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Figure 1: Examples of discrete time quantum walk simulations. The y axes represent the probability of
being in a location on the walk (x axes). (a) is a symmetric quantum walk from using a balanced Hadamard
coin, whereas in (b) the walk is severely biased to one side due to the initial starting state. Both cases
show a substantial deviation from a classical random walk due to quantum interference e↵ects and that the
probabilities are proportional to the modulus of the state amplitudes squared.

2 Continuous Time Quantum Walks

The continuous time quantum walk has some notable contrasts with the discrete random walk which will
be described in this section, namely:

• CTQW are generally described by Markov processes;

• A CTQW evolves under a Hamiltonian which is defined with respect to a graph;

• No coin operator is required in a CTQW. The implications of this are discussed in section 2.2.

2.1 Formalism

Figure 2: An example of a graph which a quantum walk is performed on. From [36].

The formalism for the continuous time quantum walk leads on fairly straightforwardly from its classical
counterpart, the continuous time classical walk. This is a Markov process. A Markov process is best illustrated
with a graph as in figure 2. Suppose the graph G has a set of vertices N indexed by integers a = 1, 2...N .
The vertices may be connected to other vertices by an edge. If we let � denote the jumping rate per unit
time between vertices and impose the condition that the walk may only travel between nodes connected to
an edge, the random walk can be described by a stochastic generator matrix M . Its matrix elements are
defined by:
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1. Introduction  
Quantum walks is a powerful tool that have promising applications in a broad range of fields such as simulation for 
biological, chemical and physical quantum systems, novel quantum material design, and quantum computation. 
However, most of the multi-dimensional quantum walks system are demonstrated in bulky optical system, which is 
an obstacle for mass production and practical applications [1]. Quantum walks demonstrated in integrated scalable 
systems are almost always or usually limited in one dimension, which restrains the computation power of quantum 
walks from the study of multi-dimensional systems [2-3]. In this paper, we present a 2D quantum walk, to our best 
knowledge, for the first time, using silicon photonic fabrication with multilayer low-loss Si3N4 waveguide lattice. 

2. Design and working principles 

Figure 1(a) shows the schematic of 1D quantum walk in a waveguide array. Coherent light is used to demonstrate 
quantum behaviors and characteristics of the system. The coherent light is first input into the central waveguide of 
the waveguide array. The coherent light can only have the nearest-neighbor coupling with the two adjacent 
waveguides at both sites. The Hamiltonian of the system can be expressed as 

  
(1) 

Figure 1(b) presents the schematic of 2D quantum walk in a multilayer waveguide lattice. In this system, the 
coherent light input at the central can couple with the four nearest-neighbor waveguides at each site. This system 
enables the calculation of electronic band structure using an approximate set of wave functions based upon 
superposition of wave functions. This can be applied to study the electronic properties of 2D materials. The 
Hamiltonian of the system can be expressed as 

 
(2) 

 
Fig. 1 (a) Schematic illustration of 1D quantum walk in a waveguide array. (b) Schematic illustration of 2D quantum walk in a multilayer 

waveguide lattice. 
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directly map to graphs with a high degree of connectivity,
with different coupling strengths for nearest and non-
nearest neighboring waveguides.
For two indistinguishable input photons in waveguides q

and r, the probability of detecting one photon in output
waveguide q0, coincident with the other photon in wave-
guide r0 is given by the correlation function [35]:

Γðq;rÞ
q0;r0 ¼

1

1 þ δq0;r0
jUq0;qUr0;r þ Uq0;rUr0;qj2: (2)

withU ¼ expð−iHzÞ as the evolution unitary of the system
and z as the evolution length.
A sufficient criterion for nonclassical behavior is a

violation of the inequality [5,19],

Vq;r ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γcl
q;qΓcl

r;r

q
− Γcl

q;r < 0; (3)

with Γcl here referring to intensity correlations between
classical light beams. This inequality imposes a limit to the
magnitude of the on-diagonal terms in the correlation
matrix in comparison to the associated off-diagonal ele-
ments. Its violation in the quantum regime is a sign of
photon bunching.
The waveguides of the QW network in this work are

labeled as in Fig. 1(a), where waveguides that have first
order coupling in the horizontal (vertical) plane are denoted
with a prefix X (Y). The central waveguide has first order
coupling in both the horizontal and vertical plane and is
labeled as C. For a single particle walk the size of the
Hilbert space coincides with the size of the physical
network structure. For a two-particle input the Hilbert
space grows larger. This two-particle configuration space
can be interpreted as the Hilbert space of a single-particle
QW on a more complex graph with a probability distribu-
tion equalling the original two-particle correlation function.
The on site potentials and hopping amplitudes in this
simulated single particle graph can be deduced from
considering the Heisenberg equation of motion
ðd=dzÞÂðzÞ ¼ ½Ĥ; Â& for the Hamiltonian of the physical

network Eq. (1) with single particle input Â ¼ a†q and two
particle input Â ¼ a†qa†r as described in [5]. The single-
particle graph structure corresponding to two-particles on
the swiss cross structure is shown in Fig. 2 [36].
We measured correlation matrices for two different input

states, one corresponding to injection of the twin photons in
waveguides located on the same plane (waveguides X1 and
X4) and also in waveguides located on orthogonal planes
(X1 and Y1) [36]. By varying the relative temporal delay
between the two input photons, their degree of indistin-
guishability was tuned. The nonclassical nature of the
correlations measured can be quantified by the violations of
inequality (3).
In the correlation matrices summarized in Fig. 3 one can

identify four regions, two for correlated detection events
betweenoutputwaveguides in the sameplane (ΓX1−X4;X1−X4;
ΓY1−Y4;Y1−Y4) and two for events between waveguides in
different planes (ΓX1−X4;Y1−Y4; ΓY1−Y4;X1−X4). From these it
can be seen that the distinct features that appear for indis-
tinguishable photons and the violations of the classical limit
spread throughout the 2D network. The observed behavior
therefore cannot be attributed to independent, 1D, single
photon QWs, but rather is characteristic of a single 2D QW

FIG. 1 (color online). (a) Schematic of the 2D evanescently
coupled waveguide array. The coupling constant Cð1Þ is for
adjacent waveguides and the second order coupling is denoted as
Cð2Þ. (b) Schematic of the interface section of our waveguide
circuit, showing the input waveguides fanning from a planar
configuration to the 2D, swiss cross configuration.

FIG. 2 (color online). Graph structure simulated with a two-
photon input state in the swiss cross structure shown in Fig. 1(a).
Each of the 45 vertices corresponds to a two-particle state, with
different degrees of connectivity (up to degree 8), and there are
126 links between different vertices corresponding to allowed
transitions between two-particle states. Red lines and red vertices
correspond to coupling strengths of C and potentials of β,
respectively, so they coincide with the ones in the swiss cross
structure. For vertices corresponding to a state with two particles
in the same waveguide, the on site potential and the coupling are
enlarged by a factor of 2 and

ffiffiffi
2

p
respectively, due to normal-

isation of the two-particle wavefunction. We mark these vertices
and links in green. The two yellow vertices represent the two
different two-photon input states in the experiment (X1 − X4 and
X1–Y1). Two different complete connecting paths (jX1X1i to
jX4X4i and jX1X1i to jY1Y1i) are labeled as examples.
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Recent research into photosynthetic antenna complexes has
shown evidence of coherence in excitonic energy trans-
port1–4, despite the noisy cellular environment in which

such complexes are found. Indeed, environmental decoherence
has been credited with increasing the efficiency of transport
through these systems, an effect known as environment-assisted
quantum transport (ENAQT)5 or dephasing-assisted transport6,7.
While ENAQT has been the subject of many theoretical studies—
whether in the photosynthetic context8–16 or in other nanoscale
transport systems17–20—and despite its potential for improving
transport in artificial quantum systems, it has so far never been
directly observed.

ENAQT can be understood by considering a single excitation
on a network of N coupled sites, governed by a tight-binding
Hamiltonian5

H ¼
XN

m¼1

em mj i mh jþ
XN

nom

Vmn mj i nh jþ nj i mh jð Þ; ð1Þ

where mj i denotes the excitation being localized at site m, em the
energy of that site and Vmn the coupling between sites m
and n. Although ENAQT can occur on an ordered lattice
where all the energies em are equal21, transport enhancement
was first explained in disordered systems, which we consider
here.

In most studies, ENAQT is about the efficiency of transport
from a particular initial site to a particular target site, where the
excitation is irreversibly trapped. In the case of a photosynthetic
complex (Fig. 1a), trapping describes the transfer of excitons to a
reaction center, where they drive charge separation. It can be
modelled as irreversible coupling of the target site to a sink at rate
k . The efficiency is usually defined as the probability of finding
the exciton in the sink after a certain time or, more commonly, in
the long-time limit.

ENAQT occurs when adding decoherence increases the
trapping probability above the fully coherent case. In
general, decoherence results from coupling of a quantum
system to inaccessible degrees of freedom. For example,

in photosynthetic antenna complexes, the energies of
chromophores are coupled to molecular vibrations; tracing
out this environment results in decoherence in the excitonic
subspace.

ENAQT can be understood in several different ways: as
suppression of destructive interferences, as bringing of
neighbouring sites into resonance, or as transitions
between otherwise-stationary eigenstates. The first of these
interpretations starts from the fact that energetic disorder
tends to localize the wavepacket through processes such as
destructive interference or Anderson localization22–24,
thus preventing it from reaching the target. Adding
decoherence diminishes these coherent processes, increasing the
transport efficiency to the target. The second view is
that decoherence—if it is in the site basis, as is often
assumed—can be modelled as fluctuations of site energies.
On that view, increasing fluctuations enhance site-to-site
transfer by bringing neighbouring sites into transient resonance
more frequently. The third approach is to note that the
eigenstates of H are stationary in the absence of decoherence,
making it difficult to reach the target if the initial and target sites
differ in energy. Incoherent processes, however, permit
transitions between the eigenstates of H, yielding greater
mobility. Finally, in some specialized cases ENAQT can also be
understood as an instance of a phonon antenna25 or of
momentum rejuvenation26.

The earliest theoretical studies of ENAQT focused on the case
where the decoherence takes the form of site-independent,
Markovian, pure dephasing5,6. However, any form of
decoherence, including non-Markovian ones27,28, can increase
transport efficiency as long as it allows population transfer
between otherwise-stationary eigenstates.

Here we use an integrated photonic simulator to demonstrate
the first implementation of ENAQT. Our simulator was
fabricated using femtosecond-laser direct writing, which allows
waveguides to be drawn directly into glass using a focused, pulsed
laser. This permits the creation of three-dimensional waveguide
arrays, as well as precision and repeatability in engineering
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Figure 1 | Environment-assisted quantum transport (ENAQT). (a) Photosynthetic antenna complexes are networks of chlorophylls that collect and
transfer solar energy. A well-studied example is the Fenna–Matthews–Olson complex of green sulphur bacteria, here depicted as a network of seven sites
that transports excitation energy from initial site 1 to target site 3 (adapted with permission from ref. 49). Simulations have suggested that this transport
may be enhanced by decoherence5–7. (b ) We simulate an instance of ENAQT on a lattice of four sites, with site 1 initially excited and site 3 the target. If the
detuning Db of site 4 equals C, one of the system eigenmodes has no occupancy at site 3 and cannot couple to the sink; by broadening the levels,
decoherence breaks the condition Db¼C, allowing all eigenmodes to couple to the sink and thus increasing transport efficiency. (c) Our simulator consists
of four coupled waveguides arranged as shown (cross-section). The sink is modelled with a large array of closely coupled waveguides that transport light
away from the main four waveguides. At the central wavelength l0, waveguide 4 has propagation constant bþDb, while the others have propagation
constant b. (d) Theoretical expectation of transport enhancement for this system, as a function of simulation length z and decoherence strength g. The red
bar indicates the region explored experimentally.
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Figure 1.2: The image provides a visual representation of the isomorphism between the

single excitation subspace of a spin chain and a quantum walk. In the figure the tunnelling

amplitudes are identified with the coupling constants to clarify what is said in the text.

where U(t) indicates the time-evolution operator for the (time-independent) Hamiltonian

Ĥ: U(t) = e
�iĤt, d⌦ is the area element on the surface of the Bloch’s sphere, and | ii, | fi

are respectively the initial and final state of the system. In our case, the initial and the

final states of the system are the first and last sites of the chain, as we have demonstrate

that for a single excitation we can bring can map the problem into the study of a quantum

walk. Now we suppose to measure only the last site, since it is simpler than keeping the

entire chain under control and, furthermore, in real condition we want to minimize the

interactions between the chain and the environment, so the only accessible site is actually

the last.

In order to obtain an expression of transmission fidelity for this case, we prepare our

chain with a generic excitation in the first site, thus the state of the system will be

| (0)i = cos

✓
✓

2

◆
|0i+ e

i� sin

✓
✓

2

◆
|1i . (1.12)

Once prepared, the system is free to evolve according to Schroedinger equation (1.2). The

state of the system at a generic time t can be obtained applying the time evolution operator

Diagonal terms 
On-site energy

Off-diagonal terms 
Tunneling energy

E✓ = 2� 2 cos ✓
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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.

perspective Copyright c⃝ EPLA, 2019

Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of

(a)E-mail: claudia.benedetti@unimi.it
(b)E-mail: matteo.rossi@utu.fi
(c)E-mail: matteo.paris@fisica.unimi.it

the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a

60001-p1
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Figure 1.2: The image provides a visual representation of the isomorphism between the

single excitation subspace of a spin chain and a quantum walk. In the figure the tunnelling

amplitudes are identified with the coupling constants to clarify what is said in the text.

where U(t) indicates the time-evolution operator for the (time-independent) Hamiltonian

Ĥ: U(t) = e
�iĤt, d⌦ is the area element on the surface of the Bloch’s sphere, and | ii, | fi

are respectively the initial and final state of the system. In our case, the initial and the

final states of the system are the first and last sites of the chain, as we have demonstrate

that for a single excitation we can bring can map the problem into the study of a quantum

walk. Now we suppose to measure only the last site, since it is simpler than keeping the

entire chain under control and, furthermore, in real condition we want to minimize the

interactions between the chain and the environment, so the only accessible site is actually

the last.

In order to obtain an expression of transmission fidelity for this case, we prepare our

chain with a generic excitation in the first site, thus the state of the system will be

| (0)i = cos

✓
✓

2

◆
|0i+ e

i� sin

✓
✓

2

◆
|1i . (1.12)

Once prepared, the system is free to evolve according to Schroedinger equation (1.2). The

state of the system at a generic time t can be obtained applying the time evolution operator
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X switches n times in a time t follows a Poissonian dis-
tribution with mean value n̄ = γt. The autocorrelation
function of the noise is exponential C(t) = e−2γt, cor-
responding to a Lorentzian spectrum. If the couplings
{JT

jk(t)} in eq. (7) are independent realizations of RTN
with JT

jk(t) = ± 1, then the tunneling energies (i.e., the
links of the graph) jump in time between the values J0± ν.
If ν = J0 we recover the true dynamical percolation case,
where links are created and destroyed with rate γ. For
other values of ν we have generalized dynamical percola-
tion, in which links, rather than just appearing and dis-
appearing in time, are modulated : the coupling constants
switch between a larger and a smaller non-zero value or,
in other words, they are weakened and strengthened ran-
domly in time.

