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Atomic quantum gases

Quantum degenerate 
dilute atomic gases of 
fermions and bosons

Bose-Einstein condensation

   - Gross-Pitaevskii equation
   - non-linear dynamics

Rotating condensates

   - vortices
   - fractional quantum Hall 

Molecules

   - Feshbach resonances
   - BCS-BEC crossover 
   - dipolar gases

Optical lattices

   - quantum information
   - Hubbard models
   - strong correlations
   - exotic phases
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Atomic gases in an optical lattice

Preparation 

Thermodynamics

Measurement

- lattice loading schemes
- controlled single particle 
  manipulations (entanglement)
- decoherence of qubits

- Hubbard models
- design of Hamiltonians 
- strongly correlated
  many-body systems

- momentum distribution
- structure factor 
- pairing gap
- ...

Ring exchange 
interaction

b1 b2

b3b4

Exotic phases?



Bose-Hubbard 
tool box



Optical lattices

- characteristic energies

V (x) = V0 sin2 k x + ...

- AC Stark shift

Er =
!2k2

2m

|e〉

|g〉
off-resonant 

laser

laserlaser

- standing laser configuration

1D, 2D, and 3D Lattice 
structures

Internal states

- spin dependent 
  optical lattices

- alkaline earth 
  atoms

∼ 10kHz

V0/Er ∼ 50

- high stability of the  
  optical lattice

ω



Interaction potential:

- effective range

- pseudo-potential approximation

Control of interaction

r3
0n! 1

Scattering properties

- scattering 
  amplitude:

- bound state 
  energy                :               

f(k) = − 1

1/as + ik

EM = − !2

ma2
s

as > 0

Tuning of scattering length

- changing the first “bound state” energy 
  via an external parameter

- magnetic Feshbach 
  resonance

- optical Feshbach 
  resonance

r/a0

U(r)

∼ −c6

r6

as ∼ 102a0

as

ν0

r0

n−1/3

Bohr radius



Microscopic Hamiltonian

H =

∫
dx ψ+(x)

(
− !2

2m
∆+V (x)

)
ψ(x)+

g

2

∫
dx ψ+(x)ψ+(x)ψ(x)ψ(x)

: interaction 
  strength g =

4π!2as

m
optical 
lattice

- strong opitcal lattice
- express the bosonic field operator 
  in terms of Wannier functions
- restriction to lowest Bloch band
  (Jaksch et al PRL ‘98)

V/Er

x

ωBS

xi

w(x)

ψ(x) =
∑

i

w(x− xi)bi

V > Er



Bose-Hubbard Model
Bose-Hubbard model (Fisher et al PRB ‘81)

HBH = −J
∑
〈i,j〉

b+
i bj + U/2

∑
i

b+
i b+

i bibi

n=2

J/U

µ/U

superfluid

n = 1

MI

hopping energy interaction energy

J ∼ Ere
−2
√

V/Er

U ∼ Eras/λ

Phase diagram

Superfluid

- long-range order
- finite superfluid stiffness
- linear excitation spectrum

Mott insulator

- fixed particle number
- incompressible
- excitation gap

t



Experiments

Disappearance of coherence for 
strong optical lattices (Greiner et al. ‘02)

V

Er
> 13

(Greiner et al., 02)

Long-range order:

Structure factor

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at !1:91" 0:04# times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n $ 1 atom next to sites
with n $ 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at !2:60" 0:05#
times the energy of the first resonance, which could

indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th $ 30 ms, we in-
crease Vax rapidly (<40 !s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 !hk, "2 !hk, and "4 !hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc $ !Ncoh#=!Ncoh % Nincoh#. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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(a)  1D
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(b)  1D - 3D 
     crossover
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(c)  3D

FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? $ 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? $ Vax;0).
The crossover region between the one- and the three-
dimensional system (V? $ 20ER) is shown in (b).
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Appearance of well defined
two particle excitations

(Esslinger et al., 04)



Ring exchange interaction



Dimer models
 
- spin liquids, VBS - phases
- topological protected 
  quantum memory

Ring exchange
Ring exchange
  

- bosons on a lattice

b1 b2

b3b4

HR−E = K
[
b+
1 b2b

+
3 b4 + b1b

+
2 b3b

+
4

]

Applications:

Lattice gauge theories

- U(1) lattice gauge fields
- a model QED

2D spin systems
 
- Neel order versus VBS
- deconfined quantum critical points

kinetic 
energy



Ring exchange

Toy model:

- bosons on a lattice
- resonant coupling to a molecular 
  state via a Raman transition
   

Effective coupling Hamilton

molecular
state

b3

b1 b2

b4

m

- molecule is trapped by a 
  different optical lattice

detuning coupling
(Rabi frequency)

H = ν m+m + g
∑
i!=j

cij

[
m+ bibj + m b+

i b+
j

]



Ring exchange

xy

VH(x, y)

xy

VG(x, y)
b3

b1 b2

b4 First internal state

- Bosonic atoms in the 
  corners of the square
- Bose-Hubbard model

Second internal state

- Trapped in the center 
  of the square
- quenched hopping
- angular momentum

- interaction allow for a 
  molecular state

Raman 
transition

al

l = 0,±1, 2



Energy levels

- design of optical lattice

- tune with the Raman transtition close to a 
  s-wave molecule in the d-wave vibrational state

