Design and realization of exotic quantum phases in atomic gases

H.P. Büchler and P. Zoller
Theoretische Physik, Universität Innsbruck, Austria
Institut für Quantenoptik und Quanteninformation der Österreichischen
Akademie der Wissenschaften, Innsbruck, Austria

M. Hermele and M.P.A. Fisher

KITP, Santa Barbara

Atomic quantum gases

Bose-Einstein condensation

- Gross-Pitaevskii equation
- non-linear dynamics

Quantum degenerate dilute atomic gases of fermions and bosons

Rotating condensates

- vortices
- fractional quantum Hall

Molecules

- Feshbach resonances
- BCS-BEC crossover
- dipolar gases

Optical lattices

- quantum information
- Hubbard models
- strong correlations
- exotic phases

Atomic gases in an optical lattice

Preparation

- lattice loading schemes
- controlled single particle manipulations (entanglement)
- decoherence of qubits

Thermodynamics

- Hubbard models
- design of Hamiltonians
- strongly correlated many-body systems

Measurement

- momentum distribution
- structure factor
- pairing gap
- ...

Bose-Hubbard tool box

Optical lattices

- AC Stark shift
off-resonant laser

- standing laser configuration

$$
V(\mathbf{x})=V_{0} \sin ^{2} \mathbf{k} \mathbf{x}+\ldots
$$

- characteristic energies

$$
\begin{gathered}
E_{\mathrm{r}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m} \sim 10 \mathrm{kHz} \\
V_{0} / E_{\mathrm{r}} \sim 50
\end{gathered}
$$

- high stability of the optical lattice

1D, 2D, and 3D Lattice structures

Internal states

- spin dependent optical lattices
- alkaline earth atoms

Control of interaction

Interaction potential:

- effective range

$$
r_{0}^{3} n \ll 1
$$

- pseudo-potential approximation

Scattering properties

- scattering amplitude:

$$
f(k)=-\frac{1}{1 / a_{s}+i k}
$$

- bound state

$$
E_{\mathrm{M}}=-\frac{\hbar^{2}}{m a_{s}^{2}}
$$

Tuning of scattering length

- changing the first "bound state" energy via an external parameter
- magnetic Feshbach resonance
- optical Feshbach resonance

Microscopic Hamiltonian

$$
H=\int d x \psi^{+}(x)\left(-\frac{\hbar^{2}}{2 m} \Delta+V(x)\right) \psi(x)+\frac{g}{2} \int d x \psi^{+}(x) \psi^{+}(x) \psi(x) \psi(x)
$$

- strong opitcal lattice $V>E_{r}$
- express the bosonic field operator in terms of Wannier functions
- restriction to lowest Bloch band (Jaksch et al PRL ‘98)

$$
\psi(\mathbf{x})=\sum_{i} w\left(\mathbf{x}-\mathbf{x}_{i}\right) b_{i}
$$

Bose-Hubbard Model

Bose-Hubbard model (Fishere tal PRB '81)

Phase diagram

$$
\begin{aligned}
U & \sim E_{\mathrm{r}} a_{s} / \lambda \\
J & \sim E_{\mathrm{r}} e^{-2 \sqrt{V / E_{\mathrm{r}}}}
\end{aligned}
$$

Mott insulator

- fixed particle number
- incompressible
- excitation gap

- long-range order
- finite superfluid stiffness
- linear excitation spectrum

Experiments

Long-range order:

Disappearance of coherence for strong optical lattices (Greiner et al. '02)

$$
\frac{V}{E_{r}}>13
$$

(Greiner et al., 02)
Structure factor
(c) 3 D

(Esslinger et al., 04)

Ring exchange interaction

Ring exchange

Ring exchange

- bosons on a lattice

$$
H_{\mathrm{R}-\mathrm{E}}=K\left[b_{1}^{+} b_{2} b_{3}^{+} b_{4}+b_{1} b_{2}^{+} b_{3} b_{4}^{+}\right]
$$

Applications:

Dimer models

- spin liquids, VBS - phases
- topological protected quantum memory

2D spin systems

- Neel order versus VBS
- deconfined quantum critical points

Lattice gauge theories

- $U(1)$ lattice gauge fields

energy
- a model QED

Ring exchange

Toy model:

- bosons on a lattice
- resonant coupling to a molecular state via a Raman transition
- molecule is trapped by a different optical lattice