The dynamics of the noisy walker is described as an
ensemble average over all possible realizations of {JT (t)},

ρ(t) = ⟨U(t)ρ0U
†(t)⟩{JT }, (8)

where U(t) = T exp[− i
∫ t
0 H(s)ds] with T the time-

ordering operator and ρ0 the initial state of the walker.
Equation (8) describes a completely positive, trace-
preserving quantum map. The evolved density matrix ρ(t)
cannot be, in general, computed analytically, and numeri-
cal techniques are required. For a low number of nodes and
noise sources, an exact method using a quasi-Hamiltonian
technique is available [34], but for a high number of nodes
the ensemble average over the noise realizations has to be
performed with Monte Carlo techniques, possibly using
GPUs for efficient parallel computation [35].

Noisy CTQW dynamics. – Let us start by discussing
recent results on the effects of classical noise on the dy-
namics of a CTQW on a simple one-dimensional graph,
i.e., a line. At first, we want to understand how the dy-
namics of the walker is changed if noise is introduced in
the model. To this aim, we assume a generalized perco-
lation where the links of the graph switch between two
values, and focus the attention on CTQW on a line with
periodic boundary conditions. The noise is introduced as
RTN with strength ν to the coupling constants. We also
set JS(t) = 0, i.e., we focus to the off-diagonal perturba-
tion which describe the phenomenon of percolation. Upon
specializing eq. (7) to the case of a line and setting J0 = 1,
i.e., expressing all quantities in unit of J0, we obtain

H̃L =
∑

j

2|j⟩⟨j| −
∑

j

[
1 + νJT

j (t)
] (

|j⟩⟨j +1| + |j + 1⟩⟨j|
)
.

(9)
This model, depicted in fig. 1 (left), has been studied
in [36], where the different perturbations JT

j (t) are iid re-
alizations of RTN, i.e., ⟨JT

j (t)JT
k (0)⟩ = δjke−2γt, where γ

is the process percolation rate.
The spread of the particle is analyzed in terms of the

variance of the wave function as a function of time. By
increasing the value of the percolation rate, one is able
to move from a localized regime, where the wave function

Fig. 1: (Color online) Pictorial representation of the lattice
described in eq. (9), with uncorrelated noise sources (left) and
spatially correlated noise (right).
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Fig. 2: (Color online) Probability distribution of the walker
at t = 50 for slow (γ = 0.01, red) and fast (γ = 1, blue)
noise. The noiseless walker is shown in black for comparison.
Inset: the variance σ2 as a function of time. The black lines
are visual guides for different propagation regimes: ballistic
(dashed) and diffusive (dotted). With fast noise we can see a
transition from the ballistic to the diffusive propagation, while
slow noise causes temporary localization of the walker.

stays localized over few sites of the chain, to a classical
diffusive regime, with a Gaussian-like probability distri-
bution over the lattice nodes (see fig. 2). Specifically, in
the slow noise regime, also called quasi-static since the
percolation rate is very small compared to J0, the larger
the strength of the noise ν, the more spatially confined
the spatial probability distribution. Localization in quan-
tum walks has been largely addressed in the past years.
However, those models always considered localization in-
duced by static disorder on the on-site energies of the
QW [24–26,37]. Model (9) instead shows that localiza-
tions can also be due to quasi-static noise on the tunnel-
ing energies, thus defying the common concept that only
disorder can confine a quantum particle. When the parti-
cle localizes, transport through the lattice is suppressed,
thus localization is often considered a threat to transfer of
an excitation. However, there are situations where local-
ization is deliberately induced in order to keep the walker
confined into few sites, thus viewing disorder as a resource
more than a threat [38].

In the opposite regime of fast noise, a small strength of
the perturbations leads to quasi-unperturbed probability
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variance of the wave function as a function of time. By
increasing the value of the percolation rate, one is able
to move from a localized regime, where the wave function

Fig. 1: (Color online) Pictorial representation of the lattice
described in eq. (9), with uncorrelated noise sources (left) and
spatially correlated noise (right).
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Fig. 2: (Color online) Probability distribution of the walker
at t = 50 for slow (γ = 0.01, red) and fast (γ = 1, blue)
noise. The noiseless walker is shown in black for comparison.
Inset: the variance σ2 as a function of time. The black lines
are visual guides for different propagation regimes: ballistic
(dashed) and diffusive (dotted). With fast noise we can see a
transition from the ballistic to the diffusive propagation, while
slow noise causes temporary localization of the walker.

stays localized over few sites of the chain, to a classical
diffusive regime, with a Gaussian-like probability distri-
bution over the lattice nodes (see fig. 2). Specifically, in
the slow noise regime, also called quasi-static since the
percolation rate is very small compared to J0, the larger
the strength of the noise ν, the more spatially confined
the spatial probability distribution. Localization in quan-
tum walks has been largely addressed in the past years.
However, those models always considered localization in-
duced by static disorder on the on-site energies of the
QW [24–26,37]. Model (9) instead shows that localiza-
tions can also be due to quasi-static noise on the tunnel-
ing energies, thus defying the common concept that only
disorder can confine a quantum particle. When the parti-
cle localizes, transport through the lattice is suppressed,
thus localization is often considered a threat to transfer of
an excitation. However, there are situations where local-
ization is deliberately induced in order to keep the walker
confined into few sites, thus viewing disorder as a resource
more than a threat [38].

In the opposite regime of fast noise, a small strength of
the perturbations leads to quasi-unperturbed probability
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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X switches n times in a time t follows a Poissonian dis-
tribution with mean value n̄ = γt. The autocorrelation
function of the noise is exponential C(t) = e−2γt, cor-
responding to a Lorentzian spectrum. If the couplings
{JT

jk(t)} in eq. (7) are independent realizations of RTN
with JT

jk(t) = ± 1, then the tunneling energies (i.e., the
links of the graph) jump in time between the values J0± ν.
If ν = J0 we recover the true dynamical percolation case,
where links are created and destroyed with rate γ. For
other values of ν we have generalized dynamical percola-
tion, in which links, rather than just appearing and dis-
appearing in time, are modulated : the coupling constants
switch between a larger and a smaller non-zero value or,
in other words, they are weakened and strengthened ran-
domly in time.

The dynamics of the noisy walker is described as an
ensemble average over all possible realizations of {JT (t)},

ρ(t) = ⟨U(t)ρ0U
†(t)⟩{JT }, (8)

where U(t) = T exp[− i
∫ t
0 H(s)ds] with T the time-

ordering operator and ρ0 the initial state of the walker.
Equation (8) describes a completely positive, trace-
preserving quantum map. The evolved density matrix ρ(t)
cannot be, in general, computed analytically, and numeri-
cal techniques are required. For a low number of nodes and
noise sources, an exact method using a quasi-Hamiltonian
technique is available [34], but for a high number of nodes
the ensemble average over the noise realizations has to be
performed with Monte Carlo techniques, possibly using
GPUs for efficient parallel computation [35].

Noisy CTQW dynamics. – Let us start by discussing
recent results on the effects of classical noise on the dy-
namics of a CTQW on a simple one-dimensional graph,
i.e., a line. At first, we want to understand how the dy-
namics of the walker is changed if noise is introduced in
the model. To this aim, we assume a generalized perco-
lation where the links of the graph switch between two
values, and focus the attention on CTQW on a line with
periodic boundary conditions. The noise is introduced as
RTN with strength ν to the coupling constants. We also
set JS(t) = 0, i.e., we focus to the off-diagonal perturba-
tion which describe the phenomenon of percolation. Upon
specializing eq. (7) to the case of a line and setting J0 = 1,
i.e., expressing all quantities in unit of J0, we obtain

H̃L =
∑

j

2|j⟩⟨j| −
∑

j

[
1 + νJT

j (t)
] (

|j⟩⟨j +1| + |j + 1⟩⟨j|
)
.

(9)
This model, depicted in fig. 1 (left), has been studied
in [36], where the different perturbations JT

j (t) are iid re-
alizations of RTN, i.e., ⟨JT

j (t)JT
k (0)⟩ = δjke−2γt, where γ

is the process percolation rate.
The spread of the particle is analyzed in terms of the

variance of the wave function as a function of time. By
increasing the value of the percolation rate, one is able
to move from a localized regime, where the wave function

Fig. 1: (Color online) Pictorial representation of the lattice
described in eq. (9), with uncorrelated noise sources (left) and
spatially correlated noise (right).
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Fig. 2: (Color online) Probability distribution of the walker
at t = 50 for slow (γ = 0.01, red) and fast (γ = 1, blue)
noise. The noiseless walker is shown in black for comparison.
Inset: the variance σ2 as a function of time. The black lines
are visual guides for different propagation regimes: ballistic
(dashed) and diffusive (dotted). With fast noise we can see a
transition from the ballistic to the diffusive propagation, while
slow noise causes temporary localization of the walker.

stays localized over few sites of the chain, to a classical
diffusive regime, with a Gaussian-like probability distri-
bution over the lattice nodes (see fig. 2). Specifically, in
the slow noise regime, also called quasi-static since the
percolation rate is very small compared to J0, the larger
the strength of the noise ν, the more spatially confined
the spatial probability distribution. Localization in quan-
tum walks has been largely addressed in the past years.
However, those models always considered localization in-
duced by static disorder on the on-site energies of the
QW [24–26,37]. Model (9) instead shows that localiza-
tions can also be due to quasi-static noise on the tunnel-
ing energies, thus defying the common concept that only
disorder can confine a quantum particle. When the parti-
cle localizes, transport through the lattice is suppressed,
thus localization is often considered a threat to transfer of
an excitation. However, there are situations where local-
ization is deliberately induced in order to keep the walker
confined into few sites, thus viewing disorder as a resource
more than a threat [38].

In the opposite regime of fast noise, a small strength of
the perturbations leads to quasi-unperturbed probability
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)

040301-2

With: M. Rossi, M. Borrelli, S. 
Maniscalco, M. ParisRAPID COMMUNICATIONS

ROSSI, BENEDETTI, BORRELLI, MANISCALCO, AND PARIS PHYSICAL REVIEW A 96 , 040301(R) (2017)

FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.
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Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of
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the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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I-20133 Milano, Italy
2 QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy,
University of Turku - FI-20014 Turun Yliopisto, Finland

received 3 December 2018; accepted in final form 14 December 2018
published online 3 January 2019

PACS 03.67.-a – Quantum information
PACS 05.40.Fb – Random walks and Levy flights
PACS 03.65.Yz – Decoherence; open systems; quantum statistical methods

Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.

perspective Copyright c⃝ EPLA, 2019
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positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of
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the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of
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the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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FIG. 3. Long-time value of the IPR as a function of average
domain length L̄ and switching rate γ for percolation noise for the
initial states |N/2⟩ with N = 100 for ν0τ = 20.

can limit this effect and allow the walker to propagate through
the lattice while still retaining memory effects in its dynamics.
Overall, and perhaps quite unexpectedly, for a small fixed γ , a
spatially correlated RTN tends to suppress localization while
still enhancing memory effects.

To investigate transport properties in this setting we turn our
attention to an initial Gaussian wave packet, equipped with an
average momentum k0 and spatial spread $,

|G⟩ =
N∑

j=1

[
1√

2π$2
e−(j− N

2 )2

2$2

]

e−ik0j |j ⟩ . (8)

We study the behavior of both the IPR and the average
momentum operator p̂ = −i∇, computed using the Born rule

⟨p̂(t)⟩ = Tr[ρ̄(t)p̂], which represents the average quantum
velocity at which the wave packet travels across the lattice.
Figure 4 shows the time evolution of these two quantities for
three different values of the switching rate γ and different
average domain lengths L̄. In this case, the effects of the
spatially correlated RTN become even clearer. The wave-
packet momentum ⟨p⟩ (upper panel) decreases in time, until
it eventually vanishes asymptotically, and this decay is faster
for smaller values of γ , in agreement with Fig. 3. However,
while space-uncorrelated noise leads to a faster reduction of
⟨p̂⟩, spatial correlations in the RTN allow the wave packet
to preserve momentum and travel longer across the lattice
before stopping. In the limiting case of L̄ = N (i.e., p = 1),
the average momentum ⟨p̂⟩ is preserved, as in the noiseless
case.

Similarly to the case studied above, the IPR (lower panel)
generally decreases in time. However, there seems to exist a
more complicated interplay between γ and L̄. For small γ
the IPR decays faster for larger values of L̄, indicating that
spatial correlations break the noise-induced localization, in
agreement with our previous results. For larger switching rates
γ , instead, the situation is quite the opposite: Strong spatial
correlations prevent the particle distribution from spreading
further, thus preserving the initial IPR, with the limiting
case of p = 1, i.e., L̄ = N that gives the slowest possible
decay.

Since the average momentum ⟨p⟩ decreases very slowly
in time in this regime, the original wave packet can travel
across the lattice, maintaining its original shape. This feature
is the key ingredient for quantum transport and state transfer,
where one wants a quantum state to evolve across a complex
network, without losing its quantum properties, so that its
quantum information content can be recovered from another
point in the network.

Therefore, we have again evidence of how the introduction
of space correlations in the noise helps preserve dynamical

FIG. 4. Expectation value of the momentum operator ⟨p⟩ (top panels) and IPR I (bottom panels) as a function of time, for different average
domain lengths L̄, for γ = 0.1 (left), 1 (center), and 10 (right), with lattice size N = 100. The black dashed line indicates the noiseless case.
The initial state is (8), with k0 = π/2, $ = 10.
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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.

perspective Copyright c⃝ EPLA, 2019

Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of

(a)E-mail: claudia.benedetti@unimi.it
(b)E-mail: matteo.rossi@utu.fi
(c)E-mail: matteo.paris@fisica.unimi.it

the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a

60001-p1



Diffusion vs Localization: Gaussian wave packet

RAPID COMMUNICATIONS

ROSSI, BENEDETTI, BORRELLI, MANISCALCO, AND PARIS PHYSICAL REVIEW A 96 , 040301(R) (2017)

FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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FIG. 3. Long-time value of the IPR as a function of average
domain length L̄ and switching rate γ for percolation noise for the
initial states |N/2⟩ with N = 100 for ν0τ = 20.

can limit this effect and allow the walker to propagate through
the lattice while still retaining memory effects in its dynamics.
Overall, and perhaps quite unexpectedly, for a small fixed γ , a
spatially correlated RTN tends to suppress localization while
still enhancing memory effects.

To investigate transport properties in this setting we turn our
attention to an initial Gaussian wave packet, equipped with an
average momentum k0 and spatial spread $,

|G⟩ =
N∑

j=1

[
1√

2π$2
e−(j− N

2 )2

2$2

]

e−ik0j |j ⟩ . (8)

We study the behavior of both the IPR and the average
momentum operator p̂ = −i∇, computed using the Born rule

⟨p̂(t)⟩ = Tr[ρ̄(t)p̂], which represents the average quantum
velocity at which the wave packet travels across the lattice.
Figure 4 shows the time evolution of these two quantities for
three different values of the switching rate γ and different
average domain lengths L̄. In this case, the effects of the
spatially correlated RTN become even clearer. The wave-
packet momentum ⟨p⟩ (upper panel) decreases in time, until
it eventually vanishes asymptotically, and this decay is faster
for smaller values of γ , in agreement with Fig. 3. However,
while space-uncorrelated noise leads to a faster reduction of
⟨p̂⟩, spatial correlations in the RTN allow the wave packet
to preserve momentum and travel longer across the lattice
before stopping. In the limiting case of L̄ = N (i.e., p = 1),
the average momentum ⟨p̂⟩ is preserved, as in the noiseless
case.

