Autonomous thermal rotor in the quantum regime

Karen Hovhannisyan

University of Aarhus, Aarhus, Denmark

AARHUS UNIVERSITET

arXiv:1806.08779

Quantum Thermodynamics, KITP, 28 Jun 2018

In collaboration with

Alberto Imparato

VILLUM FONDEN

Ministry of Higher Education and Science

Plan of the talk

> Motivation
$>$ Defining particle current
$>$ Symmetries and physical properties

Introduction: Thermal \rightarrow Mechanical

Introduction: Thermal \rightarrow Mechanical

Smoluchowski-Feynman ratchet

Figure taken from Parrondo \& Español, Am. J. Phys. 64, 1125 (1996) Reimann, Phys. Rep. 361, 57 (2002)

The model

symmetric

The model

The model

$$
U\left(j_{a}, j_{b}\right)=\frac{K}{2} \cos \left[\frac{2 \pi}{3}\left(j_{a}-j_{b}\right)+\phi\right]
$$

Potts model. Imitates dipole-dipole interaction

The quantum model

$$
H=H_{c l}+\tau X \otimes I_{b}+\tau I_{a} \otimes X
$$

$$
\left\langle j_{a} j_{b}\right| H_{c l}\left|j_{a} j_{b}\right\rangle=U\left(j_{a}, j_{b}\right) \quad X=\sum_{j=1}^{3}|k\rangle\langle k+1|+|k+1\rangle\langle k|
$$

The quantum model

$$
\begin{gathered}
H=H_{c l}+\tau X \otimes I_{b}+\tau I_{a} \otimes X \\
H_{t o t}=H+A_{a} \otimes I_{b} \otimes B_{a}+I_{a} \otimes A_{b} \otimes B_{b}
\end{gathered}
$$

The quantum model

$$
\frac{d \rho_{a b}}{d t}=-i\left[H, \rho_{a b}\right]+\sum_{\substack{\omega \\ \alpha a, b}} \gamma_{\alpha}(\omega) \Xi\left[\Lambda_{\alpha}(\omega)\right]\left[\rho_{a b}\right]
$$

$$
\Xi[\Lambda]\left[\rho_{a b}\right]=\Lambda \rho_{a b} \Lambda^{+}-\frac{1}{2}\left\{\Lambda^{+} \Lambda, \rho_{a b}\right\}
$$

Particle current

Particle Current

$$
\begin{array}{r}
x_{j}=|j\rangle\langle j| \otimes I_{b} \longrightarrow \begin{array}{l}
\text { Position operator } \\
\text { Number operator }
\end{array} \\
\frac{d x_{j}}{d t}=-\left.\operatorname{div} J\right|_{j}=J_{j-1 \rightarrow j}-J_{j \rightarrow j+1}
\end{array}
$$

Caroli, Combescot, Nozieres \& Saint-James, J. Phys. C 4, 916 (1971)

Particle Current

$$
\begin{gathered}
J_{j \rightarrow j+1}=\frac{1}{2}\left\{\frac{d x_{j+1}}{d t}, x_{j}\right\}-\frac{1}{2}\left\{\frac{d x_{j}}{d t}, x_{j+1}\right\} \\
J_{j \rightarrow j+1}=J_{j \rightarrow j+1}^{\text {(unn) }}+J_{j \rightarrow j+1}^{(\text {ther) }}
\end{gathered}
$$

Particle Current

$$
J_{j \rightarrow j+1}^{(\text {tunn })}=i \tau[|j\rangle\langle j+1|-|j+1\rangle\langle j|] \otimes I_{b}
$$

$$
J_{j \rightarrow j+1}^{(\text {ther })}=\frac{1}{2} \sum_{\alpha, \omega} \gamma_{\alpha}(\omega)\left[\left\{\Lambda_{\alpha}^{+}(\omega) x_{j+1} \Lambda_{\alpha}(\omega), x_{j}\right\}-\left\{\Lambda_{\alpha}^{+}(\omega) x_{j} \Lambda_{\alpha}(\omega), x_{j+1}\right\}\right]
$$

Particle Current

$$
J_{j \rightarrow j^{\prime}}=\frac{1}{2}\left\{\frac{d x_{j^{\prime}}}{d t}, x_{j}\right\}-\frac{1}{2}\left\{\frac{d x_{j}}{d t}, x_{j^{\prime}}\right\}
$$

Holds whenever the evolution is trace preserving. All other definitions are special cases of this expression.

Particle Current

$$
J_{j \rightarrow j^{\prime}}=\frac{1}{2}\left\{\frac{d x_{j^{\prime}}}{d t}, x_{j}\right\}-\frac{1}{2}\left\{\frac{d x_{j}}{d t}, x_{j^{\prime}}\right\}
$$

Holds whenever the evolution is trace preserving. All other definitions are special cases of this expression.

$$
\begin{gathered}
\left\langle J_{j \rightarrow j^{\prime}}\right\rangle=\lim _{\varepsilon \rightarrow 0} \frac{P\left[x_{j}(t) \mid x_{j^{\prime}}(t+\varepsilon)\right] p\left[x_{j^{\prime}}(t+\varepsilon)\right]-\left(j \leftrightarrow j^{\prime}\right)}{\varepsilon} \\
P\left[x_{j}(t) \mid x_{j^{\prime}}(t+\varepsilon)\right]=\operatorname{Re} \frac{\operatorname{Tr}\left[\rho_{a b} x_{j^{\prime}}(t+\varepsilon) x_{j}(t)\right]}{\operatorname{Tr}\left[\rho_{a b} x_{j^{\prime}}(t+\varepsilon)\right]}
\end{gathered}
$$

Weakly measured average of x_{j} at moment t conditioned on the strong measurement outcome j^{\prime} at moment $t+\varepsilon$.

