Quantum systems and dynamical classical noise: from environmental engineering to quantum simulators

> Claudia Benedetti AQM & QTLab "Aldo Pontremoli" Physics Department - University of Milan (Italy)

Open Quantum System Dynamics: Quantum Simulators and Simulations Far From Equilibrium UC Santa Barbara, Kavli Institute for Theoretical Physics - April, 3rd 2019

Continuous-time quantum walks on graphs

Graph G(V,E) ----> Networks

Continuous-time random walks — Continuous-time quantum walks

Transition probability

- Superposition of states
 Interference effects
- Transition amplitudes
- The edges of the graph correspond to the tunneling energies (or transition amplitudes)

Model for universal quantum computation

Motivations

Building blocks for quantum algorithms

Transport properties

Decoherence Quantum-to-classical transition

Experimental implementations of Qws are realized on different platforms

Imperfections (defects) and noise may affect the implementation of a lattice

CTQW on the line

Eigenvectors & eigenvalues of H:

$$\begin{split} |\Phi_{\theta}\rangle &= \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{-i\theta j} |j\rangle \\ E_{\theta} &= 2 - 2\cos\theta \\ \theta &= \frac{2n\pi}{N} \end{split}$$

Noisy CTQW on the line: generalized percolation noise

$$H = \sum_{k} J_{k}(t) \left(|k\rangle \langle k+1| + |k+1\rangle \langle k| \right)$$

$$egin{aligned} &J_k(t) = J_0 +
u X_k(t) \ &
u \in [0, J_0] \quad X_k(t) = \pm 1 \ & oldsymbol{\gamma} & extsf{Switching rate} \ & \langle X_k(0) X_j(t)
angle = \delta_{kj} \, e^{-2\gamma t} \end{aligned}$$

The dynamics: ensemble average

$$\begin{split} H_r(t) &= \sum_k J_k^r(t) \Big(|k\rangle \langle k+1| + |k+1\rangle \langle k| \Big) \\ U_r(t) &= \mathcal{T} \int_0^t e^{-iH_r(s) \, ds} \text{ Evolution operator} \end{split}$$

 $\rho(t) = \langle U_r(t)\rho_0 U_r^{\dagger}(t) \rangle$

Single realization

Hamiltonian

The dynamics: ensemble average

$$\begin{split} H_r(t) &= \sum_k J_k^r(t) \Big(|k\rangle \langle k+1| + |k+1\rangle \langle k| \Big) \\ U_r(t) &= \mathcal{T} \int_0^t e^{-iH_r(s) \, ds \quad \text{Evolution operator}} \end{split}$$

Single realization Hamiltonian

$$\rho(t) = \langle U_r(t)\rho_0 U_r^{\dagger}(t) \rangle$$

PRA 77, 022302 (2008) PRL 106, 180403 (2011) PRA 93, 042313 (2016)

noise. The noiseless walker is shown in black for comparison. Inset: the variance σ^2 as a function of time. The black lines are visual guides for different propagation regimes: ballistic (dashed) and diffusive (dotted). With fast noise we can see a transition from the ballistic to the diffusive propagation, while slow noise causes temporary localization of the walker.

Spatially correlated noise

The tunneling amplitudes are grouped into spatial domains Synchronized domains With: M. Rossi, M. Borrelli, S. Maniscalco, M. Paris

PHYSICAL REVIEW A **96**, 040301(R) (2017) EPL, **124** (2018) 60001

Fig. 1: (Color online) Pictorial representation of the lattice described in eq. (9), with uncorrelated noise sources (left) and spatially correlated noise (right).

FIG. 1. Schematic representation of the random spatial domains $\{L_1, L_2, \ldots, L_M\}$ for a single realization of the noise, generated according to Eq. (3) and of average length \bar{L}_p . Tunneling amplitudes within the same domain fluctuate synchronously in time and according to the same stochastic process. Different domains evolve independently from each other.