Similarly to the case studied above, the IPR (lower panel)
generally decreases in time. However, there seems to exist a
more complicated interplay between γ and L̄. For small γ
the IPR decays faster for larger values of L̄, indicating that
spatial correlations break the noise-induced localization, in
agreement with our previous results. For larger switching rates
γ , instead, the situation is quite the opposite: Strong spatial
correlations prevent the particle distribution from spreading
further, thus preserving the initial IPR, with the limiting
case of p = 1, i.e., L̄ = N that gives the slowest possible
decay.

Since the average momentum ⟨p⟩ decreases very slowly
in time in this regime, the original wave packet can travel
across the lattice, maintaining its original shape. This feature
is the key ingredient for quantum transport and state transfer,
where one wants a quantum state to evolve across a complex
network, without losing its quantum properties, so that its
quantum information content can be recovered from another
point in the network.

Therefore, we have again evidence of how the introduction
of space correlations in the noise helps preserve dynamical

FIG. 4. Expectation value of the momentum operator ⟨p⟩ (top panels) and IPR I (bottom panels) as a function of time, for different average
domain lengths L̄, for γ = 0.1 (left), 1 (center), and 10 (right), with lattice size N = 100. The black dashed line indicates the noiseless case.
The initial state is (8), with k0 = π/2, $ = 10.
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FIG. 3. Long-time value of the IPR as a function of average
domain length L̄ and switching rate γ for percolation noise for the
initial states |N/2⟩ with N = 100 for ν0τ = 20.

can limit this effect and allow the walker to propagate through
the lattice while still retaining memory effects in its dynamics.
Overall, and perhaps quite unexpectedly, for a small fixed γ , a
spatially correlated RTN tends to suppress localization while
still enhancing memory effects.

To investigate transport properties in this setting we turn our
attention to an initial Gaussian wave packet, equipped with an
average momentum k0 and spatial spread $,

|G⟩ =
N∑

j=1

[
1√

2π$2
e−(j− N

2 )2

2$2

]

e−ik0j |j ⟩ . (8)

We study the behavior of both the IPR and the average
momentum operator p̂ = −i∇, computed using the Born rule

⟨p̂(t)⟩ = Tr[ρ̄(t)p̂], which represents the average quantum
velocity at which the wave packet travels across the lattice.
Figure 4 shows the time evolution of these two quantities for
three different values of the switching rate γ and different
average domain lengths L̄. In this case, the effects of the
spatially correlated RTN become even clearer. The wave-
packet momentum ⟨p⟩ (upper panel) decreases in time, until
it eventually vanishes asymptotically, and this decay is faster
for smaller values of γ , in agreement with Fig. 3. However,
while space-uncorrelated noise leads to a faster reduction of
⟨p̂⟩, spatial correlations in the RTN allow the wave packet
to preserve momentum and travel longer across the lattice
before stopping. In the limiting case of L̄ = N (i.e., p = 1),
the average momentum ⟨p̂⟩ is preserved, as in the noiseless
case.

Similarly to the case studied above, the IPR (lower panel)
generally decreases in time. However, there seems to exist a
more complicated interplay between γ and L̄. For small γ
the IPR decays faster for larger values of L̄, indicating that
spatial correlations break the noise-induced localization, in
agreement with our previous results. For larger switching rates
γ , instead, the situation is quite the opposite: Strong spatial
correlations prevent the particle distribution from spreading
further, thus preserving the initial IPR, with the limiting
case of p = 1, i.e., L̄ = N that gives the slowest possible
decay.

Since the average momentum ⟨p⟩ decreases very slowly
in time in this regime, the original wave packet can travel
across the lattice, maintaining its original shape. This feature
is the key ingredient for quantum transport and state transfer,
where one wants a quantum state to evolve across a complex
network, without losing its quantum properties, so that its
quantum information content can be recovered from another
point in the network.

Therefore, we have again evidence of how the introduction
of space correlations in the noise helps preserve dynamical

FIG. 4. Expectation value of the momentum operator ⟨p⟩ (top panels) and IPR I (bottom panels) as a function of time, for different average
domain lengths L̄, for γ = 0.1 (left), 1 (center), and 10 (right), with lattice size N = 100. The black dashed line indicates the noiseless case.
The initial state is (8), with k0 = π/2, $ = 10.
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.

perspective Copyright c⃝ EPLA, 2019

Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of

(a)E-mail: claudia.benedetti@unimi.it
(b)E-mail: matteo.rossi@utu.fi
(c)E-mail: matteo.paris@fisica.unimi.it

the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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FIG. 6. Single-particle variance σ 2(t) as a function of time for two
fermions starting from next-neighbor sites |"1N ⟩ and third-neighbor
sites |"3N ⟩. Each panel considers a different interaction strength U/J ,
and compares the noiseless evolution (solid red line) with the one in
fast noise regime (dotted blue line), whose amplitude and switching
time are, respectively, g0 = 0.9 and γ = 10.0.

components on the main band, as in the case of |"3N ⟩, see
second column in Fig. 6. In this case, the redistribution of the
wave function brings components into the miniband and does
not allow a faster dynamics. Indeed, the noiseless variance is
always faster than the noisy one and, consistent with the results
of the previous section, this phenomenon is independent of the
value of the interaction strength.

This behavior is captured also by the occupation number,
shown in Fig. 7. Here we observe that for large interaction
values (U/J = 14,40), see Figs. 7(c) and 7(d), new areas
of the lattice are accessible to the walkers in the presence
of fast noise compared to the unperturbed case. Such a
broadening in the spatial distribution of the pair comes from
faster velocity components that allow for propagation even if
the interaction would be strong enough to induce localization,
see Fig. 7(b).

Finally, as further evidence supporting our conjecture that
noise allows faster wave-function components, we investigate
the interplay between the parameter γ and the interband gap
$. In particular, to see whether the observed faster propagation
in the noisy regime is linked to the characteristic parameters

τ
τ

lattice site lattice site

lattice site

τ
τ

lattice site

FIG. 7. Occupation number maps as a function of time and lattice
site, ⟨nj (t)⟩, for two fermions initially located on next-neighbor sites.
Different interaction strengths are considered: U/J = 14 and U/J =
40. By rows, the unitary dynamics (top) is compared with the fast
noise dynamics (bottom) with switching time γ = 10 (fast RTN) and
noise amplitude set to g0 = 0.9.

of the noise and the system, we introduce the variance gain

gσ = σ 2
fast/σ

2
no noise − 1 (16)

and analyze its behaviour a function of γ at a fixed time in
the evolution. In particular, in Fig. 8 we show the results for
τ = 12.5. Each curve corresponds to a different interaction
strength. In all cases, the variance gain displays a similar
behavior: the gain increases with increasing γ up to a
maximum value after which it decreases and, in the limit
of γ → ∞, it vanishes, in agreement with the results shown
before about very fast fluctuations. It turns out that each peak
shifts to larger γ values for larger gaps (i.e., larger interaction
values), which means that a larger gap needs a faster noise

FIG. 8. Single-particle variance gain gσ for two fermions, initially
located in next-neighbor sites, as a function of the switching rate
parameter γ , with g0 = 0.9. The variances are calculated at τ = 12.5,
when the dynamics is not yet affected by the boundary conditions.
Each curve corresponds to a different value of the interaction strength,
U/J .
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We investigate the dynamics of continuous-time two-particle quantum walks on a one-dimensional noisy
lattice. Depending on the initial condition, we show how the interplay between particle indistinguishability
and interaction determines distinct propagation regimes. A realistic model for the environment is considered by
introducing non-Gaussian noise as time-dependent fluctuations of the tunneling amplitudes between adjacent sites.
We observe that the combined effect of particle interaction and fast noise (weak coupling with the environment)
provides a faster propagation compared to the noiseless case. This effect can be understood in terms of the band
structure of the Hubbard model, and a detailed analysis as a function of both noise and system parameters is
presented.

DOI: 10.1103/PhysRevA.95.022106

I. INTRODUCTION

Quantum walks (QWs), the quantum counterparts of
classical random walks, describe the stochastic propagation
of a quantum system (e.g., a particle) on a discrete n-
dimensional graph [1–3]. A graph is any object that can be
mathematically described as a set of vertices (or sites) and
edges (or links between the sites). The simplest graph to
analyze the dynamics of a QW is the one-dimensional lattice,
i.e., the line [4–6], though more complex structures have
been also investigated [7–16] in order to fully characterize
the dynamics of QWs. In particular, it has been shown that the
final state of the quantum walker strongly depends on its initial
conditions and, because of quantum interference, it generally
propagates faster than its classical counterpart. QWs have
been extensively analyzed in different contexts, ranging from
quantum-enhanced search algorithms [17,18] and universal
models of quantum computation [19], to quantum transport in
complex networks [20], e.g., biological systems [21–23].

The study of few-particle QWs may offer a bottom-
up approach to understanding and simulating many-body
systems [24–26]. In fact, besides photons [27,28], QWs have
been implemented in many experimental platforms such as
trapped ions [29,30] and neutral atoms [31,32]; very recently
a controlled dynamics of two particles with tunable interaction
has been demonstrated with optical lattices [33].

As a matter of fact, the propagation of multiple indis-
tinguishable particles is affected by the exchange symmetry
even in the absence of interaction. This phenomenon, known
as Hanbury-Brown–Twiss (HBT) interference, may create
nontrivial spatial correlations between two identical particles,
and has been widely investigated both experimentally [34,35]
and theoretically [36–38]. In turn the evolution of free particles
strongly depends on the statistics: while bosons tend to
propagate along the same direction, an effect known as
bunching, fermions tend to move in the opposite directions,

showing antibunching, and they have zero probability of
occupying the same site, consistent with the Pauli exclusion
principle. Upon introducing interaction between particles, the
picture becomes more involved. As predicted by the Bose-
Hubbard Hamiltonian, a stable repulsively bound pair has been
observed [39]; moreover, under proper initial conditions, the
interplay between interaction and indistinguishability induces
a continuous transition from bosonic- to fermionic-like spatial
correlations [24]. All these effects have been shown to depend
on the strength of the interaction, but not on whether it
is attractive or repulsive, since the change in sign of the
interaction U simply reverses the energy spectrum [39].

In this framework, although there are some studies investi-
gating the impact of decoherence and disorder on the dynamics
of two-particle quantum walks [4,40–45], the combined effect
of indistinguishability and interaction in a classical noisy
environment is still poorly understood. In this paper, we aim
to contribute to a better understanding of the dynamics of
this kind of system. In particular, we analyze in detail the
role of interaction in the propagation of two identical particles
hopping on a one-dimensional noisy lattice and discuss the
interplay between interaction and indistinguishability in the
presence of noise. A realistic model for the QW environ-
ment is introduced, where the induced noise is described
by non-Gaussian stochastic, time-dependent, fluctuations in
the tunneling amplitudes [46,47]. Upon tuning the spectral
parameters of the noise, we explore different regimes ranging
from the localization of the pair in the presence of slow noise,
to nonballistic propagation due to fast noise.

Our results show that in the ideal case of absence of
noise, the strength of the interaction determines distinct
propagation regimes. On the other hand, noise makes such
distinction less sharp and creates an intermediate regime
with nontrivial dynamics, which will be analyzed in detail
in our work. We observe that noise with a fast-decaying
autocorrelation function induces a transition from ballistic
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to diffusive propagation in the case of two noninteracting
walkers while, under proper initial conditions, noise allows
two interacting particles to propagate faster than the noiseless
ballistic case. We show that this phenomenon depends both
on the noise and the system parameters, and that it can be
understood in terms of the band structure of the Hubbard
model.

The paper is organized as follows. In Sec. II we introduce
our model for a two-particle continuous-time quantum walk
(CTQW) on a noisy lattice, whereas in Sec. III we illustrate
the dynamics of two interacting indistinguishable particles.
We first show results for the noiseless case in Sec. III A and
then, in Sec. III B, we illustrate the dynamical properties of the
system in the presence of noise. Section IV closes the paper
with some concluding remarks.

II. MODEL

The continuous-time quantum walk [48,49] can be seen as
the quantum version of the classical continuous-time Markov
chains. CTQW of two particles over a graph composed of
N sites takes place in the Hilbert space spanned by the
orthonormal set of position vectors {|j,k⟩} that describe the
state in which one particle is localized on site j and the other
on site k with j,k = 1, . . . N . The dynamics of a CTQW of two
indistinguishable and interacting particles over a homogeneous
one-dimensional lattice, such as the line, is described by the
total Hamiltonian

H2 = H0 + Hint, (1)

H0 = H1 ⊗ I + I ⊗ H1, (2)

Hint = U (|j − k|)
N∑

j,k=1

|j,k⟩⟨j,k|, (3)

where H1 = ϵI − J
∑

j (|j ⟩⟨j + 1| + |j + 1⟩⟨j |) describes
the hopping of a single particle between next-neighbor sites,
Hint accounts for the interaction between the two particles, and
U (|j − k|) shapes the strength of the interaction according to
the distance between the pair, which in the present case is
chosen to be

U (|j − k|) =
{
U if j = k,
U/3 if j = k + 1.

(4)

As an initial condition of the CTQW, we consider a state in
which each particle is localized over a different site:

|"±
0 ⟩ = 1√

2
(|j,k⟩ ± |k,j ⟩) with j ̸= k. (5)

The symmetry of the initial state, i.e., the sign in Eq. (5),
then determines whether the particles are bosons or fermions,
since the Hamiltonian H2 conserves the symmetry of the state
during its evolution. By applying the unitary evolution #(t) =
exp(−iH2t) to the initial state |"±

0 ⟩ one obtains the dynamics
of the pair. Notice that we use natural unit h̄ = 1, throughout
the paper.

