Partial Thermalizations Allow for Optimal Thermodynamic Processes

Elisa Bäumer
Quantum Information Theory Group
ETH Zürich
Joint work with...

Martí Perarnau
(MPQ Garching)

Philipp Kammerlander
(ETH Zürich)

Henrik Wilming
(ETH Zürich)

Renato Renner
(ETH Zürich)
Szilard Engine
Szilard Engine
Szilard Engine
Szilard Engine

Quantum Thermodynamics Conference, KITP, UC Santa Barbara
Szilard Engine
Szilard Engine

\[\langle W \rangle = k_B T \log 2 \]
Szilard Engine

\[\langle W \rangle = k_B T \log 2 \]
Szilard Engine

\[\langle W \rangle = k_B T \log 2 \]

contradicts second law of thermodynamics?!
Resolution of the paradox
Resolution of the paradox

- **Landauer’s Principle**: Erasure of one bit of information costs at least work

\[W = k_B T \log 2 \]
Resolution of the paradox

- **Landauer’s Principle:** Erasure of one bit of information costs at least work $W = k_B T \log 2$

- „Erasure“: Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0“ → after erasure, we have full information about the bit
Resolution of the paradox

• **Landauer’s Principle:** Erasure of one bit of information costs at least work $W = k_B T \log 2$

• „Erasure“: Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0“ → after erasure, we have full information about the bit

• Which unknown bit? Matter of viewpoint!
Resolution of the paradox

• **Landauer’s Principle:** Erasure of one bit of information costs at least work \(W = k_B T \log 2 \)

• „Erasure“: Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0“ → after erasure, we have full information about the bit

• Which unknown bit? Matter of viewpoint!
 * Demon’s view: could describe box, but not changes to itself
Resolution of the paradox

- **Landauer’s Principle**: Erasure of one bit of information costs at least work $W = k_B T \log 2$

- „Erasure“: Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0“ ➔ after erasure, we have full information about the bit

- Which unknown bit? Matter of viewpoint!
 - ★ Demon’s view: could describe box, but not changes to itself
 ➔ since the measurement would act on box and demon together, it could not be described in this view
Resolution of the paradox

- **Landauer’s Principle**: Erasure of one bit of information costs at least work \(W = k_B T \log 2 \)

- „Erasure“: Reset of information, i.e., an unknown bit is reset to a known value, e.g., „0“ \(\Rightarrow \) after erasure, we have full information about the bit

- Which unknown bit? Matter of viewpoint!

 * Demon’s view: could describe box, but not changes to itself

 \(\Rightarrow \) since the measurement would act on box and demon together, it could not be described in this view

 * Box and demon viewed together from the outside: whole cycle can be described \(\Rightarrow \) here the demon’s bit is unknown
Szilard Engine
(view from outside)
Szilard Engine
(view from outside)

\[\rho_{BD}^{(i)} = \frac{1}{2} (|0\rangle\langle 0|_B + |1\rangle\langle 1|_B) \otimes |i\rangle\langle i|_D \]
Szilard Engine
(view from outside)

\[\rho_{BD} = \frac{1}{2} (|00\rangle \langle 00|_B + |11\rangle \langle 11|_B) \]

\[\rho_{BD}^{(i)} = \frac{1}{2} (|0\rangle \langle 0|_B + |1\rangle \langle 1|_B) \otimes |i\rangle \langle i|_D \]
Szilard Engine
(view from outside)

\[
\rho_{BD} = \frac{1}{2} (|00\rangle\langle 00|_{BD} + |11\rangle\langle 11|_{BD})
\]

\[
\rho_{BD}^{(i)} = \frac{1}{2} (|0\rangle\langle 0|_{B} + |1\rangle\langle 1|_{B}) \otimes |i\rangle\langle i|_{D}
\]

\[
\rho'_{BD} = \frac{1}{2} (|0\rangle\langle 0|_{B} + |1\rangle\langle 1|_{B}) \otimes \frac{1}{2} (|0\rangle\langle 0|_{D} + |1\rangle\langle 1|_{D})
\]

work extraction
\[
\langle W \rangle = k_B T \log 2
\]

measurement
Szilard Engine
(view from outside)

\[\rho_{BD} = \frac{1}{2} \left(|00\rangle \langle 00|_B + |11\rangle \langle 11|_B \right) \]

\[\rho_{BD} = \frac{1}{2} \left(|0\rangle \langle 0|_B + |1\rangle \langle 1|_B \right) \otimes |i\rangle \langle i|_D \]

work extraction \[\langle W \rangle = k_B T \log 2 \]

measurement
reset
\[\langle W \rangle = -k_B T \log 2 \]
Motivation
Motivation

• Using one bit of information we can extract work $\langle W \rangle = k_B T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.
Motivation

• Using one bit of information we can extract work $\langle W \rangle = k_B T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.