EPL, **124** (2018) 60001 PHYSICAL REVIEW A **96**, 040301(R) (2017)

Spatially correlated noise

The tunneling amplitudes are grouped into spatial domains Synchronized domains

 $L_1 \equiv \lim_{p \to 1} \bar{L}_p = N$

$$C(t) = \langle X_k(0)X_j(t) \rangle = \begin{cases} e^{-2\gamma t} & \text{if } j,k \text{ belong to the same domain} \\ 0 & \text{otherwise} \end{cases}$$

The domains are created randomly: too adjacent links are correlated with probability p

For each noise realization the spatial correlations will form **M** domains of lengths $\{L_1, L_2, ..., L_M\}$ corresponding to **M** independent noise evolutions.

The probability P_M of having M domains in a particular realization is

$$P_M = \begin{pmatrix} N-1\\ M-1 \end{pmatrix} (1-p)^{M-1} p^{N-M}$$

which corresponds to the average domain length

$$\bar{L}_p = \frac{p^N - 1}{p - 1}$$

EPL, **124** (2018) 60001 PHYSICAL REVIEW A **96**, 040301(R) (2017)

Spatially correlated noise Diffusion vs Localization

Inverse partecipato ratio

$$\mathcal{I}(t) = \sum_{j=1}^{N} \langle j | \bar{\rho}(t) | j \rangle^2$$

Delocalization
$$\frac{1}{N} \leq \mathcal{I}(t) \leq 1$$
 Localization

Spatial correlations tend to break localization

EPL, **124** (2018) 60001 PHYSICAL REVIEW A **96**, 040301(R) (2017)

Diffusion vs Localization: Gaussian wave packet

 $|\psi_0\rangle = \frac{1}{2\pi\Delta} \sum_{j} e^{-\frac{j-x_0}{2\Delta^2}} e^{-ip_0 j} |j\rangle$

Slow

Fast

FIG. 4. Expectation value of the momentum operator $\langle p \rangle$ (top panels) and IPR \mathcal{I} (bottom panels) as a function of time, for different average domain lengths \overline{L} , for $\gamma = 0.1$ (left), 1 (center), and 10 (right), with lattice size N = 100. The black dashed line indicates the noiseless case. The initial state is (8), with $k_0 = \pi/2$, $\Delta = 10$.

2-particle QW

PHYSICAL REVIEW A 95, 022106 (2017)

Noisy quantum walks of two indistinguishable interacting particles

Ilaria Siloi,¹ Claudia Benedetti,² Enrico Piccinini,³ Jyrki Piilo,⁴ Sabrina Maniscalco,⁴ Matteo G. A. Paris,^{2,5,6} and Paolo Bordone^{1,6}

$$H_2 = H_0 + H_{\text{int}},$$
$$H_0 = H_1 \otimes \mathbb{I} + \mathbb{I} \otimes H_1,$$
$$H_{\text{int}} = U(|j - k|) \sum_{j,k=1}^N |j,k\rangle \langle j,k|,$$

$$U(|j - k|) = \begin{cases} U & \text{if } j = k, \\ U/3 & \text{if } j = k + 1. \end{cases}$$

$$|\Psi_0^{\pm}\rangle = \frac{1}{\sqrt{2}}(|j,k\rangle \pm |k,j\rangle) \text{ with } j \neq k.$$

EPL, **124** (2018) 60001 PHYSICAL REVIEW A **96**, 040301(R) (2017)

FIG. 6. Single-particle variance $\sigma^2(t)$ as a function of time for two fermions starting from next-neighbor sites $|\Psi_{1N}\rangle$ and third-neighbor sites $|\Psi_{3N}\rangle$. Each panel considers a different interaction strength U/J, and compares the noiseless evolution (solid red line) with the one in fast noise regime (dotted blue line), whose amplitude and switching time are, respectively, $g_0 = 0.9$ and $\gamma = 10.0$.

Still work to do!