Due to unavoidable interaction with the environment, noise
is always present in realistic implementations of quantum
walks. The simplest case is that of static lattice imperfections,

which may be described as missing links, thus obtaining a
percolation graph [50– 52]. On the other hand, to describe
dynamical noise, we introduce a stochastic time-dependent
term in the hopping Hamiltonian H1, which randomizes
the tunneling amplitudes between adjacent sites. Although
fluctuating, transition amplitudes retain a finite value through-
out the evolution. The single-particle Hamiltonian thus be-
comes a time-dependent random matrix H1r (t), written as the
sum of the unperturbed term H1 and a stochastic contribution
affecting the transition rates between adjacent sites [46]:

H1r (t) = H1 + J
∑

j

gj (t)(|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (6)

where the coefficients {gj (t)} are the time-dependent fluctua-
tions of the tunneling amplitude that introduce decoherence in
our description of CTQWs, and the two-particle Hamiltonian
reads

H2r (t) = H1r (t) ⊗ I + I ⊗ H1r (t) + Hint. (7)

Each gj (t) is independent from the others and is modeled
as random telegraphic noise (RTN), i.e., as a dichotomic
variable which can only jump between two values gj (t) =
±g0, with a certain switching rate ξ . Other authors use RTN
as characterized by an exponentially decaying autocorrelation
function:

C(t) = ⟨gj (t)gk(0)⟩ = δjk g2
0 e−2ξ t , (8)

where the Kronecker delta δjk expresses the fact that the
random processes {gj } are independent of each other. Starting
from the initial state ρ0 = |"±

0 ⟩⟨"±
0 |, the dynamics of the two

particles for a single realization of the stochastic processes
{gj (t)} is governed by the evolution operator

#(t) = T exp
(

−i

∫ t

0
H2r (s) ds

)
, (9)

where T is the time-ordering operator. The time evolution of
the two-particle CTQW is thus calculated by averaging the
single realization dynamics #(t)ρ0#

†(t) over all the possible
realizations of the stochastic processes:

ρ(t) = ⟨#(t)ρ0#
†(t)⟩{gj (t)}. (10)

Without loss of generality, the dynamical parameters may be
rescaled in terms of the hopping strength J . From now on we
will describe the dynamics in terms of a dimensionless time
and switching rate:

t → J t ≡τ ξ → ξ/J ≡γ . (11)

Upon looking at the autocorrelation function of the RTN in
Eq. (8), one may distinguish two regimes, which characterize
different time scales for the noise. If γ ≫ 1, we talk about
fast noise, because this situation corresponds to the two
particles evolving in a fast fluctuating environment, i.e.,
where the bistable fluctuators gj (t) flip according to a very
large switching rate. On the contrary, the slow noise regime
arises when γ ≪ 1, and it describes the case of quasistatic
disorder [46,53].
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to diffusive propagation in the case of two noninteracting
walkers while, under proper initial conditions, noise allows
two interacting particles to propagate faster than the noiseless
ballistic case. We show that this phenomenon depends both
on the noise and the system parameters, and that it can be
understood in terms of the band structure of the Hubbard
model.

The paper is organized as follows. In Sec. II we introduce
our model for a two-particle continuous-time quantum walk
(CTQW) on a noisy lattice, whereas in Sec. III we illustrate
the dynamics of two interacting indistinguishable particles.
We first show results for the noiseless case in Sec. III A and
then, in Sec. III B, we illustrate the dynamical properties of the
system in the presence of noise. Section IV closes the paper
with some concluding remarks.

II. MODEL

The continuous-time quantum walk [48,49] can be seen as
the quantum version of the classical continuous-time Markov
chains. CTQW of two particles over a graph composed of
N sites takes place in the Hilbert space spanned by the
orthonormal set of position vectors {|j,k⟩} that describe the
state in which one particle is localized on site j and the other
on site k with j,k = 1, . . . N . The dynamics of a CTQW of two
indistinguishable and interacting particles over a homogeneous
one-dimensional lattice, such as the line, is described by the
total Hamiltonian

H2 = H0 + Hint, (1)

H0 = H1 ⊗ I + I ⊗ H1, (2)

Hint = U (|j − k|)
N∑

j,k=1

|j,k⟩⟨j,k|, (3)

where H1 = ϵI − J
∑

j (|j ⟩⟨j + 1| + |j + 1⟩⟨j |) describes
the hopping of a single particle between next-neighbor sites,
Hint accounts for the interaction between the two particles, and
U (|j − k|) shapes the strength of the interaction according to
the distance between the pair, which in the present case is
chosen to be

U (|j − k|) =
{
U if j = k,
U/3 if j = k + 1.

(4)

As an initial condition of the CTQW, we consider a state in
which each particle is localized over a different site:

|"±
0 ⟩ = 1√

2
(|j,k⟩ ± |k,j ⟩) with j ̸= k. (5)

The symmetry of the initial state, i.e., the sign in Eq. (5),
then determines whether the particles are bosons or fermions,
since the Hamiltonian H2 conserves the symmetry of the state
during its evolution. By applying the unitary evolution #(t) =
exp(−iH2t) to the initial state |"±

0 ⟩ one obtains the dynamics
of the pair. Notice that we use natural unit h̄ = 1, throughout
the paper.

Due to unavoidable interaction with the environment, noise
is always present in realistic implementations of quantum
walks. The simplest case is that of static lattice imperfections,

which may be described as missing links, thus obtaining a
percolation graph [50– 52]. On the other hand, to describe
dynamical noise, we introduce a stochastic time-dependent
term in the hopping Hamiltonian H1, which randomizes
the tunneling amplitudes between adjacent sites. Although
fluctuating, transition amplitudes retain a finite value through-
out the evolution. The single-particle Hamiltonian thus be-
comes a time-dependent random matrix H1r (t), written as the
sum of the unperturbed term H1 and a stochastic contribution
affecting the transition rates between adjacent sites [46]:

H1r (t) = H1 + J
∑

j

gj (t)(|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (6)

where the coefficients {gj (t)} are the time-dependent fluctua-
tions of the tunneling amplitude that introduce decoherence in
our description of CTQWs, and the two-particle Hamiltonian
reads

H2r (t) = H1r (t) ⊗ I + I ⊗ H1r (t) + Hint. (7)

Each gj (t) is independent from the others and is modeled
as random telegraphic noise (RTN), i.e., as a dichotomic
variable which can only jump between two values gj (t) =
±g0, with a certain switching rate ξ . Other authors use RTN
as characterized by an exponentially decaying autocorrelation
function:

C(t) = ⟨gj (t)gk(0)⟩ = δjk g2
0 e−2ξ t , (8)

where the Kronecker delta δjk expresses the fact that the
random processes {gj } are independent of each other. Starting
from the initial state ρ0 = |"±

0 ⟩⟨"±
0 |, the dynamics of the two

particles for a single realization of the stochastic processes
{gj (t)} is governed by the evolution operator

#(t) = T exp
(

−i

∫ t

0
H2r (s) ds

)
, (9)

where T is the time-ordering operator. The time evolution of
the two-particle CTQW is thus calculated by averaging the
single realization dynamics #(t)ρ0#

†(t) over all the possible
realizations of the stochastic processes:

ρ(t) = ⟨#(t)ρ0#
†(t)⟩{gj (t)}. (10)

Without loss of generality, the dynamical parameters may be
rescaled in terms of the hopping strength J . From now on we
will describe the dynamics in terms of a dimensionless time
and switching rate:

t → J t ≡τ ξ → ξ/J ≡γ . (11)

Upon looking at the autocorrelation function of the RTN in
Eq. (8), one may distinguish two regimes, which characterize
different time scales for the noise. If γ ≫ 1, we talk about
fast noise, because this situation corresponds to the two
particles evolving in a fast fluctuating environment, i.e.,
where the bistable fluctuators gj (t) flip according to a very
large switching rate. On the contrary, the slow noise regime
arises when γ ≪ 1, and it describes the case of quasistatic
disorder [46,53].
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the dynamics of two interacting indistinguishable particles.
We first show results for the noiseless case in Sec. III A and
then, in Sec. III B, we illustrate the dynamical properties of the
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U/3 if j = k + 1.

(4)

As an initial condition of the CTQW, we consider a state in
which each particle is localized over a different site:
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0 ⟩ = 1√
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(|j,k⟩ ± |k,j ⟩) with j ̸= k. (5)

The symmetry of the initial state, i.e., the sign in Eq. (5),
then determines whether the particles are bosons or fermions,
since the Hamiltonian H2 conserves the symmetry of the state
during its evolution. By applying the unitary evolution #(t) =
exp(−iH2t) to the initial state |"±

0 ⟩ one obtains the dynamics
of the pair. Notice that we use natural unit h̄ = 1, throughout
the paper.
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is always present in realistic implementations of quantum
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dynamical noise, we introduce a stochastic time-dependent
term in the hopping Hamiltonian H1, which randomizes
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fluctuating, transition amplitudes retain a finite value through-
out the evolution. The single-particle Hamiltonian thus be-
comes a time-dependent random matrix H1r (t), written as the
sum of the unperturbed term H1 and a stochastic contribution
affecting the transition rates between adjacent sites [46]:
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where the coefficients {gj (t)} are the time-dependent fluctua-
tions of the tunneling amplitude that introduce decoherence in
our description of CTQWs, and the two-particle Hamiltonian
reads

H2r (t) = H1r (t) ⊗ I + I ⊗ H1r (t) + Hint. (7)

Each gj (t) is independent from the others and is modeled
as random telegraphic noise (RTN), i.e., as a dichotomic
variable which can only jump between two values gj (t) =
±g0, with a certain switching rate ξ . Other authors use RTN
as characterized by an exponentially decaying autocorrelation
function:

C(t) = ⟨gj (t)gk(0)⟩ = δjk g2
0 e−2ξ t , (8)

where the Kronecker delta δjk expresses the fact that the
random processes {gj } are independent of each other. Starting
from the initial state ρ0 = |"±
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0 |, the dynamics of the two

particles for a single realization of the stochastic processes
{gj (t)} is governed by the evolution operator

#(t) = T exp
(

−i

∫ t

0
H2r (s) ds

)
, (9)

where T is the time-ordering operator. The time evolution of
the two-particle CTQW is thus calculated by averaging the
single realization dynamics #(t)ρ0#

†(t) over all the possible
realizations of the stochastic processes:

ρ(t) = ⟨#(t)ρ0#
†(t)⟩{gj (t)}. (10)

Without loss of generality, the dynamical parameters may be
rescaled in terms of the hopping strength J . From now on we
will describe the dynamics in terms of a dimensionless time
and switching rate:

t → J t ≡τ ξ → ξ/J ≡γ . (11)

Upon looking at the autocorrelation function of the RTN in
Eq. (8), one may distinguish two regimes, which characterize
different time scales for the noise. If γ ≫ 1, we talk about
fast noise, because this situation corresponds to the two
particles evolving in a fast fluctuating environment, i.e.,
where the bistable fluctuators gj (t) flip according to a very
large switching rate. On the contrary, the slow noise regime
arises when γ ≪ 1, and it describes the case of quasistatic
disorder [46,53].
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)
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FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
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Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
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length L̄ = 1 and therefore it is a special case study of the
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uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
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do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
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Abstract – We address continuous-time quantum walks on graphs in the presence of time- and
space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e., classical time-
dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate
the general features of the model, we review recent results on two paradigmatic examples: the
dynamics of quantum walks on the line and the effects of noise on the performances of quantum
spatial search on the complete and the star graph. We also discuss future perspectives, including
extension to many-particle quantum walk, to noise model for on-site energies and to the analysis
of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to
characterize defects and perturbations occurring in complex, classical and quantum, networks.
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Introduction. – Quantum walks (QWs) describe the
propagation of a quantum particle over a discrete set of
positions. QWs are the quantum counterpart of the clas-
sical random walks, i.e., systems where a walker moves
on a lattice by hopping through sites according to a cer-
tain set of transition probabilities. A well-known exam-
ple is provided by the random walk on the line, where at
each time step the walker moves according to the toss-
ing of a coin, e.g., it moves to the left if the outcome is
head and to the right if it is tail. In the quantum ana-
logue of the random walk, the evolution is governed by a
quantum coin, which may exist in a superposition of head
and tail states, making the propagation of the walker co-
herent, i.e., evolving in a superposition of possible posi-
tions. The dynamics is discrete in time, each temporal
step corresponding to a toss of the quantum coin. For this
reason this model is named discrete-time quantum walks
(DTQW) [1]. A different model has been suggested few
years later [2], in which the walker moves continuously
in time, in a closer analogy with the evolution of classi-
cal Markov chains. This model, in which the evolution of

(a)E-mail: claudia.benedetti@unimi.it
(b)E-mail: matteo.rossi@utu.fi
(c)E-mail: matteo.paris@fisica.unimi.it

the walker is governed by a lattice Hamiltonian, is usually
referred to as continuous-time quantum walk (CTQW).

The concept of QW is naturally connected to the notion
of graph. Indeed a QW, both of discrete- and continuous-
time type, evolves on a discrete position space, where the
states can be identified with the nodes of a graph. The
edges of the graph are then associated with the tunnel-
ing amplitudes between connected nodes. Different graph
topologies then lead to different dynamics for the walker.
QWs were proven useful tools for several tasks, ranging
from universal quantum computation [3], transport on
networks [4,5], quantum algorithms [6–10], quantum mod-
elling of biological systems, [11,12], graph matching [13],
and as quantum probes for the topology of graphs [14].
QWs have been experimentally implemented on different
platforms, e.g., trapped ions [15,16], nuclear spins [17]
and optical systems [18–20]. In realistic implementations
of QWs, environmental noise and defects may affect the
behavior of the quantum walker [21]. As a consequence,
the speed-up observed in certain computational tasks may
be lost, and the QW may either transform into a classical
random walk, or localize over few sites [22–26].

In this paper, we address the most relevant form of
perturbation that may affect a graph: percolation. In a
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We address the non-Markovian character of quantum maps describing the interaction of a qubit with a random
classical field. In particular, we evaluate trace- and capacity-based non-Markovianity measures for two relevant
classes of environments showing non-Gaussian fluctuations, described respectively by random telegraph noise
and colored noise with spectra of the the form 1/f α . We analyze the dynamics of both the trace distance and
the quantum capacity, and show that the behavior of non-Markovianity based on both measures is qualitatively
similar. Our results show that environments with a spectrum that contains a relevant low-frequency contribution
are generally non-Markovian. We also find that the non-Markovianity of colored environments decreases when
the number of fluctuators realizing the environment increases.
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I. INTRODUCTION

The unavoidable interaction of a quantum system with
its environment usually destroys its coherence and quantum-
ness [1,2]. The fragile quantum information encoded in an
open quantum system is lost due to the presence of the envi-
ronment that continuously monitors the system. Nevertheless,
in some cases the lost information can be partly restored due to
non-negligible correlations between system and environment.
We refer to the systems in which such recoherence phenomena
occur as non-Markovian open quantum systems. The dynamics
of open quantum systems has been often described using the
Born-Markov approximation leading to a master equation
of the Lindblad form [3]. This approximation, however,
neglecting system-bath-induced memory effects, does not lead
to a correct description of the dynamics of many relevant
systems in quantum optics and solid-state physics, and cannot
be used in certain quantum information processing scenar-
ios [4– 9]. In addition, in the spirit of reservoir engineering, one
can induce non-Markovianity to improve quantum protocols
such as quantum metrology and quantum key distribution [10–
14].

The concept of non-Markovianity is not uniquely defined
in the literature. Several measures have been proposed in
recent years [14– 20] and, in general, these measures do not
coincide in detecting non-Markovianity. In this paper we focus
on two measures of non-Markovianity: the Breuer-Laine-Piilo
(BLP) measure [16] based on state distinguishability, and the
Bylicka-Chruściński-Maniscalco (BCM) measure [14] based
on entanglement-assisted and/or quantum capacities. In the
first case the characteristic trait of non-Markovianity is a
back flow of information, i.e., a partial increase in state
distinguishability, while in the second case memory effects
are identified with a regrowth of channel capacities.