- d-wave symmetry for molecular state

- integrate out single-particle states 

Ring exchange

Symmetries

- Hamilton is invariant under 
  operations of the

- symmetries of single 
  particle states  

C4v

under the d-wave symmetry B2. The Hamiltonian takes
the form

H =
∑

n

νna+
n an + νm+m + HR + Hint (8)

with νn (ν) the energies of the states |al〉 ( |m〉), re-
spectively. Here, the Hamiltonian Hint accounts for all
interaction and additional hopping terms following from
the mapping to the Bose-Hubbard model. Driving a Ra-
man transition between the two atomic states, provides
the coupling

HR = !Ω
∑

l

[
wla

+
l b̂l + w∗

l alb̂
+
l

]
(9)

with Ω the Rabi frequency. The invariance of the Hamil-
tonian under the symmetry group C4v requires that
w1 = w−1, and only states with equal angular momen-
tum l are coupled. The wave function overlapss wl derive
from the shape of the localized wave functions within the
optical lattices. For typical parameters with vG ∼ 6 and
vH ∼ 30 we obtain w0 ≈ 0.1, ...

E C2 2C4 2σv 2σd

A1

(l = 0)
1 1 1 1 1 z

b1b3 + b2b4
b1b2+b2b3+b3b4+b4b1

A2 1 1 1 -1 -1 Iz

B1 1 1 -1 1 -1 x2−y2 b1b2−b2b3+b3b4−b4b1

B2

(l = 2)
1 1 -1 -1 1 xy m, b1b3−b2b4

E

(l = 1)
2 -2 0 0 0 (x, y) (b1b2−b3b4, b2b3−b4b1)

TABLE I: Representations of C4v

Integrating out the single-particle states |l〉 = a+
l |0〉 via

a perturbative expansion in !Ω/νl, we obtain the effective
Hamiltonian

Heff = νm+m +
∑

l

Jlb̂
+
l b̂l (10)

+g
[
m+ (b1b3−b2b4) + m

(
b+

1 b+
3 −b+

2 b+
4

)]
The contribution Jl to the renormalization of the band
structure are determined by

Jl = −!2Ω2 |wl|2
νl

. (11)

The last term in Eq. (10) accounts for the coupling be-
tween molecule |m〉 and the atomic states |b1〉, i.e., the
creation of a molecule is determined by the annihilation
of the bosons bi. Note, that the operator b1b3 − b2b4

denotes the only second order polynomial in bi, which
transforms with the same irreducible representation B2

as the d-wave molecule |m〉, see Table II. The coupling
g reduces to |ν| % |νl|

g = −!2Ω2

[
c w0w2

(
1
ν0

+
1
ν2

)
+ dw2

1
1
ν1

]
(12)

while the shift in the chemical potential of the molecular
state is given by

∆ν = −!2Ω2

[
c2 |w0|2

ν0
+ c2 |w2|2

ν2
+ d2 |w1|2

ν1

]
(13)

Tuning the rabi frequency Ω allows to set the energy scale
of the couplings g, ∆ν and Jl. In turn, the detuning ν is
controlled by the frequency ω of the Raman transition,
and allows to drive the system through a resonance. A
sketch of the typical energy structure for the two states
of the atom and the molecule is shown in Fig. ?? with a
negative ν0, and positive ν1, while the influence of higher
angular momentum states is small. Furthermore, for
|νl| & |ν| the dependence of νl on the detuning ν can
be ignored.

m+ = ca+
2 a+

0 + d
[
a+

1 a+
1 + a+

−1a
+
−1

]
. . .

al

al



Ring exchange
Toy model:

- bosons on a lattice
- resonant coupling to a molecular 
  state via a Raman transition
   

Effective coupling Hamilton

d- wave 
molecular state

b3

b1 b2

b4

m

- molecule is trapped by a 
  different optical lattice

detuning coupling
(Rabi frequency)

H = ν m+m + g
∑
i!=j

cij

[
m+ bibj + m b+

i b+
j

]
symmetry of 
the molecule

d-wave 
symmetry

m+ [b1b3 − b2b4] + c.c.



Effective low energy Hamiltonian

H = ν m+m+gm+[b1b3−b2b4]+gm
[
b+
1 b+

3 −b+
2 b+

4

]

Ring exchange

Relation to Ring exchange

- integrating out the molecule

- perturbation theory

H = K
[
b+
1 b2b

+
3 b4+b1b

+
2 b3b

+
4 −n1n3−n2n4

]

K =
g2

ν



Hamiltonian on a lattice

- add hopping for the atoms
- half-filling for the bosons

Superfluid

H =−J
∑
〈ij〉

b+
i bj +ν

∑
i

m+
i mi+g

∑
!

m+
! [b1b3−b2b4]+m!

[
b+
1 b+

3 −b+
2 b+

4

]

Molecules

Ring exchange

J ! K J ! K
- superfluid of bosonic atoms 
- long-ranger order

J

zJ

ν

k

E

π/a

zJ

ν

E

k

π/a

- formation of molecules
- non-trivial structure due to
  d-wave symmetry

decreasing 
detuning

ν

- intermediate regime
- quantum phase transition?
- exotic phases?



Lattice gauge theory

2D lattice gauge theory

- atoms on links with ring exchange
  and quenched hopping

- gauge transformation

- represents a 2D dimer model

3D lattice gauge theory

- adding an additional dimension
- atoms on the links of the lattice
- moleculs in the center of the faces

- pure U(1) lattice gauge theory exhibits
  a phase transition from the Coulomb
  phase to a confining phase

- presence of a Coulomb phase
  in the present model?
  (M. Hermele et al, PRB 2004)

χ(n)

b〈ij〉

i

jn red corner 
m blue corner 

b〈nm〉 → b〈nm〉ei[χ(n)−χ(m)]

χ(m)

χ(n)

b〈ij〉