Aharonov, Albert \& Vaidman, Phys. Rev. Lett. 60, 1351 (1988) Dressel, Agarwal \& Jordan Phys. Rev. Lett. 104, 240401 (2010)

Symmetries and transport

Symmetries of the model

Global rotation: $\left(j_{a}, j_{b}\right) \rightarrow\left(j_{a}+1, j_{b}+1\right)$
Particle swap: $\left(j_{a}, j_{b}\right) \rightarrow\left(j_{b}, j_{a}\right)$

ALWAYS symmetric
Symmetric ONLY for $\phi=k \pi / 3$

Symmetry breaking

Classical regime:

Particle swap symmetry breaking is necessary for non-zero current.
Direction of current determined by ϕ.

Quantum regime:

Particle swap symmetry breaking is necessary for non-zero thermal current.
Total current can be non-zero even if particle swap symmetry holds.
Direction of current can change depending also on τ.

Symmetry breaking

Classical regime:

Particle swap symmetry breaking is necessary for non-zero current.
Direction of current determined by ϕ.

Quantum regime:

Particle swap symmetry breaking is necessary for non-zero thermal current.
Total current can be non-zero even if particle swap symmetry holds.
Direction of current can change depending also on τ.

In both cases, symmetry breaking has no effect on heat flux

Current inversion

Due to global rotation symmetry, there are 3 linearly-independent steady states: $\rho_{1,2,3}^{s t}$.

Buca and Prosen, New J. Phys. 14, 073007 (2012)
Total current can change direction as the tunnelling rate is varied:

Entanglement generation

If T_{a} is small, entanglement is free: $\frac{1}{Z} e^{-H / T_{a}}$ is entangled.

Entanglement generation

If T_{a} is small, entanglement is free: $\frac{1}{Z} e^{-H / T_{a}}$ is entangled.
For sufficiently high T_{a} the thermal state $\frac{1}{Z} e^{-H / T_{a}}$ cannot be entangled

Entanglement generation

If T_{a} is small, entanglement is free: $\frac{1}{Z} e^{-H / T_{a}}$ is entangled.
For sufficiently high T_{a} the thermal state $\frac{1}{Z} e^{-H / T_{a}}$ cannot be entangled
Instead, due to global rotation symmetry, all $\rho_{k}^{s t}$ are entangled for any T_{a}, T_{b}
We can use this to entangle uncorrelated states:

$$
\rho_{a} \otimes \rho_{b} \rightarrow \rho_{a b}^{s t}=\lambda_{1} \rho_{1}^{s t}+\lambda_{2} \rho_{2}^{s t}+\lambda_{3} \rho_{3}^{s t}
$$

Entanglement generation

If T_{a} is small, entanglement is free: $\frac{1}{Z} e^{-H / T_{a}}$ is entangled.
For sufficiently high T_{a} the thermal state $\frac{1}{Z} e^{-H / T_{a}}$ cannot be entangled
Instead, due to global rotation symmetry, all $\rho_{k}^{s t}$ are entangled for any T_{a}, T_{b}
We can use this to entangle uncorrelated states:

$$
\rho_{a} \otimes \rho_{b} \rightarrow \rho_{a b}^{s t}=\lambda_{1} \rho_{1}^{s t}+\lambda_{2} \rho_{2}^{s t}+\lambda_{3} \rho_{3}^{s t}
$$

The higher the T_{a}, T_{b} the more coherent ρ_{a}, ρ_{b} need to be.

The machine converts local coherence into entanglement.

Ergotropy generation

$\frac{1}{Z} e^{-H / T_{a}}$ is free but useless for work extraction.
The machine can convert $\frac{1}{Z} e^{-H / T_{a}}$ into a non-passive steady state.

Ergotropy generation

$\frac{1}{Z} e^{-H / T_{a}}$ is free but useless for work extraction.
The machine can convert $\frac{1}{Z} e^{-H / T_{a}}$ into a non-passive steady state.

Ergotropy generation

$\frac{1}{Z} e^{-H / T_{a}}$ is free but useless for work extraction.
The machine can convert $\frac{1}{Z} e^{-H / T_{a}}$ into a non-passive steady state.

Lastly...

Global GKSL

Local GKSL

Current is via 1 weak and 1 strong measurement

Current is via 2 strong measurements
$\dot{Q} \propto \tau^{2}$ when $T_{a}=T_{b}$

Current is inverted

Current is inverted

Summary

$>$ We derived a universal expression for current operator.
$>$ Symmetry breaking is beneficial for current.
$>$ Symmetry is beneficial for entanglement and ergotropy.