TO DO:

Test the robustness of perfect state transfer against dynamical noise
 2 particles - 2D lattices with spatial domain

Noise on the **on-site energies** in spatial domains

- Other kinds of noise, e.g. Gaussian
- Being able to characterize the defects in a network using a QW as a **probe**

$$H = \omega_0 \sigma_z + X(t) \sigma_z$$

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + |1\rangle\Big)$$

$$\bar{\rho}(t) = \frac{1}{2} \begin{pmatrix} 1 & \langle e^{-2i\phi(t)} \rangle \\ \langle e^{2i\phi(t)} \rangle & 1 \end{pmatrix}$$

$$\phi(t) = \int_0^t X(s) ds$$

Coherences (BLP Non-Markovianity)

 $C(t) = \langle e^{-2i\phi(t)} \rangle$

The coherence factor

time for $\gamma > 2$

decays monotonically in

Random telegraph noise

$$C(t) = e^{-\gamma t} \left[\cos(\delta t) + \frac{\gamma}{\delta} \sinh(\delta t) \right]$$
$$\delta = \sqrt{\gamma^2 - (2\nu)^2}$$

Phys. Rev. B 74, 024509 (2006) New J. Phys. 11, 025002 (2009) PHYSICAL REVIEW A 89, 012114 (2014) APPLIED PHYSICS LETTERS 110, 081107 (2017)

With: S. Cialdi, M. Rossi, B. Vacchini, D. Tamascelli, S.

Olivares, and M. Paris

APPLIED PHYSICS LETTERS 110, 081107 (2017)

Aim: Simulate a single qubit noisy channel originating from the interaction with a fluctuating field

How: All-optical setup

Implementation: Employ the polarization degrees of freedom of a **single photon** and exploit its **spectral component**s to average over the realizations of the stochastic dynamics.

What:

Pump+BBO crystal Spatial light modulators: apply a computer-imposed random phase to H component for every pixel Lens Gratings Half/Quarter wave plates Polarizers Detectors

diode **pump** laser @405.5nm using a BBO crystal (1mm thick); **SMF**: single-spatial-mode and polarization preserving fiber; MMF: multimode fiber; G1-G2: gratings (1714 lines/mm); L1-L2: lens(f=500mm); H1, half-wave-plate; SLM: spatial light modulator (640 pixels, 100 µm/pixel); T, tomographic apparatus; **Q**:quarter-wave plate; P, polarizer; C, optical coupler; D1-D2: single photon detectors; **CC**: coincidences counter. The acquisition time is of 10s for each measure of coincidence counts. The inset shows the measured PDC spectrum.

$$\rho_{SE} = |H\rangle\langle H| \otimes \int d\omega |f(\omega)|^2 |\omega\rangle\langle \omega|$$

Polarization:qubit

APPLIED PHYSICS LETTERS 110, 081107 (2017)

Spectral degrees of freedom: environment

$$\rho_{SE} = |H\rangle\langle H| \bigotimes \int d\omega |f(\omega)|^2 |\omega\rangle\langle \omega|$$

Polarization:qubit

APPLIED PHYSICS LETTERS 110, 081107 (2017)

Spectral degrees of freedom: environment

diode **pump** laser @405.5nm using a BBO crystal (1mm thick); **SMF**: single-spatial-mode and polarization preserving fiber; **MMF**: multimode fiber; G1-G2: gratings (1714 lines/mm); **L1–L2**: lens(f=500mm); H1, half-wave-plate; SLM: spatial light modulator (640 pixels, 100 μ m/pixel); T, tomographic apparatus; **Q**:quarter-wave plate; P, polarizer; C, optical coupler; D1-D2: single photon detectors; **CC**: coincidences counter. The acquisition time is of 10s for each measure of coincidence counts. The inset shows the measured PDC spectrum.

