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“As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don’t know
We don’t know.”

-- Donald Rumsfeld, Secretary of Defense
February 12, 2002 Department of Defense briefing
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If Tc were not high, would the 

layered cuprate superconductors still 
stand out among all the other 

interesting layered strongly 
correlated materials?
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in charge-doped triangular lattice materials κ-(BEDT-
TTF)2X8 and NaxCoO2·yH209. In this respect the re-
cent discovery of a 2D quantum magnet (Cs2CuCl4) with
spins on a triangular lattice which shows fractionaliza-
tion is of clear importance for elucidating the underly-
ing magnetism10. Indeed, deconfined phases in 2D and
the conditions required to create them are a major un-
solved theoretical problem5,11,12,13,14,15,16. Cs2CuCl4 is
a quasi-2D S=1/2 frustrated Heisenberg antiferromagnet
on an anisotropic triangular lattice17 and neutron scat-
tering measurements show the dynamical correlations to
be dominated by a broad continuum of excited states10

as characteristic of deconfined S=1/2 spinons. Here we
build on our initial neutron scattering results and pro-
vide comprehensive measurements throughout the Bril-
louin zone. Effects of the strong two-dimensionality are
explicitly observed at all energy scales of the excitations.
Measurements are made both at temperatures above TN

when the 2D magnetic layers are decoupled as well as be-
low TN when mean-field effects from the weak inter-layer
couplings stabilize 3D magnetic order with an incommen-
surate spiral structure.

The paper is organized as follows. The crystal struc-
ture and magnetism of Cs2CuCl4 are described in Sec. II
and the experimental technique used to probe the excita-
tions is explained in Sec. III. The dispersion relation and
scattering lineshapes measured in the low-temperature
ordered phase are presented next in Secs. IVA and IVB.
We find sharp magnon peaks carrying a small part of
the total scattering weight at low energies and highly-
dispersive continua carrying the majority of the scatter-
ing weight at moderate to high energies. Results are first
compared to linear spin-wave theory (reviewed in Ap-
pendix A) including both one and two-magnon processes
in Sec. IVB1. This theory is found inadequate to de-
scribe the dominant continuum scattering, which instead
is well described by a parameterized two-spinon cross-
section (Sec. IVB2). Measurements in the spin liquid
phase above TN where the magnetic layers are decoupled
are shown in Sec. IVC. The paramagnetic scattering is
described in Sec IVD where the extracted second mo-
ment is compared with sum rules. In Sec. V 1 we discuss
issues in depth with reference to proximity to a spinon
confinement transition. The paramagnetic scattering is
discussed in the context of spinon systems at high tem-
peratures in Sec. V 2. Finally, the main results and con-
clusions are summarized in Sec VI.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF CS2CUCL4

The crystal structure of Cs2CuCl4 is
orthorhombic18(Pnma) with lattice parameters a=9.65
Å , b=7.48 Å and c=12.26 Å at 0.3 K. The structure
is illustrated in Fig. 1(a) and consists of CuCl42−

tetrahedra arranged in layers (bc plane) separated along
a by Cs+ ions. The material is an insulator with each
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FIG. 1: (color online) (a) Crystal structure in Cs2CuCl4
showing the CuCl2−4 tetrahedra (pyramids) arranged in lay-
ers (bc plane). The orthorhombic unit cell is indicated by the
dashed rectangular box. (b) Magnetic exchange paths in a
(bc) layer form a two-dimensional anisotropic triangular lat-
tice: strong bonds J (heavy lines ‖ b) and smaller frustrating
zig-zag bonds J ′ (thin lines). (c) Schematic phase diagram of
Cs2CuCl4 in temperature and magnetic field along a showing
the region probed by the present experiments (dashed ver-
tical arrow at B = 0). The magnetic phases are: 3D LRO
(T < TN ) with spiral magnetic long-range order, spin-liquid
(TN < T < Tmax) characterized by strong intra-layer an-
tiferromagnetic correlations (at Tmax=2.65 K the magnetic
susceptibility has a maximum), paramagnetic (T " (J, J ′))
and ferromagnetic (B > BC) where spins are ferromagneti-
cally aligned by the applied field. The solid line is a phase
transition boundary and dashed lines show cross-overs.

Cu2+ ion carrying a spin of 1/2. Crystal field effects
quench the orbital angular momentum resulting in
near-isotropic Heisenberg spins on each Cu2+ ion. There
are four such ions in each orthorhombic unit cell, two
located on each CuCl layer as illustrated in Fig. 1(a).

Our previous measurements17 showed that Cs2CuCl4
is a quasi-2D low-exchange quantum magnet. This quasi-

Cs2CuCl4
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Known Unknowns

• Do spin liquids exist in D > 1?

• If so, can topological order be detected?

• Are gapless spinons possible in D > 1?

• Can fermionic and bosonic spinons be 
distinguished?
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Figure 1.  Peak positions of the spectra (circles) and spin-

lattice relaxation rate (diamonds) of 
133

Cs(A) in Cs2CuCl4 

as a function of temperature in a magnetic field  of 12 T 

applied along b-axis.  The solid line is a fit to Curie-like 

(1/T) temperature dependence. 

 
Figure 2.  Spin-lattice relaxation rate at 2.5 K (circles) and 

12 K (diamonds) of 
133

Cs(A) in Cs2CuCl4 as a function of 

magnetic field applied along b-axis. 
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We report 
133

Cs NMR data on Cs2CuCl4 single crystals. This compound is a 2D low-exchange S = 1/2 frustrated Heisenberg 

AF on an anisotropic triangular lattice that exhibits, for the first time, the evidence of spinon (fractional) excitations
1
 in 2D. 

Neutron measurements show that the unusual phases, controlled by the low energy processes, are stabilized in applied field. 

Thus, NMR, being a low energy probe, is crucial for clarifying the mechanisms of these phase transitions.  