It is known that for single qubit dephasing channels, as those
considered in the following, the Markovian or non-Markovian
character of the dynamical map coincides for all measures.
Therefore, it is sufficient to study one of them. In this paper
we focus on both the BLP measure and the BCM measure as
we are interested not only in understanding information back
flow but also in investigating under which conditions qubit

channels subject to random classical noise may be exploited
for reliably transmitting quantum and classical information.
Moreover, the BCM measure provides us with a rigorous
information theoretical description of memory effects by
linking the amount of information on the system to the amount
of information on the environment, and therefore allowing us
to properly define the concept of information flow.

We focus on non-Markovianity arising in classical envi-
ronments exhibiting non-Gaussian fluctuations, i.e., described
by random non-Gaussian fields. In particular, we address the
influence of this class of environments on the dynamics of a
qubit. As a matter of fact, little attention has been paid to non-
Markovianity in classical environments; most of the existing
studies are devoted to time-independent random fields or to
Gaussian dynamic noise [21– 24]. On the other hand, stochastic
processes characterized by non-Gaussian fluctuations are very
common in nature and have received large attention [25– 28].
A stochastic process is non-Gaussian if it cannot be fully
characterized by the mean and variance. As a consequence, the
mere knowledge of the spectrum is not sufficient to describe
the process, and the very structure of environment plays a role
in determining its influence on the coherence properties of
quantum systems [29].

In this paper we focus on two relevant classes of non-
Gaussian noise: the random telegraph noise (RTN) with
a Lorentzian spectrum and the family of low-frequency
noise with 1/f α spectrum. The RTN is generated from
a bistable fluctuator flipping between two values with a
switching rate ξ . RTN allows one to model environmental
noise appearing in many semiconducting and superconducting
nanodevices [30– 35]. Noises with 1/f α spectra are found
when the environment can be described as a collection of Nf

random bistable fluctuators, with Nf ! 1. It affects solid-state
devices, superconducting qubits, and magnetic systems [36–
41]. The dynamical map of a qubit interacting with these kind
of environments describes pure dephasing. In this case the
channel is degradable and the entanglement-assisted capacity
coincides with the quantum channel capacity, hence we
will consider only the latter one in the rest of the paper.
Moreover, a simple analytical expression for the dynamics
of both the trace distance and the quantum capacity exists,
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and (10), we can write:

D(τ,γ ) = |G(τ,γ )|, (23)

CQ(τ,γ ) = 1 − H2

(
1 − G(τ,γ )

2

)
, (24)

with G(τ,γ ) given by Eq. (18). Two different regimes naturally
arise: for γ < 2 both the trace distance and the quantum
capacity display damped oscillations, i.e., the dynamics is
non-Markovian, whereas for γ ! 2 they decay monotonically,
i.e., the dynamics is Markovian. In fact, the non-Markovianity
measures NBLP and NBCM correspond to the integrals, over
their range of positivity, of the quantities

σBLP = d

dτ
D(τ,γ ) = −γ |G(τ,γ )|

+ sgn [G(τ,γ )] (γ cosh δτ + δ sinh δτ ) e−γ τ

= − 4 e−γ τ sinh δτ

δ
if γ ! 2

σBCM = d

dτ
CQ(τ,γ ) = − 4

ln 2
sinh δτ

δ
arctanh G(τ,γ ) (25)

respectively, where G(τ,γ ) is given in Eq.(18). As it is apparent
from their expressions, and from the fact that G(τ,γ ) ! 0 for
γ ! 2, both the σ ’s are negative definite for γ ! 2, such that
both the measures NBLP and NBCM vanish for γ ! 2. On the
other hand, both the σ ’s show an oscillatory behavior as a
function of time, which includes positive values, for any values
of γ < 2.

Using Eq. (25) one finds the extrema of the functions
D(τ,γ ) and CQ(γ ,τ ) and thus the regions where they are
increasing function of time. Maxima are located at τk =
kπ/

√
4 − γ 2 and minima (where the two functions vanish) at

τk − τ ∗, with τ ∗ = (4 − γ 2)−
1
2 arctanh[γ (4 − γ 2)

1
2 ]. We thus

obtain

NBLP =
∞∑

k=1

D(γ ,τk) =
[

exp

(
πγ

√
4 − γ 2

)

− 1

]−1

(26)

NBCM =
∞∑

k=1

CQ(γ ,τk). (27)

In the upper panel of Fig. 1 we show the trace
distance dynamics in the non-Markovian regime γ < 2 for
three specific values of γ . We notice that the smaller is γ , the
higher are the revivals of the trace distance, and thus the more
enhanced is the non-Markovian character of the dynamics. A
similar behavior occurs for the quantum capacity. Indeed, one
can see from the lower panel of Fig. 1 that both NBLP and NBCM
increase for decreasing values of γ . From a physical point of
view this reflects the fact that small values of γ correspond
to non-negligible and long-living environmental correlations,
as described by the autocorrelation function of Eq. (14), and
therefore to more pronounced memory effects. The lower panel
of Fig. 1 also shows that NBCM decays faster than NBLP as a
function of γ . On the other hand, as mentioned above, the
threshold between the Markovian and non-Markovian regime
is the same for both measures and corresponds to γ = 2, for
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FIG. 1. (Color online) Non-Markovianity of RTN channels. The
upper panel shows the trace distance as a function of time for three
different values of the switching rate: γ = 1 (solid black line), γ =
0.1 (dashed red line), and γ = 0.01 (dotted blue line). The lower panel
is a log plot of both BLP and BCM non-Markovianity measures as a
function of γ .

which both measures vanish. More precisely, for γ ! 2 both
the measures are identically zero since the time derivatives of
both the trace distance and the quantum capacity are negative
definite, meaning that information permanently leaks away
from the system.

B. Colored 1/ f α noise

For the sake of conciseness we focus initially on the
behavior of trace distance, as the dynamics of the quantum
capacity is qualitatively similar. For colored noise with
spectrum 1/f α , the optimal trace distance is:

D(τ,α,Nf ) = |'(τ,α,Nf )|. (28)

This quantity cannot be evaluated analytically since the
integral in Eq. (22) is not analytically solvable. We computed
it numerically upon assuming that the range of integration
in Eq. (22) includes rates belonging to the interval [γ1,γ2] =
[10−4,104].

The optimal trace distance for a generic number of
fluctuators may be written in terms of the same quantity for a
single fluctuator as follows

D(τ,α,Nf ) = D(τ,α,1)Nf . (29)

We thus first analyze the non-Markovianity of a colored
environment generated by a single random fluctuator. For a
fixed value of α and Nf = 1 the trace distance is always
a nonmonotonic function of time, as illustrated in Fig. 2.
Therefore, contrarily to the case of RTN, the dynamics is
always non-Markovian for a single fluctuator. However, one
can still identify two regimes depending on the value of α.

For, α ! 1 the optimal trace distance is characterized by
pronounced oscillations in time between zero and a maximum
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The coherence factor 
decays monotonically in 
time for  γ > 2
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All optical quantum simulator of qubit noisy channels

Aim: Simulate a single qubit noisy channel originating from the interaction with a 
fluctuating field 

How: All-optical setup  

Implementation: Employ the polarization degrees of freedom of a single photon and 
exploit its spectral components to average over the realizations of the stochastic 
dynamics. 

What: 
Pump+BBO crystal 
Spatial light modulators: apply a computer-imposed random phase to H component for every pixel 
Lens 
Gratings 
Half/Quarter wave plates 
Polarizers 
Detectors 

With: S. Cialdi, M. Rossi, B. 
Vacchini, D. Tamascelli, S. 

Olivares, and M. Paris 
APPLIED PHYSICS LETTERS 110, 081107 (2017) 
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All optical quantum simulator of qubit noisy channels

For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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All-optical quantum simulator of  qubit noisy channels
S. Cialdi1, M. A. C. Rossi1, C. Benedetti1, B. Vacchini1,2, D. Tamascelli1, S. Olivares1 and M. G. A. Paris1 

1Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133, Milano, Italy
2INFN, Sezione di Milano, I-20133 Milano, Italy
WebPage: http://users.unimi.it/aqm

We suggest and demonstrate an all-optical quantum simulator for single-qubit noisy channels originating from the interaction with
a fluctuating field. The simulator employs the polarization degree of freedom of a single photon and exploits its spectral
components to average over the realizations of the stochastic dynamics. As a proof of principle, we run simulations
of dephasing channels driven either by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph)
stochastic processes. [http://dx.doi.org/10.1063/1.4977023]
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*+ is the Pauli matrix, ) the energy splitting of the qubit and 
X(t) an arbitrary real-valued continuous-time stochastic process. 

Initial state:-----|/$⟩ =
1

2�
(|0⟩ + 1⟩ -, -- 8$ = |/$⟩⟨/$|

Evolution operator and phase for each realization:

: " = ;<= ∫ ? @ A@
B
C ΦE " = ∫ ,E F GF

H

$

Evolved state:       |/ " ⟩ =
1

2�
(;<2=IJ(H)|0⟩ + 1⟩ .

Ensemble average: 8 " = :(")8$:(")
L

M(H)

In the interaction picture:    8N " =
1

2

1 ;<2=IJ H

;2=IJ H 1
(*)

diode pump laser 
@405.5nm using a BBO
crystal (1mm thick);
SMF: single-spatial-mode 
and polarization 
preserving fiber; 
MMF: multimode fiber; 
G1-G2: gratings (1714 
lines/mm); 
L1-L2: lens(f=500mm);
H1, half-wave-plate; 
SLM: spatial light 
modulator (640 pixels, 
100 Om/pixel); 
T, tomographic apparatus; 
Q:quarter-wave plate; 
P, polarizer; C, optical 
coupler; 
D1-D2: single photon 
detectors;
CC: coincidences counter. 
The acquisition time is of 
10s for each measure of 
coincidence counts. 
The inset shows the 
measured PDC spectrum. 

We describe an experimental all-optical setup that allows us to obtain the evolved
state upon the generation of n sample-paths in a single run. The quantum information
carrier is a photon. The polarization of the photon is used to encode the state of a
qubit, whereas its spectral components are exploited to implement the trajectories
of the stochastic process describing the fluctuating field.

Dynamics of P(") for RTN (a) and OU (b) with Q = 0.1. Red circles and green diamonds represent the data
obtained, respectively, with tomographic reconstruction of 8N,STU and projection onto the state |+⟩. The blue
line is the analytic solution. The shades represent intervals of 1* (darker) and 2* (lighter) around the analytic
solution, where * is the standard deviation of paths obtained with 100 realizations of the stochastic process.
Note that the noise for small t is due to the Poissonian fluctuations on the coincidence counts.

The SLM controlled by the computer is used to imprint a different phase ΦJ(") for
each pixel |VJ⟩ on the horizontal polarization component:

: " = exp −2i|!⟩⟨!|⨂^ ΦE " VJ⟩_VJ
�

J
.

Taking the marginal, one obtain the wanted 8N,STU(") =
1

2-`
∑ 1 ;<2=IJ H

;2=IJ H 1
`
Jb1 .

Due to the imperfections of the experimental apparatus, in each realization, the
state may not exactly pure but rather of the form

8N = c-8N,STU + 1 − c 8d&T

where 8d&T =
1

2
( 0⟩⟨0 + |1⟩⟨1|). The relevant quantity we want to measure is

P " = ! 8N,STU(") e =
1

2
;<2=IJ(H)

For the RTN, the realization ,J(") flips randomly between the 
values ±1 with a switching rate Q. The initial values ,J(0) are 
selected randomly with equal probability between ±1 for each 
pixel. 
For the OU process, instead, we have

,J " + g" = 1 + 2Q-g" ,J " + 2 Q� -Gh(")
where Gh(") is a Wiener increment with the mean equal zero and 
standard deviation * = g"

� and " the simulation time. For each 
realization we impose the initial condition ,J 0 = 0.

The average over the realizations of the noise is performed by (coherently) collecting the different 
spatial components |i⟩ through the lens L2 and the grating G2 into a multimode fiber. 

In order to obtain p, we
measure the RTN at Q = 0 ,
since in this case
;<2=Ij(H) = cos 2" .
We find c = 0.88 ± 0.002

Coincidence counts in the case
of RTN with Q = 0 , and the
blue line is the fit with the
function

opp = o(1 + c cos 2" )
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Dynamics of P(")-evaluated by the method of the projection onto the state |+⟩ in
the case with Q = 1 for RTN (a) and OU (b) stochastic process. The blue line is the
analytic solution and the blue shades represent intervals of 1 * (darker) and 2 *
(lighter) around the analytical solution, where * is the standard deviation of paths
obtained with 100 realizations of the stochastic process.
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All optical quantum simulator of qubit noisy channels

For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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We suggest and demonstrate an all-optical quantum simulator for single-qubit noisy channels originating from the interaction with
a fluctuating field. The simulator employs the polarization degree of freedom of a single photon and exploits its spectral
components to average over the realizations of the stochastic dynamics. As a proof of principle, we run simulations
of dephasing channels driven either by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph)
stochastic processes. [http://dx.doi.org/10.1063/1.4977023]
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*+ is the Pauli matrix, ) the energy splitting of the qubit and 
X(t) an arbitrary real-valued continuous-time stochastic process. 

Initial state:-----|/$⟩ =
1

2�
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Evolution operator and phase for each realization:
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B
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Evolved state:       |/ " ⟩ =
1

2�
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Ensemble average: 8 " = :(")8$:(")
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In the interaction picture:    8N " =
1
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diode pump laser 
@405.5nm using a BBO
crystal (1mm thick);
SMF: single-spatial-mode 
and polarization 
preserving fiber; 
MMF: multimode fiber; 
G1-G2: gratings (1714 
lines/mm); 
L1-L2: lens(f=500mm);
H1, half-wave-plate; 
SLM: spatial light 
modulator (640 pixels, 
100 Om/pixel); 
T, tomographic apparatus; 
Q:quarter-wave plate; 
P, polarizer; C, optical 
coupler; 
D1-D2: single photon 
detectors;
CC: coincidences counter. 
The acquisition time is of 
10s for each measure of 
coincidence counts. 
The inset shows the 
measured PDC spectrum. 

We describe an experimental all-optical setup that allows us to obtain the evolved
state upon the generation of n sample-paths in a single run. The quantum information
carrier is a photon. The polarization of the photon is used to encode the state of a
qubit, whereas its spectral components are exploited to implement the trajectories
of the stochastic process describing the fluctuating field.

Dynamics of P(") for RTN (a) and OU (b) with Q = 0.1. Red circles and green diamonds represent the data
obtained, respectively, with tomographic reconstruction of 8N,STU and projection onto the state |+⟩. The blue
line is the analytic solution. The shades represent intervals of 1* (darker) and 2* (lighter) around the analytic
solution, where * is the standard deviation of paths obtained with 100 realizations of the stochastic process.
Note that the noise for small t is due to the Poissonian fluctuations on the coincidence counts.

The SLM controlled by the computer is used to imprint a different phase ΦJ(") for
each pixel |VJ⟩ on the horizontal polarization component:

: " = exp −2i|!⟩⟨!|⨂^ ΦE " VJ⟩_VJ
�

J
.

Taking the marginal, one obtain the wanted 8N,STU(") =
1

2-`
∑ 1 ;<2=IJ H

;2=IJ H 1
`
Jb1 .

