Autonomous thermal rotor in the quantum regime

Karen Hovhannisyan

University of Aarhus, Aarhus, Denmark

arXiv:1806.08779

Quantum Thermodynamics, KITP, 28 Jun 2018

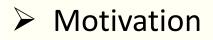
In collaboration with

Alberto Imparato

VILLUM FONDEN

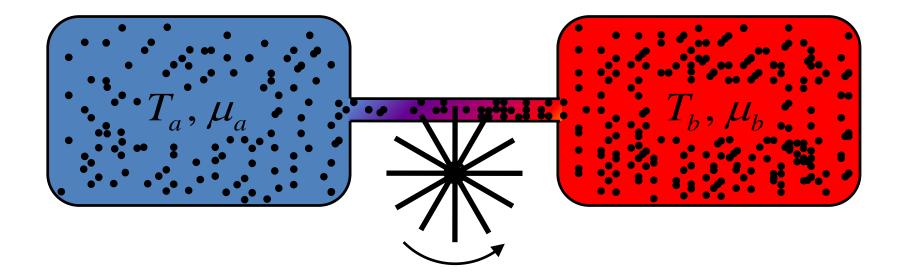
Ministry of Higher Education and Science

Plan of the talk



- Defining particle current
- Symmetries and physical properties

Introduction: Thermal \rightarrow Mechanical



Introduction: Thermal \rightarrow Mechanical

Smoluchowski-Feynman ratchet

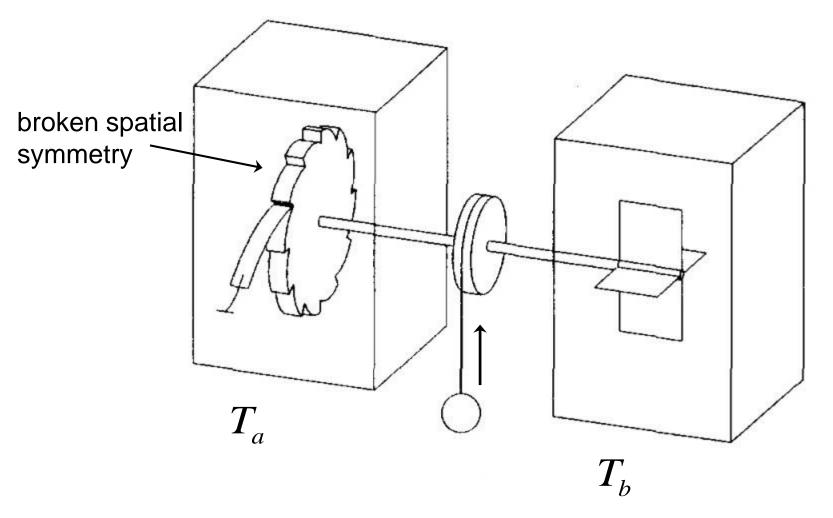
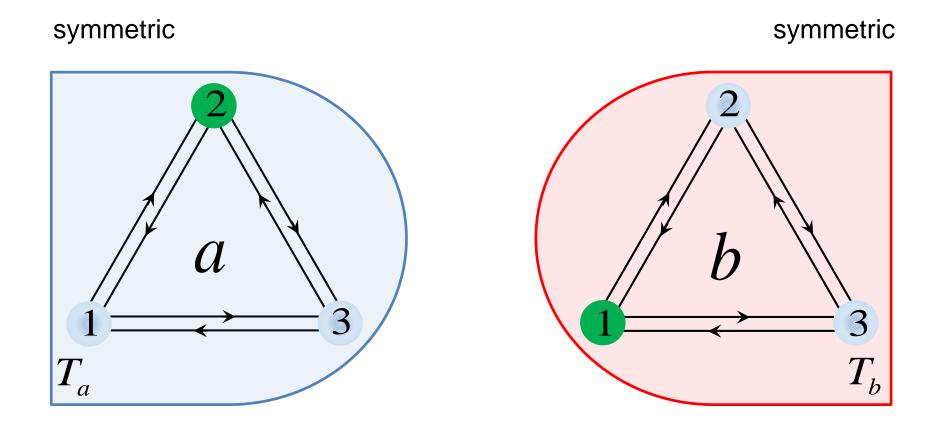
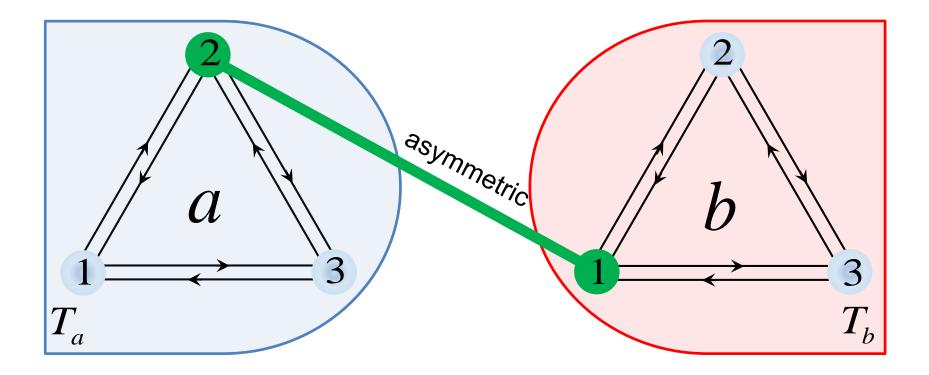