 

 

In Figure 1 we show the spectrum peak position, i.e. shift, and 1/T1 of 
133

Cs Cs-A site (one of the two inequivalent Cs sites 

that is more sensitive to magnetism) as a function of temperature in a magnetic field of 12 T applied in the spin plane. At 

higher temperatures, T > 10 K, system is in a paramagnetic state, as evident from the 1/T  behavior of the shift. Two phase 

transitions are observed in this field and for temperatures down to 1.5 K: an unusual transition at ~ 9 K, and transition to spin-

gapped state at ~ 4 K. In Figure 2 we show1/T1 of  
133

Cs as a function of magnetic field applied in the spin plane at 2.5K and 

12 K. At 12 K in paramagnetic state 1/T1 exhibits very weak field dependence. However, at 2.5 K relaxation time increases 

significantly with increasing field. This implies the opening of a spin gap, proportional to (H – Hcrit), between a nonmagnetic 

spin singlet ground state from a triplet of S = 1 magnon excitations. 

 

Low temperature, T < 1.5 K, investigation of the microscopic spin structure and spin dynamics is underway.  
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Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice
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1H NMR and static susceptibility measurements have been performed in an organic Mott insulator

with a nearly isotropic triangular lattice, !-!BEDT-TTF"2Cu2!CN"3, which is a model system of
frustrated quantum spins. The static susceptibility is described by the spin S # 1=2 antiferromagnetic
triangular-lattice Heisenberg model with the exchange constant J$ 250 K. Regardless of the large
magnetic interactions, the 1H NMR spectra show no indication of long-range magnetic ordering down
to 32 mK, which is 4 orders of magnitude smaller than J. These results suggest that a quantum spin
liquid state is realized in the close proximity of the superconducting state appearing under pressure.

DOI: 10.1103/PhysRevLett.91.107001 PACS numbers: 74.70.Kn, 74.25.Ha, 75.50.–y, 76.60.–k

The magnetism of the Mott insulator, which is the
mother phase giving the unconventional supercon-
ductivity in the high-TC cuprates and !-!BEDT-TTF"2X
organics, has been attracting much attention, because
it holds the key to understanding the mechanism of
the superconductivity, where BEDT-TTF (ET) denotes
bis(ethylenedithio)-tetrathiafulvalene and X denotes in-
organic monovalent anion [1,2]. The ground states of the
Mott insulators studied so far in these materials are anti-
ferromagnets. The stage of the interacting spins are quasi-
two-dimensional square lattice or anisotropic triangular
lattice with the nearest neighbor transfer t and the second-
nearest neighbor transfer t0. If the lattice is close to
isotropic triangle (t0=t$ 1), however, the geometrical
frustration gets to work significantly against the long-
range magnetic ordering (LRMO), and a spin liquid state
without symmetry breaking, which attracts great interest
as an exotic state, can emerge [3].

In the case of !-!ET"2X, dimerization of a face-to-face
ET pair is strong enough to treat the dimer as a unit
[Fig. 1(a)], and the system can be effectively described
by the Hubbard model on an anisotropic triangular lattice
[Fig. 1(b)] with a half-filled conduction band [6,7]. The
effective transfer integrals between the dimers are given
as t # !jtpj% jtqj"=2 and t0 # tb2=2, respectively, where
tp, tq, and tb2 are transfer integrals shown in Fig. 1(a) and
evaluated with the extended Hückel method and the tight-
binding approximation. Among the !-!ET"2X family, a
Mott insulator !-!ET"2Cu2!CN"3 [4,5] is unique in that
the ratio of transfer integrals is almost unity (t0=t = 1.06)
[7], suggesting that the S # 1=2 nearly isotropic triangu-
lar lattice is realized and it can be a promising candidate
of the spin liquid insulator. Actually, the EPR measure-
ment has shown no signature of the antiferromagnetic
(AF) transition down to 1.7 K [5], although the nature of
the spin state is still unknown. It is in sharp contrast to
another Mott insulator !-!ET"2Cu&N!CN"2'Cl with t0=t$

0:75, which exhibits the AF transition at TN # 27 K at
ambient pressure [8,9] and the superconducting transition
at TC # 12:8 K under pressure [10]. It is also noted that
moderate hydrostatic pressure induces superconductivity
in !-!ET"2Cu2!CN"3 with TC of 3.9 K [5].

In this Letter, we report the magnetic properties of
!-!ET"2Cu2!CN"3 revealed by the 1H NMR and the static
susceptibility measurements.We have observed no LRMO
down to 32 mK well below the exchange constant J #
250 K estimated from the magnetic susceptibility at am-
bient pressure and TC under soft pressure. These results
strongly suggest that a quantum spin liquid state is likely
realized in the neighborhood of the superconducting
phase.

FIG. 1. (a) Crystal structure of an ET layer of
!-!ET"2Cu2!CN"3 viewed along the long axes of ET molecules
[4]. The transfer integrals between ET molecules, tb1, tb2, tp,
and tq, are calculated as 224, 115, 80, and (29 meV, respec-
tively [5]. For the large tb1 compared with other transfer
integrals, the face-to-face pair of ET molecules connected
with tb1 can be regarded as a dimer unit consisting of the
triangular lattice. (b) Schematic representation ofthe electronic
structure of !-!ET"2X, where the dots represent the ET dimer
units. They form the anisotropic triangular lattice with t #
!jtpj% jtqj"=2 and t0 # tb2=2.
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possibility of an intermediate metallic antiferromagnetic
state. The limitations of their approach is that it involves
many parameters, only treats the magnetic fluctuations
in an average way, and does not predict superconductiv-
ity.

The above interesting new findings show that the or-
ganics are worthy of more extensive study. Theoretical
studies should focus on simplifying the model of Kino and
Fukuyama and should take into account the magnetic
fluctuations using techniques developed for the theory of
the cuprate superconductors. More experimental studies
are needed to systematically characterise the unconven-
tional properties of the metallic state. [12,13]
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FIG. 1. Schematic phase dia-
gram of the κ−(BEDT-TTF)2X family of organic conductors.
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The arrows denote the location of materials with different
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properties of the metallic phase deviate from those of a con-
ventional metal. The above phase diagram is qualitatively
similar to that of the cuprate superconductors with doping
playing the role of pressure.
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spectra between the two salts was observed at low tem-
peratures. The spectra of !-!ET"2Cu#N!CN"2$Cl clearly
split below 27 K and the splitting width reaches %80 kHz,
reflecting the commensurate AF ordering [9] with a
magnetic moment of 0:45"B per an ET dimer [13]. On
the other hand, the spectra of !-!ET"2Cu2!CN"3 show
neither distinct broadening nor split down to 32 mK.
The result indicates that no LRMO exists in
!-!ET"2Cu2!CN"3 at least down to 32 mK, which is
4 orders of magnitude below the J value of 250 K. The
fact strongly suggests the realization of the quantum-
disordered spin liquid state in !-!ET"2Cu2!CN"3 due to
the strong spin frustration of the nearly isotropic trian-
gular lattice. Taking a closer look at the data, the full
width of the spectra at the half-maximum intensity shows
a slight broadening of %2 kHz with decreasing tempera-
ture from 4 to 1 K. It may originate from the random
dipole field of a small amount of magnetic impurity or the
intrinsic T2 broadening as was observed in the triangular-
lattice compound, LiNiO2 [14], where T2 is the spin-spin
relaxation time. The magnetic moment, if any below
4 K, is estimated as less than 0:01"B per an ET dimer
with reference to the moment/shift ratio observed in
!-!ET"2Cu#N!CN"2$Cl.