Due to the imperfections of the experimental apparatus, in each realization, the
state may not exactly pure but rather of the form

8N = c-8N,STU + 1 − c 8d&T

where 8d&T =
1

2
( 0⟩⟨0 + |1⟩⟨1|). The relevant quantity we want to measure is

P " = ! 8N,STU(") e =
1

2
;<2=IJ(H)

For the RTN, the realization ,J(") flips randomly between the 
values ±1 with a switching rate Q. The initial values ,J(0) are 
selected randomly with equal probability between ±1 for each 
pixel. 
For the OU process, instead, we have

,J " + g" = 1 + 2Q-g" ,J " + 2 Q� -Gh(")
where Gh(") is a Wiener increment with the mean equal zero and 
standard deviation * = g"

� and " the simulation time. For each 
realization we impose the initial condition ,J 0 = 0.

The average over the realizations of the noise is performed by (coherently) collecting the different 
spatial components |i⟩ through the lens L2 and the grating G2 into a multimode fiber. 

In order to obtain p, we
measure the RTN at Q = 0 ,
since in this case
;<2=Ij(H) = cos 2" .
We find c = 0.88 ± 0.002

Coincidence counts in the case
of RTN with Q = 0 , and the
blue line is the fit with the
function

opp = o(1 + c cos 2" )
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Projection onto the |+⟩ state + 8N,STU + =
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`

Dynamics of P(")-evaluated by the method of the projection onto the state |+⟩ in
the case with Q = 1 for RTN (a) and OU (b) stochastic process. The blue line is the
analytic solution and the blue shades represent intervals of 1 * (darker) and 2 *
(lighter) around the analytical solution, where * is the standard deviation of paths
obtained with 100 realizations of the stochastic process.

ρS E = |H⟩⟨H | ⊗ ∫ dω | f(ω) |2 |ω⟩⟨ω |
Polarization:qubit Spectral degrees of freedom: 

environment

Each spectral component % is 
characterized by a Gaussian 
spatial profile (60 µm FWHM)  
c e n t e r e d i n t h e s p a t i a l 
coordinate x. We have %=&x, 
where &=1.82 nm/mm. 
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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We suggest and demonstrate an all-optical quantum simulator for single-qubit noisy channels originating from the interaction with
a fluctuating field. The simulator employs the polarization degree of freedom of a single photon and exploits its spectral
components to average over the realizations of the stochastic dynamics. As a proof of principle, we run simulations
of dephasing channels driven either by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph)
stochastic processes. [http://dx.doi.org/10.1063/1.4977023]
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*+ is the Pauli matrix, ) the energy splitting of the qubit and 
X(t) an arbitrary real-valued continuous-time stochastic process. 

Initial state:-----|/$⟩ =
1

2�
(|0⟩ + 1⟩ -, -- 8$ = |/$⟩⟨/$|

Evolution operator and phase for each realization:

: " = ;<= ∫ ? @ A@
B
C ΦE " = ∫ ,E F GF
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$

Evolved state:       |/ " ⟩ =
1
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Ensemble average: 8 " = :(")8$:(")
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M(H)
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1

2

1 ;<2=IJ H

;2=IJ H 1
(*)

diode pump laser 
@405.5nm using a BBO
crystal (1mm thick);
SMF: single-spatial-mode 
and polarization 
preserving fiber; 
MMF: multimode fiber; 
G1-G2: gratings (1714 
lines/mm); 
L1-L2: lens(f=500mm);
H1, half-wave-plate; 
SLM: spatial light 
modulator (640 pixels, 
100 Om/pixel); 
T, tomographic apparatus; 
Q:quarter-wave plate; 
P, polarizer; C, optical 
coupler; 
D1-D2: single photon 
detectors;
CC: coincidences counter. 
The acquisition time is of 
10s for each measure of 
coincidence counts. 
The inset shows the 
measured PDC spectrum. 

We describe an experimental all-optical setup that allows us to obtain the evolved
state upon the generation of n sample-paths in a single run. The quantum information
carrier is a photon. The polarization of the photon is used to encode the state of a
qubit, whereas its spectral components are exploited to implement the trajectories
of the stochastic process describing the fluctuating field.

Dynamics of P(") for RTN (a) and OU (b) with Q = 0.1. Red circles and green diamonds represent the data
obtained, respectively, with tomographic reconstruction of 8N,STU and projection onto the state |+⟩. The blue
line is the analytic solution. The shades represent intervals of 1* (darker) and 2* (lighter) around the analytic
solution, where * is the standard deviation of paths obtained with 100 realizations of the stochastic process.
Note that the noise for small t is due to the Poissonian fluctuations on the coincidence counts.

The SLM controlled by the computer is used to imprint a different phase ΦJ(") for
each pixel |VJ⟩ on the horizontal polarization component:

: " = exp −2i|!⟩⟨!|⨂^ ΦE " VJ⟩_VJ
�

J
.

Taking the marginal, one obtain the wanted 8N,STU(") =
1

2-`
∑ 1 ;<2=IJ H

;2=IJ H 1
`
Jb1 .

Due to the imperfections of the experimental apparatus, in each realization, the
state may not exactly pure but rather of the form

8N = c-8N,STU + 1 − c 8d&T

where 8d&T =
1

2
( 0⟩⟨0 + |1⟩⟨1|). The relevant quantity we want to measure is

P " = ! 8N,STU(") e =
1

2
;<2=IJ(H)

For the RTN, the realization ,J(") flips randomly between the 
values ±1 with a switching rate Q. The initial values ,J(0) are 
selected randomly with equal probability between ±1 for each 
pixel. 
For the OU process, instead, we have

,J " + g" = 1 + 2Q-g" ,J " + 2 Q� -Gh(")
where Gh(") is a Wiener increment with the mean equal zero and 
standard deviation * = g"

� and " the simulation time. For each 
realization we impose the initial condition ,J 0 = 0.

The average over the realizations of the noise is performed by (coherently) collecting the different 
spatial components |i⟩ through the lens L2 and the grating G2 into a multimode fiber. 

In order to obtain p, we
measure the RTN at Q = 0 ,
since in this case
;<2=Ij(H) = cos 2" .
We find c = 0.88 ± 0.002

Coincidence counts in the case
of RTN with Q = 0 , and the
blue line is the fit with the
function

opp = o(1 + c cos 2" )
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Dynamics of P(")-evaluated by the method of the projection onto the state |+⟩ in
the case with Q = 1 for RTN (a) and OU (b) stochastic process. The blue line is the
analytic solution and the blue shades represent intervals of 1 * (darker) and 2 *
(lighter) around the analytical solution, where * is the standard deviation of paths
obtained with 100 realizations of the stochastic process.
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).
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We suggest and demonstrate an all-optical quantum simulator for single-qubit noisy channels originating from the interaction with
a fluctuating field. The simulator employs the polarization degree of freedom of a single photon and exploits its spectral
components to average over the realizations of the stochastic dynamics. As a proof of principle, we run simulations
of dephasing channels driven either by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph)
stochastic processes. [http://dx.doi.org/10.1063/1.4977023]
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*+ is the Pauli matrix, ) the energy splitting of the qubit and 
X(t) an arbitrary real-valued continuous-time stochastic process. 
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In the interaction picture:    8N " =
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diode pump laser 
@405.5nm using a BBO
crystal (1mm thick);
SMF: single-spatial-mode 
and polarization 
preserving fiber; 
MMF: multimode fiber; 
G1-G2: gratings (1714 
lines/mm); 
L1-L2: lens(f=500mm);
H1, half-wave-plate; 
SLM: spatial light 
modulator (640 pixels, 
100 Om/pixel); 
T, tomographic apparatus; 
Q:quarter-wave plate; 
P, polarizer; C, optical 
coupler; 
D1-D2: single photon 
detectors;
CC: coincidences counter. 
The acquisition time is of 
10s for each measure of 
coincidence counts. 
The inset shows the 
measured PDC spectrum. 

We describe an experimental all-optical setup that allows us to obtain the evolved
state upon the generation of n sample-paths in a single run. The quantum information
carrier is a photon. The polarization of the photon is used to encode the state of a
qubit, whereas its spectral components are exploited to implement the trajectories
of the stochastic process describing the fluctuating field.

Dynamics of P(") for RTN (a) and OU (b) with Q = 0.1. Red circles and green diamonds represent the data
obtained, respectively, with tomographic reconstruction of 8N,STU and projection onto the state |+⟩. The blue
line is the analytic solution. The shades represent intervals of 1* (darker) and 2* (lighter) around the analytic
solution, where * is the standard deviation of paths obtained with 100 realizations of the stochastic process.
Note that the noise for small t is due to the Poissonian fluctuations on the coincidence counts.

The SLM controlled by the computer is used to imprint a different phase ΦJ(") for
each pixel |VJ⟩ on the horizontal polarization component:

: " = exp −2i|!⟩⟨!|⨂^ ΦE " VJ⟩_VJ
�

J
.

Taking the marginal, one obtain the wanted 8N,STU(") =
1

2-`
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;2=IJ H 1
`
Jb1 .

Due to the imperfections of the experimental apparatus, in each realization, the
state may not exactly pure but rather of the form

8N = c-8N,STU + 1 − c 8d&T

where 8d&T =
1

2
( 0⟩⟨0 + |1⟩⟨1|). The relevant quantity we want to measure is

P " = ! 8N,STU(") e =
1

2
;<2=IJ(H)

For the RTN, the realization ,J(") flips randomly between the 
values ±1 with a switching rate Q. The initial values ,J(0) are 
selected randomly with equal probability between ±1 for each 
pixel. 
For the OU process, instead, we have

,J " + g" = 1 + 2Q-g" ,J " + 2 Q� -Gh(")
where Gh(") is a Wiener increment with the mean equal zero and 
standard deviation * = g"

� and " the simulation time. For each 
realization we impose the initial condition ,J 0 = 0.

The average over the realizations of the noise is performed by (coherently) collecting the different 
spatial components |i⟩ through the lens L2 and the grating G2 into a multimode fiber. 

In order to obtain p, we
measure the RTN at Q = 0 ,
since in this case
;<2=Ij(H) = cos 2" .
We find c = 0.88 ± 0.002

Coincidence counts in the case
of RTN with Q = 0 , and the
blue line is the fit with the
function

opp = o(1 + c cos 2" )
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The$simulations

Tomography by performing four projective measurements
vs 

Projection onto the |+⟩ state + 8N,STU + =
1

2
1 + c-Re ;<2=Ij(H)

`

Dynamics of P(")-evaluated by the method of the projection onto the state |+⟩ in
the case with Q = 1 for RTN (a) and OU (b) stochastic process. The blue line is the
analytic solution and the blue shades represent intervals of 1 * (darker) and 2 *
(lighter) around the analytical solution, where * is the standard deviation of paths
obtained with 100 realizations of the stochastic process.

The collection through the 
multimode fiber performs the 
ensemble average

|ψ(t)⟩ = 1
2 (e− 2iϕr(t) |H⟩ + |V⟩)
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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|x⟩ = |ω(x)⟩

|x⟩ = ∑
r

ηr(x) |ηr⟩

|ηr(x) |2

∑
r

|ηr⟩⟨ηr | = I

U(t) = exp[− 2i |H⟩⟨H | ⊗ ∑
r

ϕr(t) |ηr⟩⟨ηr |]
U(t) |H⟩ ⊗ |ηr⟩ = e− 2iϕr(t) |H⟩ ⊗ |ηr⟩

the spectral components are 
spatially dispersed  

Probability that the component x 
passes through the r-th pixel 

rth pixel
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ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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ρs(t) = 1
2 ∑

r
Arr ( 1 e− 2iϕr(t)

e2iϕr(t) 1 )
Arr = ∫ dx | f(x) |2 |ηr(x) |2 ≃ 1

n
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Fig. 4.2 The measured
spectrum of the PDC. We
can see that it is almost flat
in the region 802–817 nm
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⟨e2iϕ(t)⟩n =
1
n

n∑

r=1

e2iϕr (t). (4.17)

This description is ideal and it does not consider the effects of imperfection and
noise in the experimental apparatus. In order to give a more realistic representation
of the system dynamics, we take into account the fact that the initial state of the
system is not exactly pure, but a mixed state with high purity ρS,exp(t) = p ρS(t)+
(1 − p )ρmix, where the parameter p is related to the purity of the initial state, with
p = 1 corresponding to the pure state ρS= |D⟩⟨D| and p = 0 to the maximally
mixed state ρmix = 1

2 (|H⟩⟨H | + |V ⟩⟨V |). The system density matrix (4.15) can now
be rewritten as:

ρS,exp(t) =
1
2

(
1 p ⟨e− 2iϕ(t)⟩n

p ⟨e2iϕ(t)⟩n 1

)
(4.18)

where the off-diagonal elements are now multiplied by the factor p . Equation (4.18)
describes a dephasing map for a qubit. The off-diagonal elements of such evolutions,
in addition to representing the coherences of the quantum state, are connected to the
non-Makovianity of the dynamicalmap [5], which is nowadays considered a resource
for quantum technologies [21]. For this reason we are interested in reconstructing
the off-diagonal element of the density matrix and we assume that this value is a
real quantity. Specifically, we want to reconstruct the maximized trace distance in
(4.8). This can be experimentally done in two ways. The first approach consists in
reconstructing the whole density matrix through qubit state tomography [19]. This
means performing four projective measurements and to use their outputs to build a
maximum likelihood estimator for the elements of the density matrix. The second
approach exploits the fact that the off-diagonal coefficient is real to make only one
projective measurement on the system. In particular, if we project onto the state |D⟩,
we obtain:

⟨D|ρS,exp|D⟩ = 1
2

(
1+ p ℜ⟨e− 2iϕ(t)⟩n

)
(4.19)
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Fig. 4.1 Schematic diagram of our experimental setup. Pump, 405.5 nm laser diode; BBO, Beta
barium borate nonlinear crystal; SMF, single-spatial-mode and polarization preserving fiber; MMF,
multimode fiber; G1–G2, gratings; L1–L2, lens; H1, half-wave-plate; SLM, spatial light modulator;
T, tomographic apparatus; D1–D2, single photon detectors; CC, coincidences counter

in a single shot by using the programmable SLMon the different spectral components
of the samephoton.Thephoton is initialized in the state |ψ0⟩ = 1√

2
(|H⟩ + |V ⟩)by the

H1 plate. By exploiting the quantum nature of the photon, we are able to simulate in
one shot the ensemble average over n realizations of the noise. This is accomplished
by first numerically simulating on a computer the different n trajectories of the
random phases ϕ(t) appearing in (4.3 ) which are applied only on the horizontal
component of the photon |ψr (t)⟩ = 1√

2

(
e−2iϕr (t)|H⟩ + |V ⟩

)
. The dynamics |ψr (t)⟩

up to time t is obtained using the computer-controlled SLM: each spectral component
of the photon passes through a different pixel and acquire a different phase ϕ(t)
determined by the computer according to the realizations of the simulated stochastic
process. The second step consists in performing the ensemble average by recollecting
the different components with a multimode optical fiber, as schematically shown in
Fig. 4.1.