Effective coupling Hamilton

Ring exchange

First internal state

- Bosonic atoms in the corners of the square
- Bose-Hubbard model

Raman transition

Second internal state

- Trapped in the center of the square
- quenched hopping
- angular momentum

$$
l=0, \pm 1,2
$$

- interaction allow for a molecular state

Ring exchange

Symmetries

- Hamilton is invariant under operations of the $C_{4 v}$
- symmetries of single particle states a_{l}

	E	C_{2}		$2 \sigma_{V}$	$2 \sigma_{d}$		
$\begin{gathered} \mathrm{A}_{1} \\ (\mathrm{I}=0) \end{gathered}$	1	1	1	1	1	Z	$\begin{gathered} b_{1} b_{3}+b_{2} b_{4} \\ b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{4}+b_{4} b_{1} \end{gathered}$
A_{2}	1	1	1	-1	-1	I_{2}	
$\infty \quad \mathrm{B}_{1}$	1	1	-1	1	-1	$x^{2}-y^{2}$	$\mathrm{b}_{1} \mathrm{~b}_{2}-\mathrm{b}_{2} \mathrm{~b}_{3}+\mathrm{b}_{3} \mathrm{~b}_{4}-\mathrm{b}_{4} \mathrm{~b}_{1}$
$\begin{gathered} B_{2} \\ (I=2) \end{gathered}$	1	1	-1	-1	1	xy	$m, b_{1} b_{3}-b_{2} b_{4}$
$80 \begin{gathered} E \\ (I=1) \end{gathered}$	2	-2	0	0	0	(x, y)	$\left(b_{1} b_{2}-b_{3} b_{4}, b_{2} b_{3}-b_{4} b_{1}\right)$

Energy levels

- design of optical lattice
- tune with the Raman transtition close to a s-wave molecule in the d-wave vibrational state
- d-wave symmetry for molecular state

$$
m^{+}=c a_{2}^{+} a_{0}^{+}+d\left[a_{1}^{+} a_{1}^{+}+a_{-1}^{+} a_{-1}^{+}\right] \ldots
$$

- integrate out single-particle states a_{l}

Ring exchange

Toy model:

- bosons on a lattice
- resonant coupling to a molecular state via a Raman transition
- molecule is trapped by a different optical lattice

Effective coupling Hamilton

$$
m^{+}\left[b_{1} b_{3}-b_{2} b_{4}\right]+c . c .
$$

Ring exchange

Effective low energy Hamiltonian

$$
H=\nu m^{+} m+g m^{+}\left[b_{1} b_{3}-b_{2} b_{4}\right]+g m\left[b_{1}^{+} b_{3}^{+}-b_{2}^{+} b_{4}^{+}\right]
$$

Relation to Ring exchange

- integrating out the molecule

$$
H=K\left[b_{1}^{+} b_{2} b_{3}^{+} b_{4}+b_{1} b_{2}^{+} b_{3} b_{4}^{+}-n_{1} n_{3}-n_{2} n_{4}\right]
$$

- perturbation theory

$$
K=\frac{g^{2}}{\nu}
$$

Ring exchange

Hamiltonian on a lattice

- add hopping for the atoms
- half-filling for the bosons

$$
H=-J \sum_{\langle i j\rangle} b_{i}^{+} b_{j}+\nu \sum_{i} m_{i}^{+} m_{i}+g \sum_{\square} m_{\square}^{+}\left[b_{1} b_{3}-b_{2} b_{4}\right]+m_{\square}\left[b_{1}^{+} b_{3}^{+}-b_{2}^{+} b_{4}^{+}\right]
$$

Superfluid
$J \gg K$

- superfluid of bosonic atoms
- long-ranger order

decreasing detuning

- intermediate regime
- quantum phase transition?
- exotic phases?

Molecules

$J \ll K$

- formation of molecules
- non-trivial structure due to d-wave symmetry

Lattice gauge theory

2D lattice gauge theory

- atoms on links with ring exchange and quenched hopping
n red corner m blue corner
- gauge transformation

$$
b_{\langle n m\rangle} \rightarrow b_{\langle n m\rangle} e^{i[\chi(n)-\chi(m)]}
$$

- represents a 2D dimer model

3D lattice gauge theory

- adding an additional dimension
- atoms on the links of the lattice
- moleculs in the center of the faces
- pure $U(1)$ lattice gauge theory exhibits a phase transition from the Coulomb phase to a confining phase
- presence of a Coulomb phase

phase to a confing phase
in the present model?
(M. Hermele et al, PRB 2004)