The nuclear spin-lattice relaxation rate, T&1
1 , of

!-!ET"2Cu2!CN"3 is shown in Fig. 4 as a function of
temperature together with that of !-!ET"2Cu#N!CN"2$Cl
[9]. An enhancement of T&1

1 above 150 K is a motional
contribution due to the thermally activated vibration of
the ethylene groups. The motional contribution almost
dies away around 150 K, below which the relaxation is
electronic in origin. From 150 to 50 K, T&1

1 behaves
nearly temperature independently. The values of T&1

1 in
this region are more than twice as large as those of
!-!ET"2Cu#N!CN"2$Cl.

Below 50 K, T&1
1 of !-!ET"2Cu2!CN"3 decreases with

temperature down to 4 K in a manner similar to #. It is
seen that there is no difference between the polycrystal-
line and single crystal data in the overlapping tempera-
ture range of 1.4–36 K. This temperature dependence
markedly contrasts with that of !-!ET"2Cu#N!CN"2$Cl
having a sharp peak at 27 K, which is characteristic of
the magnetic transition. Since # and T&1

1 measure the
k ' 0 uniform component and the summation of the
spin fluctuations in the k space, respectively, the results
of # and T&1

1 suggest that the spin excitations are sup-
pressed below 50 K over the k space. Below 4 K, however,
T&1
1 of !-!ET"2Cu2!CN"3 turns to increase and shows a

broad peak around 1 K as shown in the inset of Fig. 4. It
is noted that # has no appreciable anomaly around 4 K,
where T&1

1 shows an upturn. The broad peak is considered
to reflect the characteristic structure in the spin excitation
spectrum of quantum liquid with slow spin dynamics.

Below about 0.4 K the relaxation curve starts to bend
gradually and fits to a sum of two exponential functions
with comparable fractions. The temperature dependences

of the two components of T&1
1 are proportional to (T2

and (T. It means that the two kinds of proton sites with
different T1 are separated in a macroscopic scale but not
in a molecular scale, because the T1 distribution in the
molecular scale would be averaged by the T2 process
during such a slow spin-lattice relaxation as in the present
case (T1 ( 102 and 104 sec at the lowest temperature). It is
unlikely that LRMO or spin glass transition occurs below
0.4 K, since T&1

1 has no critical behavior above 0.4 K and
the NMR spectra show no broadening below 1 K.
Actually, the recent "SR experiment also shows no in-
ternal magnetic field down to 20 mK [15]. Taking into
account that the highly degenerate quantum state on the
triangular lattice is likely sensitive to randomness [16],
crystal imperfections or dilute impurity moments may
induce some secondary phase with different spin dynam-
ics from the primary phase. It is noted that the inhomoge-
neous NMR relaxation like the present observation is also
encountered in an inorganic frustrated spin system with
kagomé lattice [17]. In general, the spin liquid state is
discussed to have a finite spin excitation gap [3]. In such a
case, T&1

1 should fall exponentially with lowering tem-
perature. In the present case, however, T&1

1 ’s follow

FIG. 4. 1H nuclear spin-lattice relaxation rate T&1
1 above 1 K

for a single crystal (open circles) and a polycrystalline sample
(closed circles) of !-!ET"2Cu2!CN"3 and a single crystal of
!-!ET"2Cu#N!CN"2$Cl (open diamonds) [9]. The inset shows
the data down to 32 mK in logarithm scales.
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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Known Unknowns

• What causes the pseudogap in the layered 
organic materials?

• Do gapless spinon excitations exist?

• Do these materials furnish an example of 
unconventional superconductivity with no 
lurking charge modulations?  
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ior of the actual phase, since the projection treats only
the a0 fluctuations, but does not include the fluctua-
tions of arr′ , while the latter are crucial in the effective
theory.9,10,11,12,13,14,15 This is pointing a possible limi-
tation of the projected wave function approach for the
spinon-gauge system. We still expect that the variational
study of the previous section gets the crude energetics
correctly in the ring exchange model. This is also what
we expect from the mean field treatment, and leads us
to propose the effective spinon-gauge theory. A finer nu-
merical application likely requires more advanced tech-
niques, perhaps in the spirit of Ref. 4 for the triangular
Hubbard model. It would be interesting for example to
look for the 2kF signature12 in the more elaborate work
of Ref. 4, which may be a more accurate realization of
the spinon-gauge ground state.

IV. APPLICATION TO POSSIBLE SPIN
LIQUID STATE IN κ-(ET)2Cu2(CN)3

We now discuss possible spin liquid state in the or-
ganic compound κ-(ET)2Cu2(CN)3 , which is insulating
and shows no magnetic order down to the lowest exper-
imental temperatures. It is believed3,4,19 that the con-
ducting layer of this material is well described by a single-
band triangular lattice Hubbard model at half-filling with
t/U ! 1/8 and only small hopping anisotropy of about
6%.

Unlike the square lattice case, for the half-filled trian-
gular lattice we expect a metallic phase for large enough
t/U . Reference 4 estimates the metal-insulator transition
to occur at (t/U)MI ! 1/5, so the κ-(ET)2Cu2(CN)3 ma-
terial is on the insulating side. Using an elaborate nu-
merical technique, Ref. 4 finds a nonmagnetic insulator
in this regime. We want to develop some picture of this
state.