Figure taken from Parrondo & Español, Am. J. Phys. 64, 1125 (1996) Reimann, Phys. Rep. 361, 57 (2002)

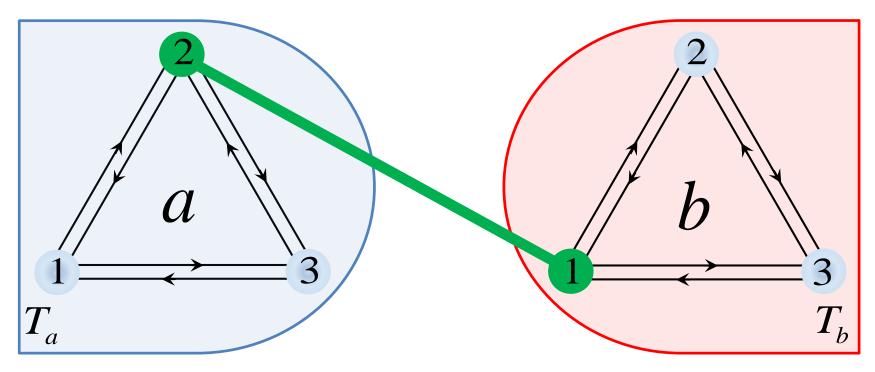
The model



The model



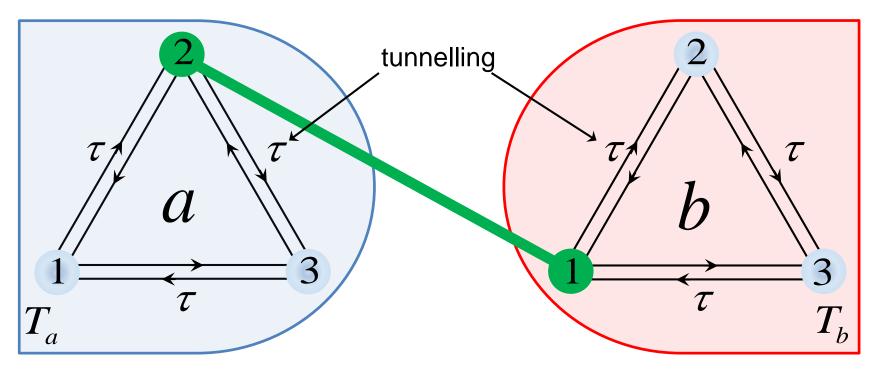
The model



$$U(j_{a}, j_{b}) = \frac{K}{2} \cos \left[\frac{2\pi}{3}(j_{a} - j_{b}) + \phi\right]$$