We remark here that the qubit system is described by the polarization degree of
freedom of the photon, while the spectral degrees of freedom are effectively treated
as the environment and will be traced out. Each spectral component is associated to
a spatial direction |x⟩ = |ω(x)⟩ and if we introduce the notation |ηr ⟩ to describe the
r th pixel satisfying the completeness relation, we have |x⟩ = ∑

r ηr (x)|ηr ⟩, where
ηr (x) = ⟨ηr |x⟩, that is the projection of the component x on the r th pixel. We assume
that the global system is initially in a factorized state and that the polarization is
initialized in the state |D⟩ = 1√

2
(|H⟩ + |V ⟩):

claudia.benedetti@unimi.it

C(t) = 1
n∑

r
e− 2iϕr(t)

Due to imperfections in the apparatus, the state becomes

ρexp
s (t) = p ρs(t) + (1 − p)ρmix

ρmix = 1
2 ( |H⟩⟨H | + |V⟩⟨V |)
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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Fig. 4.2 The measured
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⟨e2iϕ(t)⟩n =
1
n

n∑

r=1

e2iϕr (t). (4.17)

This description is ideal and it does not consider the effects of imperfection and
noise in the experimental apparatus. In order to give a more realistic representation
of the system dynamics, we take into account the fact that the initial state of the
system is not exactly pure, but a mixed state with high purity ρS,exp(t) = p ρS(t)+
(1 − p )ρmix, where the parameter p is related to the purity of the initial state, with
p = 1 corresponding to the pure state ρS= |D⟩⟨D| and p = 0 to the maximally
mixed state ρmix = 1

2 (|H⟩⟨H | + |V ⟩⟨V |). The system density matrix (4.15) can now
be rewritten as:

ρS,exp(t) =
1
2

(
1 p ⟨e− 2iϕ(t)⟩n

p ⟨e2iϕ(t)⟩n 1

)
(4.18)

where the off-diagonal elements are now multiplied by the factor p . Equation (4.18)
describes a dephasing map for a qubit. The off-diagonal elements of such evolutions,
in addition to representing the coherences of the quantum state, are connected to the
non-Makovianity of the dynamicalmap [5], which is nowadays considered a resource
for quantum technologies [21]. For this reason we are interested in reconstructing
the off-diagonal element of the density matrix and we assume that this value is a
real quantity. Specifically, we want to reconstruct the maximized trace distance in
(4.8). This can be experimentally done in two ways. The first approach consists in
reconstructing the whole density matrix through qubit state tomography [19]. This
means performing four projective measurements and to use their outputs to build a
maximum likelihood estimator for the elements of the density matrix. The second
approach exploits the fact that the off-diagonal coefficient is real to make only one
projective measurement on the system. In particular, if we project onto the state |D⟩,
we obtain:

⟨D|ρS,exp|D⟩ = 1
2

(
1+ p ℜ⟨e− 2iϕ(t)⟩n

)
(4.19)
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describes a dephasing map for a qubit. The off-diagonal elements of such evolutions,
in addition to representing the coherences of the quantum state, are connected to the
non-Makovianity of the dynamicalmap [5], which is nowadays considered a resource
for quantum technologies [21]. For this reason we are interested in reconstructing
the off-diagonal element of the density matrix and we assume that this value is a
real quantity. Specifically, we want to reconstruct the maximized trace distance in
(4.8). This can be experimentally done in two ways. The first approach consists in
reconstructing the whole density matrix through qubit state tomography [19]. This
means performing four projective measurements and to use their outputs to build a
maximum likelihood estimator for the elements of the density matrix. The second
approach exploits the fact that the off-diagonal coefficient is real to make only one
projective measurement on the system. In particular, if we project onto the state |D⟩,
we obtain:

⟨D|ρS,exp|D⟩ = 1
2

(
1+ p ℜ⟨e− 2iϕ(t)⟩n

)
(4.19)
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D1
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Fig. 4.1 Schematic diagram of our experimental setup. Pump, 405.5 nm laser diode; BBO, Beta
barium borate nonlinear crystal; SMF, single-spatial-mode and polarization preserving fiber; MMF,
multimode fiber; G1–G2, gratings; L1–L2, lens; H1, half-wave-plate; SLM, spatial light modulator;
T, tomographic apparatus; D1–D2, single photon detectors; CC, coincidences counter

in a single shot by using the programmable SLMon the different spectral components
of the samephoton.Thephoton is initialized in the state |ψ0⟩ = 1√

2
(|H⟩ + |V ⟩)by the

H1 plate. By exploiting the quantum nature of the photon, we are able to simulate in
one shot the ensemble average over n realizations of the noise. This is accomplished
by first numerically simulating on a computer the different n trajectories of the
random phases ϕ(t) appearing in (4.3 ) which are applied only on the horizontal
component of the photon |ψr (t)⟩ = 1√

2

(
e−2iϕr (t)|H⟩ + |V ⟩

)
. The dynamics |ψr (t)⟩

up to time t is obtained using the computer-controlled SLM: each spectral component
of the photon passes through a different pixel and acquire a different phase ϕ(t)
determined by the computer according to the realizations of the simulated stochastic
process. The second step consists in performing the ensemble average by recollecting
the different components with a multimode optical fiber, as schematically shown in
Fig. 4.1.

We remark here that the qubit system is described by the polarization degree of
freedom of the photon, while the spectral degrees of freedom are effectively treated
as the environment and will be traced out. Each spectral component is associated to
a spatial direction |x⟩ = |ω(x)⟩ and if we introduce the notation |ηr ⟩ to describe the
r th pixel satisfying the completeness relation, we have |x⟩ = ∑

r ηr (x)|ηr ⟩, where
ηr (x) = ⟨ηr |x⟩, that is the projection of the component x on the r th pixel. We assume
that the global system is initially in a factorized state and that the polarization is
initialized in the state |D⟩ = 1√

2
(|H⟩ + |V ⟩):

claudia.benedetti@unimi.it

C(t) = 1
n∑

r
e− 2iϕr(t)

The relevant quantity to be measured is

⟨H |ρexp
S (t) |V⟩ = 1

2 p⟨e− 2iϕr(t)⟩n

No need for full tomography. Just one 
projective measurements 

⟨ + |ρexp
S | + ⟩ = 1

2 (1 + p ℜ⟨e− 2iϕr(t)⟩n)
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γ = 0.1 γ = 1

obtain the parameter p , we acquire a reference measure using
the RTN with c¼ 0 (i.e., static noise). In this case, we have

he"2iUr !tð Þi ¼ cos 2!tð Þ. In Fig. 2(c), we can see the coincidence
counts vs. the simulation time !t in the case of the RTN with
c¼ 0. From the fit (blue solid line) with the function

Ncc !tð Þ ¼ N 1 þ p cos 2!tð Þ
! "

, we find p ¼ 0:8860:02 and
N ¼ 18662. Thus, in the general case, we can write as fol-

lows: he"2iUr !tð Þin ¼ Ncc !tð Þ " Nð Þ=p . In Figs. 2(a) and 2(b),
we can also see the comparison between the tomographic
method (red circles) and the method based on the projection
on the state jþ i (green diamonds) in the case of the RTN and
of the OU. We note that the two methods indeed give com-
patible results. In Fig. 3, we can see the results obtained by
the projection method on the state jþ i and with c¼ 1, for
both RTN (a) and OU process (b). Note the decrease in non-
Markovianity of the RTN dynamics compared to the case
with c ¼ 0:1. In turn, the non-Markovianity vanishes when
c & 2.13 In the case of the OU process, the dynamics remains
Markovian as expected.

In conclusion, we have suggested and demonstrated an
all-optical quantum simulator for single-qubit noisy chan-
nels. The simulated qubit is encoded in the polarization
degree of freedom of a single-photon generated by paramet-
ric downconversion, whereas several realizations of the noise

are achieved in a single shot by using a programmable spa-
tial light modulator on the different spectral components of
the photon.

As a proof of principle, we have run simulations of
dephasing channels driven either by Gaussian (Ornstein-
Uhlenbeck) or non-Gaussian (random telegraph) stochastic
processes. Upon increasing the number of pixels in the spa-
tial light modulator, one may increase the number of realiza-
tions and perform more accurate simulations of noisy
channels and complex classical environments.
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project QuProCS (Grant Agreement No. 641277) and by
UniMI through the H2020 Transition Grant.
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FIG. 3. Dynamics of the off-diagonal element of qS !tð Þ; C !tð Þ ¼ jhe"2iUr !tð Þin j,
vs !t evaluated by the method of the projection onto the state jþ i in the case
c¼ 1 for RTN (a) and OU (b) stochastic process. The blue line is the analytic
solution and the blue shades represent intervals of 1r (darker) and 2r (ligh-
ter) around the analytical solution, where r is the standard deviation of paths
obtained with 100 realizations of the stochastic process.
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not exactly pure but rather of the form qS; exp ¼ p qS

þ 1# pð Þqmix, where qmix ¼ 1
2 jHihHjþ

1
2 jVihVj is the maxi-

mally mixed state, so that the relevant quantity to be mea-
sured is

hHjqS; exp
!tð ÞjVi ¼ 1

2
p he#2iUr !tð Þin : (6)

In our setup, the average over the realizations of the noise is
performed by (coherently) collecting the different spatial
components jxi through the lens L2 and the grating G2 into
a multimode fiber. The state reconstruction is performed by
the tomographic apparatus T placed between the SLM and
the lens L2.

In the following, we show the results obtained by run-
ning simulations of two dephasing channels driven either by
Ornstein-Uhlenbeck Gaussian noise or non-Gaussian random
telegraph noise. Apart from providing a convenient descrip-
tion of many realistic environments, dephasing channels also
permit a simple assessment of the non-Markovian character
of the reduced dynamics of the system.19 This criterion relies
on the study of the behaviour in time of the distinguishability
among different initial states of the system evolved accord-
ing to the same reduced dynamics. The distinguishability
between states is quantified by their trace distance defined as
D tð Þ ¼ 1

2 kq1 tð Þ # q2 tð Þk1, that is half the trace norm of the
difference of the two statistical operators. Non-Markovianity
is associated with revivals in time of this quantity. In particu-
lar, it can be shown20 that, for a dephasing map, the highest
sensitivity to these revivals is obtained by looking at the
modulus of the coherences of the statistical operator q tð Þ of
Eq. (1), which indeed equals the trace distance among the
pair of states better witnessing non-Markovianity.

For the RTN, the realization Xr !tð Þ flips randomly
between the values 61 with a switching rate c. In our case
for each step of the realization, the simulation time !t is incre-
mented by d!t ¼ 0:001 in units of 1=c. The flip probability at
each step is given by dP ¼ 1# e#cd!t . The initial values
Xr 0ð Þ are selected randomly with equal probability between
61 for each pixel. In the case of the OU process, we have

Xr !t þ d!tð Þ ¼ 1# 2cd!tð ÞXr !tð Þ þ 2
ffiffiffi
c
p

dW !tð Þ; (7)

where dW !tð Þ is a Wiener increment with the mean equal to
zero and standard deviation r ¼

ffiffiffiffi
d!t
p

. For each realization
(i.e., for each pixel), we impose the initial condition
Xr 0ð Þ ¼ 0. Both models are analytically solvable,13,21 and it
is known that any dephasing map induced by a Gaussian sto-
chastic process is Markovian, while RTN gives a non-
Markovian map for c < 2.13 In Fig. 2(a) and Fig. 2(b), we
plot the experimental results in the case of the RTN and OU
process, respectively. In both cases, we have c ¼ 0:1 in arbi-
trary units. We note the presence of strong revivals in the
RTN case, according to the non-Markovian character of the
dynamics. In the OU case, the off-diagonal element of qS !tð Þ
decays monotonically, as expected for a Markovian dynam-
ics. For each point of the graph (!ti ¼ i & 50d!t), we send to
the pixels the phases Ur !tið Þ ¼

Ð !ti

0 Xr sð Þds, and we reconstruct
the state with the tomographic method by performing four
projective measurements.15,16,22 We use an acquisition time

of 10 s for each measure of coincidence counts. For a pure
dephasing dynamics, one has

D tð Þ ¼ jhe#2iU tð Þij ' jhe#2iUr !tð Þin j ( C !tð Þ : (8)

Notice that in order to obtain the non-Markovianity from the

revivals of the trace distance, we need the factor 1
2 p . Indeed,

while the trace distance is in principle bounded by one, here
we estimate its value from the reduced dynamics of the off-
diagonal matrix elements, whose actual value depends on the
purity of the system state. The latter is known only in aver-
age, and it is also affected by experimental uncertainty due
to the Poissonian statistics of photon counting. The quantity

C !tð Þ is shown in Fig. 2(a) and Fig. 2(b) as a function of !t for

RTN and OU noise, both with c ¼ 0:1. Notice that he#2iU !tð Þi
is real-valued because the two considered stochastic pro-
cesses have zero mean (and indeed, from the tomographic

measures, we find that the imaginary part of he#2iUr !tð Þin is
zero within the experimental uncertainty). Thus, in order to
estimate the trace distance, we can perform just one projec-

tive measure on the state jþi ¼ 1=
ffiffiffi
2
p# $

jHið þjViÞ since we

have hþjqS; exp jþi ¼ 1
2 ð1þ p Rehe#2iUr !tð Þin Þ. In order to

FIG. 2. (a) and (b) Dynamics of the off-diagonal element of qS !tð Þ; C !tð Þ
¼ jhe#2iUr !tð Þin j, for RTN (a) and OU (b) with c ¼ 0:1. Red circles and green
diamonds represent the data obtained, respectively, with tomographic recon-
struction of qS; exp

!tð Þ and projection onto the state jþi. The blue line is the
analytic solution of the model. The shades represent intervals of 1r (darker)
and 2r (lighter) around the analytic solution, where r is the standard devia-
tion of paths obtained with 100 realizations of the stochastic process. Note
that the noise for small !t is due to the Poissonian fluctuations on the coinci-
dence counts. (c) Coincidence counts Ncc !tð Þ in the case of RTN with c¼ 0,
and the blue line is the fit with the function Ncc ¼ N 1þ p cos 2!tð Þ

# $
.

081107-3 Cialdi et al. Appl. Phys. Lett. 110, 081107 (2017)



Work in progress: 2 qubits simulator

Study the transition local/global environment

|0i
<latexit sha1_base64="24gGYzVjKJpigNymyYc6204k8Jk=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R7RrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN4gpTe</latexit>

|1i
<latexit sha1_base64="oZs61ylsEv3lxm9gS4m9kP1v0s8=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R6xrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN6GJTf</latexit>

|0i
<latexit sha1_base64="24gGYzVjKJpigNymyYc6204k8Jk=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R7RrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN4gpTe</latexit>

|1i
<latexit sha1_base64="oZs61ylsEv3lxm9gS4m9kP1v0s8=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R6xrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN6GJTf</latexit>

|0i
<latexit sha1_base64="24gGYzVjKJpigNymyYc6204k8Jk=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R7RrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN4gpTe</latexit>

|1i
<latexit sha1_base64="oZs61ylsEv3lxm9gS4m9kP1v0s8=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R6xrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN6GJTf</latexit>

|0i
<latexit sha1_base64="24gGYzVjKJpigNymyYc6204k8Jk=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R7RrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN4gpTe</latexit>

|1i
<latexit sha1_base64="oZs61ylsEv3lxm9gS4m9kP1v0s8=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChjJI5IGSKFpfNuGU89m6WyNFIV9BCxUdouVjKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6YaO4ubW9s1va22/aMDYCGyJUoWn7YFFJjQ2SpLAdGYTAV9jyx1ep33pAY2Wob2kSYS+AkZZDKYAS6e7R6xrQI4X9UtmtuBn4IvFyUmY56v3SV3cQijhATUKBtR3Pjag3BUNSKJwVu7HFCMQYRthJqIYAbW+aBZ7x49gChTxCw6XimYi/N6YQWDsJ/GQyALq3814q/ud1Yhpe9KZSRzGhFukhkgqzQ1YYmTSBfCANEkGaHLnUXIABIjSSgxCJGCfVFJM+vPnvF0mzWvFOK9Wbs3LtMm+mwA7ZETthHjtnNXbN6qzBBAvYE3tmL87MeXXenPef0SUn3zlgf+B8fAN6GJTf</latexit>



Conclusions RAPID COMMUNICATIONS

ROSSI, BENEDETTI, BORRELLI, MANISCALCO, AND PARIS PHYSICAL REVIEW A 96 , 040301(R) (2017)

FIG. 1. Schematic representation of the random spatial domains
{L1,L2, . . . ,LM} for a single realization of the noise, generated
according to Eq. (3) and of average length L̄p . Tunneling ampli-
tudes within the same domain fluctuate synchronously in time and
according to the same stochastic process. Different domains evolve
independently from each other.

fluctuations on the hopping amplitudes, the time-dependent
Hamiltonian H (t) reads

H (t) = −
∑

j

[ν0 + νgj (t)](|j ⟩⟨j + 1| + |j + 1⟩⟨j |), (1)

in which ν0 is the uniform hopping amplitude between
nearest-neighbor sites, ν is the noise strength, and {gj (t)}j are
independent RTN processes that jump between ± 1 according
to the switching rate γ .