The ideology we pursue here is that the insulating
phase can be described by an effective spin model. Since
the system is close to the metal-insulator transition, it
is not enough to stop at two-spin exchange interactions.
Starting with the Hubbard model, the effective Hamilto-
nian to order t4/U3 was obtained in Ref. 20. Specialized
to the triangular lattice, the spin Hamiltonian reads

Ĥeff = Ĥring[J2, J4] +
∑
〈〈ij〉〉

J ′′
Si · Sj +

∑
〈〈〈ij〉〉〉

J ′′′
Si · Sj .(10)

Here Hring is the ring exchange Hamiltonian Eq. (1) with
J2 = (1 − 32t2/U2)2t2/U , J4 = 20t4/U3. The effec-
tive Hamiltonian has additional Heisenberg exchanges
J ′′ = −16t4/U3 between second neighbors (separated by
a distance

√
3) and J ′′′ = 4t4/U3 between third neigh-

bors (separation 2 lattice spacings). Our grouping of the
terms in the effective Hamiltonian is intended to make
it look as close as possible to the ring exchange model
studied in the previous sections.

For the κ-(ET)2Cu2(CN)3 compound, we estimate
J4/J2 ! 0.3, which puts the ring exchange model into

(spinon FS)

(ET) Cu (CN)2 2 3

AF
spin liquid 

metal

t/U~1/5~1/9

!"

FIG. 4: Proposed phase diagram for the triangular lattice
Hubbard model. The present study is based on the effective
spin Hamiltonian Eq. (10) and applies only to the insulating
regime expected for t/U ! 1/5 from Ref. 4. Close to the
metal-insulator transition, we propose the spin liquid state
with spinon Fermi surface. For smaller t/U ! 1/9, the best
state is AF ordered. The κ-(ET)2Cu2(CN)3 compound has
t/U ! 1/8

the proposed spinon Fermi sea regime. Further neigh-
bor interactions not included in the J2-J4 model do not
modify this result, even though J ′′ and J ′′′ are roughly
of the same magnitude as J4. This stability is because
the corresponding further neighbor spin correlations are
small in the spin liquid regime.

To proceed more systematically, we repeat the varia-
tional study with the effective Hamiltonian (10). The
resulting phase diagram is shown in Fig. 4 in terms of
the Hubbard model parameter t/U . From this study, we
propose that the insulating ground state is the antiferro-
magnet for t/U ! 1/9 (this corresponds roughly to the
ring exchange parameter J4/J2 ≈ 0.2 − 0.25). For larger
t/U , our best trial state is essentially the projected Fermi
sea state, and the variational ∆ (which can be used to
improve the trial energy slightly) is small already at the
transition from the AF state. In the same figure, we also
indicate the metallic phase expected for t/U " 1/5.

It should be emphasized that we do not treat either
Hamiltonian Eq. (10) or (1) as more realistic or less realis-
tic, particularly since we are dealing with the system near
the metal-insulator transition. The above variational
study with Ĥeff is presented primarily to illustrate that
our results are not destabilized by making the Hamilto-
nian ‘more realistic’. We expect that our main prediction
for the spin liquid state close to the metal-insulator tran-
sition is robust, since the proposed Gutzwiller-projected
Fermi sea state is even more favored by including further
effects of the electron kinetic energy. Also, the results
of Ref. 4 give us some indication on the stability of the
proposed state, since that study is building up on free-
fermion states.

A. Physical properties in the spin liquid phase
with spinon Fermi surface

The effective description of the proposed phase has
spinon Fermi sea coupled to a dynamically generated
gauge field. It has been argued9,10,11,12,13,14,15 that this
spinon-gauge system is described by a nontrivial fixed
point and shows unusual behavior, which can be tested in

Motrunich, cond-mat/0412556

5

as a function of N and t/J . For values of t/J > 0 we
set U = 0. The t = 0 line corresponds to the Heisen-
berg model where charge fluctuations are completely sup-
pressed (see Sec. II C). In the large-N limit, the data
stems for the mean-field calculation of the previous sec-
tion. At N = 6, we essentially reproduce the saddle
point result with a somewhat smaller value of tc/J re-
flecting the instability of the DDW phase in favor of the
spin-dimerized phase. Irrespective of the coupling t/J ,
the SU(2) model shows an insulating spin-density wave
(SDW) state. The most interesting feature of the phase
diagram occurs at N = 4. Apart from the DDW phase
present at large values of t/J we find an insulating phase
(solid circles in Fig. 4) with no apparent broken symme-
tries and no spin gap. We will argue that in this phase
the antiferromagnetic spin correlations are critical lead-
ing to gapless spin modes around the antiferromagnetic
wave vector !Q = (π, π). Furthermore, we will present re-
sults showing that low lying spin modes with very small
spectral weight are present around the !q = (0, π) and
!q = (0, π) wave vectors. Before proceeding let us remind
the reader that our simulations are carried out with the
projective algorithm of Eq. 25 and hence reflect ground
state properties.

Dimer

DDW

G
S
L S
D

W

1
N

t/
J

0.50.40.30.20.10

0.5

0.4

0.3

0.2

0.1

0

FIG. 4: Phase diagram of the half-filled (i.e. ρ =
2
N

∑
α〈c

†
"i,α

c"i,α〉) Hubbard-Heisenberg model as a function of

t/J . For t/J > 0 we set U = 0. The t = 0 line corresponds
to the Heisenberg model where charge fluctuations are com-
pletely suppressed (see Sec. IIC). The symbols correspond
to the parameters where we have carried out simulations and
denote the following phases: #: Spin-dimerized phase, ©:
DDW phase, !: Spin-density wave phase, and •: insulating
phase with no broken lattice and spin symmetries and no gap
to spin excitations (gapless spin-liquid (GSL) phase).

To establish the above phase diagram, we have com-
puted equal-time and time displaced correlation func-
tions. Let O(!i) be an observable, with time displaced
correlation function:

SO(!i −!j, τ) = 〈O(!i, τ)O(!j)〉 − 〈O(!i)〉〈O(!j)〉 (29)

and corresponding Fourier transform:

SO(!q, τ) =
∑

!r

ei!q!rSO(!r, τ). (30)

From the equal time correlation function SO(!q) ≡
SO(!q, τ = 0), we can establish the presence of long range
order at a given wave vector. In this case SO(!q) scales
as the volume of the system, V , the proportionality con-
stant being the square of the order-parameter. From the
imaginary time displaced correlation functions, we can
compute spectral functions, SO(!q, ω), by solving,

SO(!q, τ) =
1

π

∫
dωSO(!q, ω)e−τω,

SO(!q) =
1

π

∫
dωSO(!q, ω), (31)

with the use of the Maximum Entropy method.
Information on gaps and the spectral weight of the low-

est lying excitation, is obtained directly form the imag-
inary time correlation function without having recourse
to analytical continuation.