 $\rho_{SE} = |H\rangle\langle H| \bigotimes \int d\omega |f(\omega)|^2 |\omega\rangle\langle \omega|$

Polarization:qubit

APPLIED PHYSICS LETTERS 110, 081107 (2017)

Spectral degrees of freedom: environment

$$|\psi(t)\rangle = \frac{1}{2} \left(e^{-2i\phi_r(t)} |H\rangle + |V\rangle \right)$$

diode **pump** laser @405.5nm using a BBO crystal (1mm thick); **SMF**: single-spatial-mode and polarization preserving fiber; MMF: multimode fiber; G1-G2: gratings (1714 lines/mm); L1-L2: lens(f=500mm); H1, half-wave-plate; SLM: spatial light modulator (640 pixels, 100 µm/pixel); T, tomographic apparatus; **Q**:quarter-wave plate; P, polarizer; C, optical coupler; D1-D2: single photon detectors; **CC**: coincidences counter. The acquisition time is of 10s for each measure of coincidence counts. The inset shows the measured PDC spectrum.

APPLIED PHYSICS LETTERS 110, 081107 (2017)

 $|x\rangle = |\omega(x)\rangle_{\text{spatially dispersed}}^{\text{the spectral components are}}$

$$|x\rangle = \sum_{r} \eta_{r}(x) |\eta_{r}\rangle \qquad \sum_{r} |\eta_{r}\rangle\langle\eta_{r}| = I$$

rth pixel

 $|\eta_r(x)|^2$ Probability that the component x passes through the r-th pixel

$$U(t) = \exp\left[-2i|H\rangle\langle H| \otimes \sum_{r} \phi_{r}(t)|\eta_{r}\rangle\langle \eta_{r}|\right]$$

 $U(t) |H\rangle \otimes |\eta_r\rangle = e^{-2i\phi_r(t)} |H\rangle \otimes |\eta_r\rangle$

Fig. 4.1 Schematic diagram of our experimental setup. Pump, 405.5 nm laser diode; BBO, Beta barium borate nonlinear crystal; SMF, single-spatial-mode and polarization preserving fiber; MMF, multimode fiber; G1–G2, gratings; L1–L2, lens; H1, half-wave-plate; SLM, spatial light modulator; T, tomographic apparatus; D1–D2, single photon detectors; CC, coincidences counter

Fig. 4.2 The measured spectrum of the PDC. We can see that it is almost flat in the region 802–817 nm

$$\rho_s(t) = \frac{1}{2} \sum_r A_{rr} \begin{pmatrix} 1 & e^{-2i\phi_r(t)} \\ e^{2i\phi_r(t)} & 1 \end{pmatrix}$$

$$A_{rr} = \int dx \, |f(x)|^2 \, |\eta_r(x)|^2 \simeq \frac{1}{n}$$

$$C(t) = \frac{1}{n} \sum_{r} e^{-2i\phi_r(t)}$$

Due to imperfections in the apparatus, the state becomes

$$\rho_s^{exp}(t) = p \rho_s(t) + (1-p)\rho_{mix}$$

$$\rho_{mix} = \frac{1}{2} (|H\rangle \langle H| + |V\rangle \langle V|)$$

Fig. 4.1 Schematic diagram of our experimental setup. Pump, 405.5 nm laser diode; BBO, Beta barium borate nonlinear crystal; SMF, single-spatial-mode and polarization preserving fiber; MMF, multimode fiber; G1–G2, gratings; L1–L2, lens; H1, half-wave-plate; SLM, spatial light modulator; T, tomographic apparatus; D1–D2, single photon detectors; CC, coincidences counter

Fig. 4.2 The measured spectrum of the PDC. We can see that it is almost flat in the region 802–817 nm

The relevant quantity to be measured is

 $\langle H | \rho_S^{exp}(t) | V \rangle = \frac{1}{2} p \langle e^{-2i\phi_r(t)} \rangle_n$

No need for full tomography. Just one projective measurements

$$\langle + |\rho_{S}^{exp}| + \rangle = \frac{1}{2} \left(1 + p \, \Re \langle e^{-2i\phi_{r}(t)} \rangle_{n} \right)$$

Work in progress: 2 qubits simulator

Study the transition local/global environment

 $|1\rangle$

 $|0\rangle$

 $|1\rangle$

 $|0\rangle$

 $|1\rangle$

 $|0\rangle$

 $|1\rangle$

 $|0\rangle$

What's next?

Thank you!

Unrelated question: anybody expert in Spatial search algorithms by continuous-time quantum walks?