Quantum Processing

Quantum Measurement

Quantum-Enhanced Metrology
Quantum Computer
Quantum Internet
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Experimental Difficulties

0 Caves, PRD (1980):

IV. CONCLUSION

The squeezed-state technique outlined in this
paper will not be easy to implement. A refuge
from criticism that the technique is difficult can
be found by retreating behind the position that the
entire task of detecting gravitational radiation is
exceedingly difficult. Difficult or not, the
squeezed-state technique might turn out at some
stage to be the only way to improve the sensitiv-
ity of interferometers designed to detect gravita-
tional waves. As interferometers are made
longer, their strain sensitivity will eventually
be limited by the photon-counting error for the
case of a storage time approximately equal to
the desired measurement time. Further im-
provements in sensitivity would then await an
increase in laser power or implementation of the
squeezed-state technique. Experimenters might
then be forced to learn how to very gently squeeze
the vacuum before it can contaminate the light
in their interferometers.
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Conclusion

0 Quantum limits to waveform sensing
~ laws of thermodynamics

O Optimal measurements, data processing
~ Carnot engine

O Optimal measurement depends on the task.

— Photon counting far superior for noise
spectroscopy/detection.
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