SO(!q, τ) =
∑

n

|〈Ψ0|O(−!q)|χn(!q)〉|2e−τ(En(!q)−E0)

τ→∞−→ |〈Ψ0|O(−!q)|χ0(!q)〉|2︸ ︷︷ ︸
ZO(!q)

e−∆O(!q)τ . (32)

In the above, |Ψ0〉 corresponds to the normalized ground
state. |χn(!q)〉 are eigenstates of H with momentum !q
and |〈Ψ0|O(−!q)|χn(!q)〉| > 0. The gap ∆O(!q) corre-
sponds to the energy difference between the first ex-
cited state |χ0(!q)〉 and the ground state and O(!q) =

1√
V

∑
!j ei!q!jO(!j). Finally, the residue ZO(!q) corresponds

to the spectral weight of the lowest lying excitation.
To study the model, we have considered the following

observables. Let us define the magnetization as

Ospin(!i) =
∑
α

f(α)c†αcα with
∑

α

f(α) = 0. (33)

For even values of N considered here, we choose f(α) =
±1. Note that SU(N) symmetry leads to the identity

Sspin(!i−!j) ≡ 〈Ospin(!i)Ospin(!j)〉 =
N

N2 − 1
〈
∑
α,β

Sα,β,!iSβ,α,!j〉

(34)
where Sα,β

!i
are the generators of SU(N) (See Eq. 4 ).

To detect spin-dimerization and DDW instabilities we
consider respectively

Odimer(!i) = Ospin(!i)Ospin(!i + !ax) (35)

and

ODDW(!i) = jx(!i) − jy(!i) (36)

with current:

jx(!i) = i
∑
α

(
c†!i,αc!i+!ax,α − c†!i+!ax,α

c!i,α

)
(37)
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FIG. 9: Size scaling of the quasiparticle and spin gaps at
N = 4. For t/J > 0 we set U = 0, and t/J = 0 refers to the
Heisenberg model (see Sec. IIC).

The data is equally consistent with a power-law de-
cay of the spin-spin correlations. Concentrating again on
the Heisenberg point the dashed lines in Fig. 11 corre-
spond to the forms: Sspin("q = (π, π))/L2 ∝ L−1.25 and
Sspin("r = (L/2, L/2)) ∝ L−1.12. The difference between
the two numerical values of the exponents gives an idea
of their uncertainty.

Hence the equal time data is consistent with an insu-
lating phase with no apparent lattice or spin symmetry
breaking and no gap in the magnetic excitations. It is
now intriguing to investigate the spin-dynamics of this
phase. Fig. 12a plots the dynamical spin-structure fac-
tor at t/J = 0.1, U/t = 0 on a 16 × 16 lattice. The
data, shows several features. The gap at "q = (π, π) is a
finite size effect (see Fig. 9b). Taking this into account,
the data is consistent with a gapless mode with linear
dispersion around "q = (π, π). This feature is clearly not
surprising since the equal time correlation functions show
critical behavior at this wave vector. As we follow this
mode to "q = (0, π) the line shape becomes very broad and
spectral weight seems to spill down to low energies. This
is especially apparent on the intensity plot for which we
have used a logarithmic scale (see Fig. 12b). Since the
spectral weight of the low-lying modes around "q = (0, π)
is very small, it is desirable to confirm the above state-
ment. To this aim we plot in Fig. 12c the imaginary time
displaced correlation functions, Sspin("q, τ), at "q = (0, π)
and "q = (π, π) both in the gapless spin-liquid phase at
t/J = 0.1 and for comparison in the DDW phase at
t/J = 0.5. Let us start with the DDW phase where
we were able to show the presence of gapless spin modes
around the (π, π), (0, π) and (π, 0) points in thermody-
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FIG. 10: Equal time dimer and spin correlation functions for
the SU(4) Heisenberg model.
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FIG. 11: Size scaling of the equal time spin-spin correlation
functions. For t/J > 0 we set U = 0, and t/J = 0 refers to
the Heisenberg model (see Sec. IIC).

namic limit (see Fig. 6b). On the L = 20 sized system
considered in Fig. 12c one sees that both the "q = (0, π)
and "q = (π, π) correlators decay assymtotically with the
same exponential form, thus signalling low energy spin
excitations at both wave vectors. Of course there is a
big difference in the prefactor mutiplying this exponen-
tial decay. This replects the fact that the spectral weight
of the low-lying (0, π) excitation is much smaller than

F. Assaad, cond-mat/0406074
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Periodic hole structure in a spin-chain ladder material Sr14Cu24O41
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High-energy synchrotron x-ray diffraction measurements were carried out on a single crystal of
Sr14Cu24O41 , which had been reported to have different magnetic and structural correlations, in order to
investigate the origin of this discrepancy more precisely. At low temperature, we observed weak superlattice
peaks at Q!(0,0,2n"1/5)c , while nothing was found at Q!(0,0,2n"1/4)c , which was reported in a previ-
ous x-ray work by Cox et al. #Phys. Rev. B 57, 10 750 !1998"$. Therefore, the lattice distortion has not 4 but
5 times the periodicity of the chain structure along c (! chain axis" direction. These satellite peaks decreased
in intensity with increasing temperature. These observations were interpreted properly in terms of a hole
ordering model involving the dimerized state of two Cu2# ions and a Cu3# ion on a Zhang-Rice singlet site in
the CuO2 chains. These features were clearly observed by using high-energy x rays (Ei"53.789 keV), while
the superlattice peak intensity varied drastically with very little sample surface treatment in the case of
low-energy x-ray experiments (Ei"15.498 keV).