• What if thermalization is not complete?

$$\rho \longrightarrow \alpha \rho + (1 - \alpha) \tau$$
Motivation

• Using one bit of information we can extract work \(\langle W \rangle = k_B T \log 2 \) from a heat bath. This requires that at each point in time the system is in thermal equilibrium.

• What if thermalization is not complete?

\[\rho \rightarrow \alpha \rho + (1 - \alpha) \tau \]

* \(\alpha \) may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries.
Motivation

• Using one bit of information we can extract work $\langle W \rangle = k_B T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.

• What if thermalization is not complete?

\[
\rho \longrightarrow \alpha \rho + (1 - \alpha) \tau
\]

* α may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries

• **Goal:** Test the robustness of a work extraction protocol for an error model as general as possible
Motivation

• Using one bit of information we can extract work $\langle W \rangle = k_B T \log 2$ from a heat bath. This requires that at each point in time the system is in thermal equilibrium.

• What if thermalization is not complete?

$$\rho \longrightarrow \alpha \rho + (1 - \alpha)\tau$$

* α may arise due to finite-time interactions with the bath, or in collisional models due to imperfect unitaries

• **Goal:** Test the robustness of a work extraction protocol for an error model as general as possible

• **Main result:** Optimal isothermal processes are possible for any $\alpha < 1$
Framework 1:
Collisional Model
Framework 1: Collisional Model

• 3 systems:
Framework 1: Collisional Model

- 3 systems:
 - System S of one information qubit
Framework 1: Collisional Model

- 3 systems:
 - System S of one information qubit
 - Thermal bath B at fixed temperature T: N thermal states (free resource) with different Hamiltonians $H_B^{(k)}$, $k = 0, ..., N$
Framework 1: Collisional Model

- 3 systems:
 - System S of one information qubit
 - Thermal bath B at fixed temperature T: N thermal states (free resource) with different Hamiltonians $H_B^{(k)}$, $k = 0, ..., N$
 - Work storage system W
Framework 1: Collisional Model

- 3 systems:
 - System S of one information qubit
 - Thermal bath B at fixed temperature T thermal states (free resource) with different Hamiltonians $H_B^{(k)}$, $k = 0, \ldots, N$
 - Work storage system W

→ Using the information of the system qubit, we apply N thermal operations to convert heat from the coupled thermal bath B into work stored in system W:

In the k^{th} interaction step the energy-conserving unitary $U_{SBW}^{(k)}$ acts on S, W and the k^{th} bath qubit
Error Model
Error Model

- System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation.
Error Model

• System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation

⇒ arbitrary thermal operations restricted on the relevant degenerate subspace
Error Model

• System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation
 - arbitrary thermal operations restricted on the relevant degenerate subspace

• All errors of this form yield the same noise model, describing the reduced state of the system as

\[
\rho^{(k)}_S = \alpha_k \rho^{(k-1)}_S + (1 - \alpha_k) \tau^{(k)}_B
\]
Error Model

• System still interacts successively with each bath qubit and always on all three systems, S, B and W, but in an uncontrolled way, i.e., for a random time and without isolation
 ➔ arbitrary thermal operations restricted on the relevant degenerate subspace
• All errors of this form yield the same noise model, describing the reduced state of the system as

\[\rho_S^{(k)} = \alpha_k \rho_S^{(k-1)} + (1 - \alpha_k) \tau_B^{(k)} \]

➤ Partial thermalization, where the degree of thermalization is quantified by \(\alpha\):
 - For \(\alpha = 0\) : standard case of full thermalization
 - For \(\alpha = 1\) : no interaction between S, B, W
Results
Results

\[\langle W \rangle = \Delta F - \gamma - \varepsilon \]

* \(\gamma = \mathcal{O} \left(\frac{1}{N} \right) \) : Error due to finite number of steps

* \(\varepsilon = \mathcal{O} \left(\frac{1}{N} \frac{\alpha}{1 - \alpha} \right) \) : Error due to noise quantified by \(\alpha \)
Results

\[\langle W \rangle = \Delta F - \gamma - \varepsilon \]

\[\gamma = \mathcal{O} \left(\frac{1}{N} \right) \] : Error due to finite number of steps

\[\varepsilon = \mathcal{O} \left(\frac{1}{N} \frac{\alpha}{1 - \alpha} \right) \] : Error due to noise quantified by \(\alpha \)

\[\Rightarrow \text{Optimal isothermal processes can be constructed for any } \alpha < 1 \text{ with sufficiently many steps} \]
Results

\[\langle W \rangle = \Delta F - \gamma - \varepsilon \]