We now introduce spatial correlations in the noisy Hamil-
tonian (1) as follows. We assume that two adjacent links of
the lattice can be noise correlated with a certain probability
p. Formally, this translates to the following autocorrelation
function,

⟨gj (t)gk(0)⟩ =
{
∝ e−2γ t , if j,k correlated,
0, otherwise. (2)

For a single noise realization, these spatial correlations will
form M domains of lengths {L1,L2, . . . ,LM}, corresponding
to M independent noise evolutions {g1(1),g2(t), . . . ,gM (t)},
respectively, as shown in Fig. 1. The distribution of the
domains is random and different for each noise realization:
The probability PM of having M domains in a particular noise
realization is described by a binomial distribution

PM =
(

N − 1
M − 1

)
(1 − p)M−1pN−M, (3)

which corresponds to the following average domain length
L̄ (as a function of p), L̄p = pN −1

p−1 . By continuity, we define
L̄1 = limp→1 L̄p = N . In this case, there is a single noise
domain that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been
considered a free parameter of the strength of the noise.
Here, we are interested in the effect of noise space and time
correlations per se, rather than in the noise strength. Thus,
we set this parameter to ν = ν0, meaning that, from now
on, we are only going to consider percolation noise: The
local hopping amplitudes can switch between 0 and 2ν0 [29],
resulting in links that are created and destroyed randomly in
time, according to the statistics of the RTN process. Quite
obviously, this analysis can be carried out for any value of ν.

For each noise realization, the system time evolution is ruled
by the operator U (t) = T e−i

∫ τ

0 dτH (τ ). The open dynamics of

the walker is unraveled by computing the ensemble average of
the unitary dynamics over all possible realizations,

ρ̄(t) = %t ρ0 = ⟨U (t)ρ0U
†(t)⟩{g(t)}, (4)

where ⟨·⟩{g(t)} indicates the average taken over an (in
principle) infinite number of implementations of the sets
{g1(1),g2(t), . . . ,gM (t)} and ρ0 is the (fixed) initial state
of the walker. Needless to say, whenever the solution to
Eq. (4) is analytically out of reach, one can only numerically
approximate this ensemble average with a finite number of
noise realizations R. In this case we talk about undersampling
[30] and the true dynamics (4) can be recovered only in the
limit R → ∞. For all the quantities computed in this work,
the size of the noise sample is R = 10 000, which guarantees
statistical robustness of our results. The code for simulating
the dynamics is reported and explained in the Supplemental
Material [31].

Non-Markovianity of the dynamical map. As previously
mentioned, the noise-averaged dynamics of the walker can no
longer be described by the Schrödinger equation and one has
to resort to the machinery of open quantum systems. In this
respect, a relevant question is whether the open dynamics of
the walker is memoryless, i.e., Markovian, or non-Markovian.
In Ref. [10], memory effects in the dynamics of the walker in
the presence of spatially uncorrelated RTN were investigated
for some selected initial states, leading to the conclusion
that decreasing the switching rate γ enhances the memory
effects. That scenario corresponds to noise domains of average
length L̄ = 1 and therefore it is a special case study of the
more general model introduced in this Rapid Communication.
Intuitively, since the non-Markovian dynamics is intrinsically
connected to the time dependency of the environment corre-
lation functions, we can expect that whenever the spatially
uncorrelated noise is Markovian, it will also be Markovian
in the spatially correlated noise case. This is simply because,
as mentioned previously, the spatial correlations in the noise
do not interfere with the RTN itself but they only assist
it. However, if memory effects are present already in the
spatially uncorrelated scenario, it is not obvious a priori
how long-range correlated noise with L̄ > 1 will affect the
non-Markovianity of the quantum map. Similarly to Ref. [10],
we use the trace-distance-based Breuer-Laine-Piilo (BLP) [32]
approach to characterize memory effects in the open dynamics
of the walker. The trace distance between two quantum states
ρ1 and ρ2 is defined as D(t) = D(ρ1(t),ρ2(t)) = 1

2 ||ρ1(t) −
ρ2(t)||, where ||A|| = Tr[

√
A†A], ρ1(2)(t) = %tρ1(2), and %t

denotes a dynamical quantum map. For a Markovian map,
D(t) monotonically decreases in time for any initial pair of
states. Therefore, a violation of such a constraint signals the
presence of memory effects or, equivalently, a non-Markovian
dynamics. A quantifier of memory effects can be defined
by integrating the time derivative of D(t) over the time
intervals where the trace distance has revivals, i.e., Ḋ(t) =
dD(t)/dt > 0, and then maximizing over all the possible pairs
of initial states. Computationally, this translates to evaluating
the following quantity,

N = maxρ1,ρ2

∫

Ḋ(t)>0
dt

d

dt
D(%tρ1,%tρ2), (5)

040301-2

RAPID COMMUNICATIONS

ROSSI, BENEDETTI, BORRELLI, MANISCALCO, AND PARIS PHYSICAL REVIEW A 96, 040301(R) (2017)

FIG. 3. Long-time value of the IPR as a function of average
domain length L̄ and switching rate γ for percolation noise for the
initial states |N/2⟩ with N = 100 for ν0τ = 20.

can limit this effect and allow the walker to propagate through
the lattice while still retaining memory effects in its dynamics.
Overall, and perhaps quite unexpectedly, for a small fixed γ , a
spatially correlated RTN tends to suppress localization while
still enhancing memory effects.

To investigate transport properties in this setting we turn our
attention to an initial Gaussian wave packet, equipped with an
average momentum k0 and spatial spread $,

|G⟩ =
N∑

j=1

[
1√

2π$2
e−(j− N

2 )2

2$2

]

e−ik0j |j ⟩ . (8)

We study the behavior of both the IPR and the average
momentum operator p̂ = −i∇, computed using the Born rule

⟨p̂(t)⟩ = Tr[ρ̄(t)p̂], which represents the average quantum
velocity at which the wave packet travels across the lattice.
Figure 4 shows the time evolution of these two quantities for
three different values of the switching rate γ and different
average domain lengths L̄. In this case, the effects of the
spatially correlated RTN become even clearer. The wave-
packet momentum ⟨p⟩ (upper panel) decreases in time, until
it eventually vanishes asymptotically, and this decay is faster
for smaller values of γ , in agreement with Fig. 3. However,
while space-uncorrelated noise leads to a faster reduction of
⟨p̂⟩, spatial correlations in the RTN allow the wave packet
to preserve momentum and travel longer across the lattice
before stopping. In the limiting case of L̄ = N (i.e., p = 1),
the average momentum ⟨p̂⟩ is preserved, as in the noiseless
case.

Similarly to the case studied above, the IPR (lower panel)
generally decreases in time. However, there seems to exist a
more complicated interplay between γ and L̄. For small γ
the IPR decays faster for larger values of L̄, indicating that
spatial correlations break the noise-induced localization, in
agreement with our previous results. For larger switching rates
γ , instead, the situation is quite the opposite: Strong spatial
correlations prevent the particle distribution from spreading
further, thus preserving the initial IPR, with the limiting
case of p = 1, i.e., L̄ = N that gives the slowest possible
decay.

Since the average momentum ⟨p⟩ decreases very slowly
in time in this regime, the original wave packet can travel
across the lattice, maintaining its original shape. This feature
is the key ingredient for quantum transport and state transfer,
where one wants a quantum state to evolve across a complex
network, without losing its quantum properties, so that its
quantum information content can be recovered from another
point in the network.

Therefore, we have again evidence of how the introduction
of space correlations in the noise helps preserve dynamical

FIG. 4. Expectation value of the momentum operator ⟨p⟩ (top panels) and IPR I (bottom panels) as a function of time, for different average
domain lengths L̄, for γ = 0.1 (left), 1 (center), and 10 (right), with lattice size N = 100. The black dashed line indicates the noiseless case.
The initial state is (8), with k0 = π/2, $ = 10.
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j!i ¼ ðjHi! jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð!þ ðtÞ; !& ðtÞÞ ¼ jGðtÞj, where !! ¼ j!ih!j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð!þ ðtÞ; !& ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as "ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for # < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþ i, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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not exactly pure but rather of the form qS; exp ¼ p qS

þ 1# pð Þqmix, where qmix ¼ 1
2 jHihHjþ

1
2 jVihVj is the maxi-

mally mixed state, so that the relevant quantity to be mea-
sured is

hHjqS; exp
!tð ÞjVi ¼ 1

2
p he#2iUr !tð Þin : (6)

In our setup, the average over the realizations of the noise is
performed by (coherently) collecting the different spatial
components jxi through the lens L2 and the grating G2 into
a multimode fiber. The state reconstruction is performed by
the tomographic apparatus T placed between the SLM and
the lens L2.

In the following, we show the results obtained by run-
ning simulations of two dephasing channels driven either by
Ornstein-Uhlenbeck Gaussian noise or non-Gaussian random
telegraph noise. Apart from providing a convenient descrip-
tion of many realistic environments, dephasing channels also
permit a simple assessment of the non-Markovian character
of the reduced dynamics of the system.19 This criterion relies
on the study of the behaviour in time of the distinguishability
among different initial states of the system evolved accord-
ing to the same reduced dynamics. The distinguishability
between states is quantified by their trace distance defined as
D tð Þ ¼ 1

2 kq1 tð Þ # q2 tð Þk1, that is half the trace norm of the
difference of the two statistical operators. Non-Markovianity
is associated with revivals in time of this quantity. In particu-
lar, it can be shown20 that, for a dephasing map, the highest
sensitivity to these revivals is obtained by looking at the
modulus of the coherences of the statistical operator q tð Þ of
Eq. (1), which indeed equals the trace distance among the
pair of states better witnessing non-Markovianity.

For the RTN, the realization Xr !tð Þ flips randomly
between the values 61 with a switching rate c. In our case
for each step of the realization, the simulation time !t is incre-
mented by d!t ¼ 0:001 in units of 1=c. The flip probability at
each step is given by dP ¼ 1# e#cd!t . The initial values
Xr 0ð Þ are selected randomly with equal probability between
61 for each pixel. In the case of the OU process, we have

Xr !t þ d!tð Þ ¼ 1# 2cd!tð ÞXr !tð Þ þ 2
ffiffiffi
c
p

dW !tð Þ; (7)

where dW !tð Þ is a Wiener increment with the mean equal to
zero and standard deviation r ¼

ffiffiffiffi
d!t
p

. For each realization
(i.e., for each pixel), we impose the initial condition
Xr 0ð Þ ¼ 0. Both models are analytically solvable,13,21 and it
is known that any dephasing map induced by a Gaussian sto-
chastic process is Markovian, while RTN gives a non-
Markovian map for c < 2.13 In Fig. 2(a) and Fig. 2(b), we
plot the experimental results in the case of the RTN and OU
process, respectively. In both cases, we have c ¼ 0:1 in arbi-
trary units. We note the presence of strong revivals in the
RTN case, according to the non-Markovian character of the
dynamics. In the OU case, the off-diagonal element of qS !tð Þ
decays monotonically, as expected for a Markovian dynam-
ics. For each point of the graph (!ti ¼ i & 50d!t), we send to
the pixels the phases Ur !tið Þ ¼

Ð !ti

0 Xr sð Þds, and we reconstruct
the state with the tomographic method by performing four
projective measurements.15,16,22 We use an acquisition time

of 10 s for each measure of coincidence counts. For a pure
dephasing dynamics, one has

D tð Þ ¼ jhe#2iU tð Þij ' jhe#2iUr !tð Þin j ( C !tð Þ : (8)

Notice that in order to obtain the non-Markovianity from the

revivals of the trace distance, we need the factor 1
2 p . Indeed,

while the trace distance is in principle bounded by one, here
we estimate its value from the reduced dynamics of the off-
diagonal matrix elements, whose actual value depends on the
purity of the system state. The latter is known only in aver-
age, and it is also affected by experimental uncertainty due
to the Poissonian statistics of photon counting. The quantity

C !tð Þ is shown in Fig. 2(a) and Fig. 2(b) as a function of !t for

RTN and OU noise, both with c ¼ 0:1. Notice that he#2iU !tð Þi
is real-valued because the two considered stochastic pro-
cesses have zero mean (and indeed, from the tomographic

measures, we find that the imaginary part of he#2iUr !tð Þin is
zero within the experimental uncertainty). Thus, in order to
estimate the trace distance, we can perform just one projec-

tive measure on the state jþi ¼ 1=
ffiffiffi
2
p# $

jHið þjViÞ since we

have hþjqS; exp jþi ¼ 1
2 ð1þ p Rehe#2iUr !tð Þin Þ. In order to

FIG. 2. (a) and (b) Dynamics of the off-diagonal element of qS !tð Þ; C !tð Þ
¼ jhe#2iUr !tð Þin j, for RTN (a) and OU (b) with c ¼ 0:1. Red circles and green
diamonds represent the data obtained, respectively, with tomographic recon-
struction of qS; exp

!tð Þ and projection onto the state jþi. The blue line is the
analytic solution of the model. The shades represent intervals of 1r (darker)
and 2r (lighter) around the analytic solution, where r is the standard devia-
tion of paths obtained with 100 realizations of the stochastic process. Note
that the noise for small !t is due to the Poissonian fluctuations on the coinci-
dence counts. (c) Coincidence counts Ncc !tð Þ in the case of RTN with c¼ 0,
and the blue line is the fit with the function Ncc ¼ N 1þ p cos 2!tð Þ

# $
.
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What’s next?

Unrelated question: anybody expert in 
S p a t i a l s e a r c h a l g o r i t h m s b y 
continuous-time quantum walks?

Thank you!