DOI: 10.1103/PhysRevB.66.012104 PACS number!s": 71.45.$d

Sr14Cu24O41 consists of alternating stacks of a plane con-
taining edge-sharing infinite CuO2 chains and a plane con-
taining two-leg Cu2O3 ladders sandwiched by Sr layers
along the b axis !Fig. 1".1,2 The average valence on Cu in this
compound is #2.25; therefore, stoichiometric Sr14Cu24O41
contains six holes per formula unit. It has been reported that
doped holes exist mostly in the chain and some exist in the
ladder.3–5 Moreover, the hole spins are believed to be local-
ized at oxygen, and they couple with copper spins to become
nonmagnetic due to the Zhang-Rice !ZR" singlet formation.6

Furthermore, dimers are formed between Cu2# ions that are
separated by twice the distance between nearest-neighbor Cu
ions along the chain (!c) direction at low temperature.
The arrangement of the dimers in the chain was discussed

mainly with two possible models provided by NMR studies,7

which revealed that both Cu2# and Cu3# !ZR singlet" exist
in the chain and that the NMR signal originating from Cu3#

splits into two peaks below %200 K. The first model is that
each dimer is separated by one ZR singlet !model I", in
which a lattice distortion with 4 times the periodicity of the
chain structure is required, and this was supported by lattice
distortion measurements using synchrotron x rays of &
%0.8 Å (Ei%15.5 keV).

8 The second is that the dimers
are separated by two ZR singlets !model II", in which a lat-
tice distortion with 5 times the periodicity of the chain struc-
ture is achieved, and this is consistent with studies of mag-
netic excitations by using neutron scattering.9–11

In order to work out this discrepancy, we focused on the
difference in penetration depth between two experimental
probes. At Ei%15.5 keV, the penetration depth is
10–20 'm from the crystal surface at typical angles em-
ployed during the experiments, while neutrons are bulk sen-
sitive. Therefore, this may cause the apparent difference in
periodicity of the chain if it changes from the surface to the
bulk. In order to clarify this, we carried out high-energy syn-

chrotron x-ray diffraction measurements on Sr14Cu24O41 . By
using an x-ray energy of about 54 keV, the penetration depth
becomes about 3 mm, which is about the same size as that of
the sample single crystal we used.
A single crystal of Sr14Cu24O41 used for this study was a

cut from a boule grown at RIKEN using the traveling-solvent
floating-zone !TSFZ" technique with radiation heating with-
out a crucible. The mosaic width #full width at half maxi-
mum !FWHM"$ was about 0.15°, and it was roughly cylin-
drical in shape, %5 mm in diameter and 5 mm long, with
the #001$ axis oriented along the cylinder axis. Note that this
crystal is the same as that used in synchrotron x-ray studies
by Cox et al.8 and comes from the same batch for neutron
studies by Matsuda et al.10 X-ray diffraction measurements
were performed on beamline 14B1 of SPring-8. The incident
beam was monochromatized by a Si!311" double crystal and
focused by a vertically bent cylindrical mirror. We have
tuned the incident energy first at Ei!53.789 keV !high en-

FIG. 1. Structure of CuO2 chains !left" and Cu2O3 ladders
!right" in Sr14Cu24O41 .

PHYSICAL REVIEW B 66, 012104 !2002"
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Known Unknowns

• Is the CDW intrinsic or just due to defects 
and impurities?  True LRO?

• If so, how to understand the discrepancy 
with the accepted value of the doping?

• What relation, if any, is there between the 
CDW and the superconductivity?



The decay of Friedel oscillations allows a way of determin-

ing the critical exponent K!! which is alternative to measur-

ing directly the long distance behavior of the density corre-

lations. Indeed this latter measurement becomes quite

difficult with open BC’s due to the necessity of eliminating

boundary effects.

We emphasize that the wave vector of these Friedel oscil-

lations 2(kFe!kFo)"2"n , or equivalently 2"x where x

#1#n is the hole density, is a characteristic feature of the

particular C1S0 phase that we are assuming. More correctly,

this is the minimum Friedel oscillation wave vector since

higher harmonics are also expected to occur. This minimum

oscillation wave vector would be different in a different

phase. This wave vector corresponds to two holes per wave

length and is the same wave vector that would occur for a

one-component spinless hard core bose gas, which is an ap-

proximate description of the C1S0 phase in which hole pairs

are assumed to form tightly bound rung singlets.6

An immediate consequence of Eq. $5.7% is that the ampli-
tude of the density oscillations near the center of a finite

chain scales as L#K!!. We show a log-log plot of this am-

plitude versus length in Fig. 11. Fitting to a straight line

allows a determination of K!! . The corresponding values of

K!! determined in this way are shown in Table I. We see

that they are roughly comparable to the values obtained from

the finite size spectrum.

In Figs. 12 and 13 we show the Friedel oscillations in the

density at site l, for two different values of (n ,J), fitted to

Eq. $5.7% with K!! taken as a free parameter. The agreement

is fair although the presence of corrections due to irrelevant

operator effects is evident. In both cases the value of K!! so

determined is in rough agreement with the values in the third

column of Table I, determined from the finite size spectrum.

We emphasize that these formulas are true very generally

for Luttinger liquids with a single gapless charge boson. In

particular, they apply to the spinless single chain model. In

the noninteracting case we may readily find the exact for-

mula for the Friedel oscillations. For N electrons on L sites

&n j'"
2

L!1 (
m"1

N

sin2
"mj

L!1

"
N!1/2

L!1
#
sin)2" j$N!1/2%/$L!1 %*

2$L!1 %sin)$" j /$L!1 %*
. $5.8%

For large N and L this can be approximated

&n j'+n#
sin2"n j

2Lsin$" j /L %
. $5.9%

This has the expected form of Eq. $5.7% with K"1 and

!c!A!"1/2" . On the other hand, the 2kF part of the density
correlation function at long distances is

&n jn0'→
cos 2"n j

2"2! j !2 $5.10%

which has the form of Eq. $5.3% with the same value of
!c!A!"1/2" .
We see that, not surprisingly, when the charge density

correlations drop off slowly, so do the Friedel oscillations. In

particular, this makes it difficult to determine numerically

whether or not a CDW occurs at n"3/4, for example, by
measuring density oscillations. If J/t is such that the system

almost has a CDW then K!! will be only slightly greater

than 1/8. The extremely slow decay of the Friedel oscilla-

FIG. 11. The amplitude, A, of the Friedel oscillations in the

center of the system, as a function of the length, L. The resulting

slopes are #K!! and are given in Table I. The triangles show

results for L"64 as a function of the number of block states kept m
for J"0.35, n"0.75. One can see the very slow convergence of the
amplitude with the number of states kept.