* \(\gamma = \mathcal{O}\left(\frac{1}{N}\right) \): Error due to finite number of steps

* \(\varepsilon = \mathcal{O}\left(\frac{1}{N} \frac{\alpha}{1 - \alpha}\right) \): Error due to noise quantified by \(\alpha \)

博弈 Optimal isothermal processes can be constructed for any \(\alpha < 1 \) with sufficiently many steps

• We can trade the number of steps \(N \) for precision
Results

\[\langle W \rangle = \Delta F - \gamma - \varepsilon \]

* \(\gamma = \mathcal{O} \left(\frac{1}{N} \right) \): Error due to finite number of steps

* \(\varepsilon = \mathcal{O} \left(\frac{1}{N} \frac{\alpha}{1 - \alpha} \right) \): Error due to noise quantified by \(\alpha \)

\[h_W = F \]

Optimal isothermal processes can be constructed for any \(\alpha < 1 \) with sufficiently many steps

- We can trade the number of steps \(N \) for precision
- Proof can be extended to qudits
Results

- Determined an almost tight upper bound for a specific example

\[
\text{error as a function of } N \text{ for } \alpha = 1/2 \text{ and of } \alpha \text{ for } N = 1000, \text{ respectively, with } k_B T \log 2 = 1, p_k = k/2N.
\]
Results

• Characterized the work fluctuations which decrease for large N

Histograms showing the fluctuations for $N = 100$, $N = 200$, $N = 500$ and $N = 1000$
Framework 2: Quenches & equilibrations
Framework 2: Quenches & equilibrations

• Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T
Framework 2: Quenches & equilibrations

- Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T

- As experimentally the interaction time is finite, the system will only get partially thermalized and its state is again of the form

$$\rho^{(k)} = \alpha_k \rho^{(k-1)} + (1 - \alpha_k) \tau^{(k)}$$

where α depends on the interaction time and strength
Framework 2: Quenches & equilibrations

• Work is extracted during N quenches of the system Hamiltonian, each followed by some interaction with a thermal bath at temperature T

• As experimentally the interaction time is finite, the system will only get partially thermalized and its state is again of the form

$$\rho^{(k)} = \alpha_k \rho^{(k-1)} + (1 - \alpha_k) \tau^{(k)}$$

where α depends on the interaction time and strength

→ Again, the extracted work is given by

$$\langle W \rangle = \Delta F - \mathcal{O} \left(\frac{1}{N} \right)$$
Extension: Qudits
Extension: Qudits

- Evolution described by N Gibbs preserving maps G_k:
 \[G_k(\tau^{(k)}) = \tau^{(k)} \]
 \[\| G_k(\rho) - \tau^{(k)} \|_1 \leq \alpha_k \| \rho - \tau^{(k)} \|_1 \quad (\alpha_k < 1) \]
 with
 \[\| \tau^{(k)} - \tau^{(k-1)} \|_1 = \mathcal{O} \left(\frac{1}{N} \right) \]
Extension: Qudits

- Evolution described by N Gibbs preserving maps G_k:

$$G_k(\tau^{(k)}) = \tau^{(k)}$$

$$\| G_k(\rho) - \tau^{(k)} \|_1 \leq \alpha_k \| \rho - \tau^{(k)} \|_1 \quad (\alpha_k < 1)$$

with

$$\| \tau^{(k)} - \tau^{(k-1)} \|_1 = \mathcal{O}\left(\frac{1}{N}\right)$$

- Again, the extracted work is given by

$$\langle W \rangle = \Delta F - \mathcal{O}\left(\frac{1}{N}\right)$$
Summary
Summary

• A large class of errors act essentially as a partial thermalization
Summary

• A large class of errors act essentially as a partial thermalization

• Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes
Summary

• A large class of errors act essentially as a partial thermalization

• Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes

• Big freedom in distribution of bath qubits / Hamiltonians
Summary

• A large class of errors act essentially as a partial thermalization

• Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes

• Big freedom in distribution of bath qubits / Hamiltonians

→ Simplifies experimental implementation of optimal processes e.g. for small engines
Summary

• A large class of errors act essentially as a partial thermalization

• Transformations that bring us closer to the thermal state can still lead to optimal isothermal processes

• Big freedom in distribution of bath qubits / Hamiltonians

 ➔ Simplifies experimental implementation of optimal processes e.g. for small engines

 ➔ Optimal processes are much more common than previously expected in small quantum systems