FIG. 12. Density at site l from DMRG (*) compared to Eq.

$5.7% $circles and lines% for (n ,J)"(0.5,0.875) using K!!"0.63.

FIG. 13. Density at site l from DMRG (*) for (n ,J)

"(0.35,0.75) compared to Eq. $5.7% $circles and lines% using
K!!"0.33.

FRIEDEL OSCILLATIONS AND CHARGE DENSITY . . . PHYSICAL REVIEW B 65 165122

165122-11

White, Affleck, Scalapino 
PRB65, 165122 (2002)

9

-0,0003

-0,0002

-0,0001

0

0,0001

0,0002

0,0003

0,7

0,8

0,9

1

1,1

1,2

0 20 40 60 80 100

rung

c
u
rr
e
n
t d

e
n
s
ity

FIG. 8: Rung current (solid circles, left y-axis, units of t)
and electronic densities on top and bottom ladder leg (up
and down triangles, right y-axis) for 100 rung-ladder in the
CDW phase and edge current 0.0001t (U = 0.25, t = V⊥ = 1,
J⊥ = 0.8, and doping δ = 0.04).

As seen in Fig. 9, the (4kF , 0) modulation of the charge
density exists also in the doped D-Mott phase. The na-
ture of the charge density pattern in the CDW phase
(Fig. 8) is less obvious at first sight; however, as will be-
come apparent in Sec. V, it is the sum of a large compo-
nent with wavevector (2kF , π) and a smaller component
with wavevector (4kF , 0). Thus the (4kF , 0) charge den-
sity modulation is present in all three phases appearing
in the parameter region considered here. Such (4kF , 0)
charge density modulations in two-leg ladders have re-
cently been discussed by White et al.;44 we will analyze
these modulations in more detail in Sec. V.

We have also calculated the DSC correlations in the
SF/DDW and doped D-Mott phases (Fig. 11). In the
SF/DDW phase the DSC correlations decay exponen-
tially. As expected, the DSC correlations fall off more
slowly in the doped D-Mott phase. Close to the phase
boundary to the SF/DDW phase the correlations appear
still to be exponential, however, while further into the
doped D-Mott phase the edge effects make it difficult to
say whether for longer system sizes the correlations might
turn out to be algebraic.

Most of our DMRG calculations are for particle densi-
ties close to half-filling. As DMRG is a canonical ensem-
ble method, particle numbers are fixed at each growth
step and there is some arbitrariness in inserting the par-
ticles and holes to maintain essentially constant particle
density during system growth. Various insertion schemes
have yielded essentially identical results. To obtain such
well-converged results, it is crucial to apply several runs
(sweeps) of the finite-system DMRG algorithm until con-
vergence is observed numerically. We have typically per-
formed of the order of 10 to 20 sweeps and observed con-
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FIG. 9: Rung current (solid circles, left y-axis, units of t)
and electronic densities on top and bottom ladder leg (up
and down triangles, right y-axis) for 100 rung-ladder in the
doped D-Mott phase and edge current 0.0001t (U = 0.25,
t = V⊥ = 1, J⊥ = 1.7, and doping δ = 0.04). Top and bottom
densities coincide. Note that for these model parameters there
is SF/DDW order at half-filling; the phase boundary between
the D-Mott and SF/DDW phase at half-filling (upper panel
of Fig. 2) moves downwards when the system is doped.

vergence after typically 5 to 7 sweeps.

Up to 800 states were kept for DMRG runs; follow-
ing standard practice, the number of states kept was ini-
tially chosen to be much smaller and increased during
sweeps. For systems up to about 100 rungs, final results
were independent of the way the number of states was
augmented. For systems well beyond 100 rungs we have
observed that in the SF/DDW phase, DMRG runs that
started with a very low number of states kept, converged
to a result where the current amplitudes were somewhat
suppressed with respect to runs that started with high
precision and yielded results in perfect agreement with
those found for shorter systems. The low precision cal-
culation introduces a phase slip π at the center (Fig. 12).

Do we really have true long-range order in the orbital
currents? If there is not true long-range order, one might
speculate that the introduction of a phase slip (of the
type seen in Fig. 12) at low energetic cost is the way how
long-ranged correlations are lost in this system. How-
ever, we did not observe, for systems up to 200 rungs,
any significant decrease of the magnitude of the trig-
gered current pattern. Considering Fig. 13, one actually
sees that maximum current amplitudes grow from system
size 50 to 100, in line with the SF/DDW suppression by
edges reported above, to stay constant after that. One
might envisage that the open boundary conditions lock in
the currents, leaving us with seeming long-ranged order.
The repeated observation that open boundary conditions
seem to disfavor SF/DDW does not support this point
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FIG. 14: Rung current (open squares, left y-axis, units of t)
and electronic densities (solid circles, right y-axis) for 192-
rung ladder in the SF/DDW phase (U = −0.4, t = 1, V⊥ =
0.9, J⊥ = 2), edge current 0.0001t and 11 holes (i.e., δ ≈
0.0286, 1/δ ≈ 34.9). The disturbed density pattern and slight
current reduction on the far end of the ladder is due to the
presence to one unpaired hole.
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FIG. 15: Rung current (lines, left y-axis, units of t) and elec-
tronic densities (solid circles, right y-axis) for 200-rung rung-
ladder in the SF/DDW phase for δ = 0.08 and edge current
0.0001t (U = 0.25, t = V⊥ = 1, J⊥ = 1.5).

doping dependence of the SF/DDW phase as a function
of the interaction parameters.

V. EFFECTIVE FIELD THEORY
DESCRIPTION OF THE DOPED LADDER

In this section we try to understand the DMRG re-
sults in Sec. IV using bosonization and renormalization
group arguments. We will be particularly interested in
the question of whether there can be true long-range or-
der for the considered doping levels.

A. Physical observables

We first present the set of relevant physical observ-
ables and their bosonized expressions for the case of an
arbitrary filling for which the Fermi energy crosses both
bands. This includes the half-filled case discussed in Sec.
III, as well as the doping levels studied numerically in
Sec. IV.

The rung current operator is

j⊥(x) = j2kF

[
cos(2kF x + φ+ρ) cosφ+σ cos θ−ρ cos θ−σ

+ sin(2kF x + φ+ρ) sin φ+σ sin θ−ρ sin θ−σ

]
. (5.1)

Furthermore, the density operator n#(x) on leg # is

nt,b(x) = (1 − δ) +
1

π

∂φ+ρ

∂x
± n2kF

[
cos(2kF x + φ+ρ) cosφ+σ sin θ−ρ cos θ−σ

− sin(2kF x + φ+ρ) sinφ+σ cos θ−ρ sin θ−σ

]
+ n4kF cos(4kF x + 2φ+ρ) cos 2φ+σ. (5.2)

The quantity 2kF was defined in Eq. (4.5). The nonuni-
versal coefficients j2kF , n2kF and n4kF depend on the
short-distance cutoff of the theory.

The 4kF term in n#(x) should be particularly noted.
It does not come out of a naive calculation of the density
operator using the bosonization formula (3.7); however,
a more general, phenomenological reasoning shows that
such higher harmonics terms are generally expected.65,73

The form of the 4kF term in n#(x) was deduced by White
et al.44 They considered the 4kF term in the correlation
function for the square of the density operator, as result-
ing from the product of the 2kF terms in the density
operator calculated from the bosonization formula, and
then (implicitly) argued that a similar 4kF contribution
to that correlation function would be expected to come
from the product of the constant term and a 4kF term
in the density operator. Higher harmonics than 2kF in
j⊥(x) and 4kF in n#(x) have been neglected in the ex-
pressions above as they are expected to give at most only
minor quantitative corrections to the terms already in-
cluded.

The density operator above is more complicated than
the one discussed for the half-filled CDW phase in Sec.
III D. It is therefore instructive to see how the expecta-
tion value of n#(x) reduces to the correct form at half-
filling. In that case, both φ+ρ and φ+σ are locked in
all four phases (see Table I). This gives 〈∂xφ+ρ〉 = 0

Fjærestad, JBM, Schollwöck, cond-mat/0412709
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is consistent with the reduced quality of the fit as the
doping is reduced from 0.04 to 0.02.86 Comparison with
the DMRG results in Fig. 17 thus seems to suggest that
while the solitons in φ+ρ(x) would not be much affected
by the inclusion of quantum fluctuations in the effective
model for δ = 0.04, they would be somewhat smoothed
for δ = 0.02, leading to less rectangular current oscilla-
tions and not so deep minima in the electron density.

6. The doped CDW and D-Mott phases

The results for the charge density oscillations in the
doped CDW and D-Mott phases that follow from such a
classical approach are also in good qualitative agreement
with the DMRG results. In the CDW phase, the density
on leg # of rung x takes the form (obtained from Eq. (5.2)
with δ = 0)

nt,b(x) = 1 +
1

π

dφ+ρ

dx
± ñ0(−1)x cosφ+ρ (5.37)

where ñ0 ≈ n2kF 〈cosφ+σ sin θ−ρ cos θ−σ〉 %= 0. In the
doped D-Mott phase the density also has this form ex-
cept that ñ0 = 0. In both phases the solution for φ+ρ

is given by Eq. (5.33), as in the SF/DDW phase. Thus
(4kF , 0) density oscillations with period 1/δ, coming from
the dφ+ρ/dx term, are predicted to be present in all
phases (for the CDW phase, the DMRG results show
that the (2kF , π) density oscillations dominate over the
(4kF , 0) oscillations in size, however). Furthermore, be-
cause φ+ρ essentially behaves like a classical field over
the length scales considered here, the conjugate field θ+ρ

is strongly fluctuating, so that DSC correlations decay
exponentially over these length scales even in the doped
D-Mott phase.

VI. SUMMARY AND DISCUSSION

In this paper we have studied a generalized Hubbard
model on a two-leg ladder, focusing on a parameter re-
gion that shows SF/DDW order. The approximate loca-
tion of this region in parameter space was found from a
calculation of the phase diagram of the half-filled model
for weak interactions, which was done by using Abelian
bosonization and semiclassical considerations to analyze
the low-energy effective theory resulting from a one-loop
RG flow.

The RG/bosonization calculations in this and previous
works37,38,39 suggest that in order to get SF/DDW or-
der in the generalized Hubbard ladder it is necessary (al-
though not sufficient) to have the on-site repulsion U be
less than the nearest neighbor repulsion V⊥. One class of
materials that may be promising for achieving a relatively
small U is organic molecular crystals, due to the large
size of the highest occupied molecular orbital; bringing
two of these molecules close together might then conceiv-
ably give U ≤ V .87 Another way of reducing the effec-
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FIG. 17: (color) Upper panel: Staggered rung current js(x)
(red curves, left y-axis) and electron density per site n(x)
(blue curves, right y-axis) as a function of rung index x in the
SF/DDW phase of a 200-rung ladder with δ = 0.02. Shown
are DMRG results (diamonds and circles for currents and den-
sities, respectively, connected by dashed lines to guide the eye)
and analytical fits (full lines). The model parameters for the
DMRG calculation are t = V⊥ = 1, U = 0.25, J⊥ = 1.5 and
J‖ = V‖ = 0. The values of the fitting parameters used are
b ≈ 20.0, |j0| ≈ 0.61, and x0 = 0. Middle panel: Plots for
the same model parameters as above, except that the doping
δ = 0.04. The values of the fitting parameters are b ≈ 1.66,
|j0| ≈ 0.52, and x0 = 0. Lower panel: The function φ+ρ(x)
corresponding to the fits of js(x) and n(x).

du

d!
= εu − u

2
− u

3(1 − lnw)

dw

d!
= −2w + uw + u

2(1 − lnw)w

Belitz, Kirkpatrick, and Rollbühler, PRL93, 155701 (2004)

Jacobian amplitude function

φ+ρ(x) = am(−x/
√

a |− 2b)
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Known Unknowns

• Are charge modulations important or a red 
herring?

• Is there hidden and/or topological order?

• Do ladders “explain” high-Tc superconductivity?

• Is the QPT paradigm misleading?



A Known Known

“As you know, you have to work
with the materials you have, not the

materials you want.”