Potts model. Imitates dipole-dipole interaction

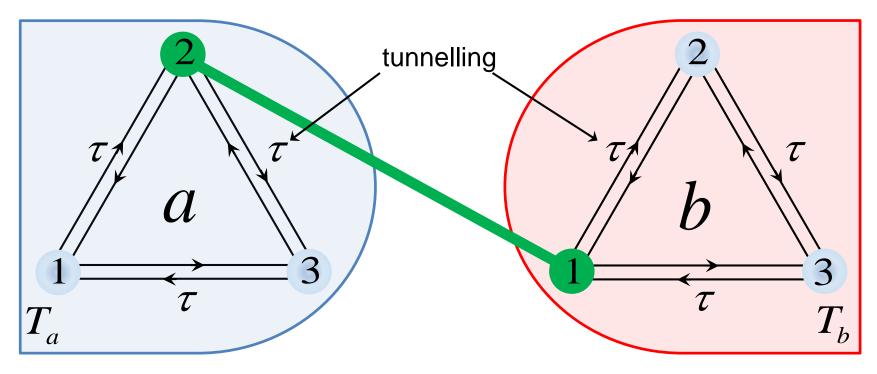
The quantum model



$H = H_{cl} + \tau X \otimes I_b + \tau I_a \otimes X$

$$\langle j_a j_b | H_{cl} | j_a j_b \rangle = U(j_a, j_b)$$
 $X = \sum_{j=1}^3 |k\rangle \langle k+1| + |k+1\rangle \langle k|$

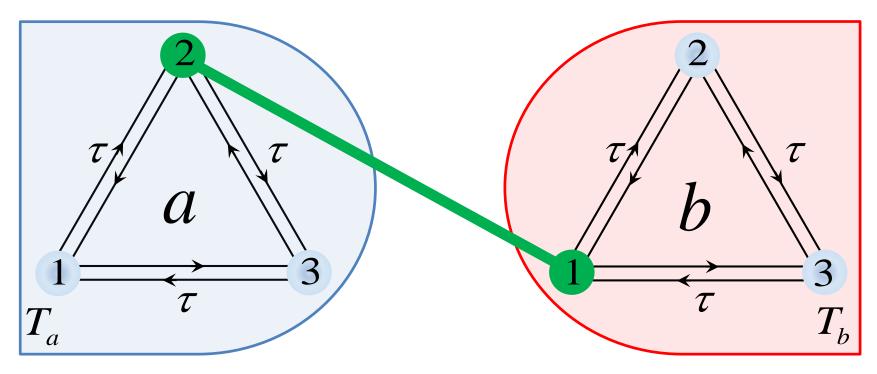
The quantum model



 $H = H_{cl} + \tau X \otimes I_b + \tau I_a \otimes X$

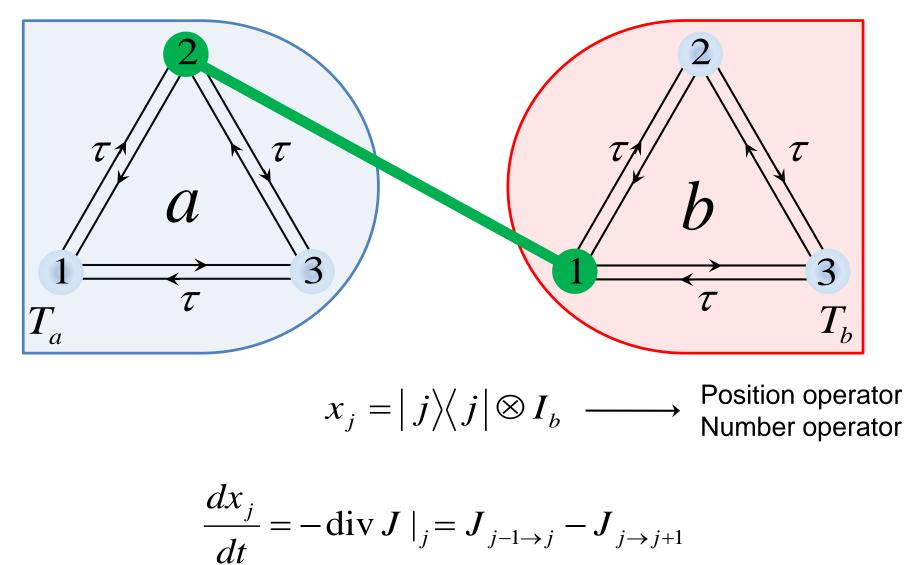
 $H_{tot} = H + A_a \otimes I_b \otimes B_a + I_a \otimes A_b \otimes B_b$

The quantum model

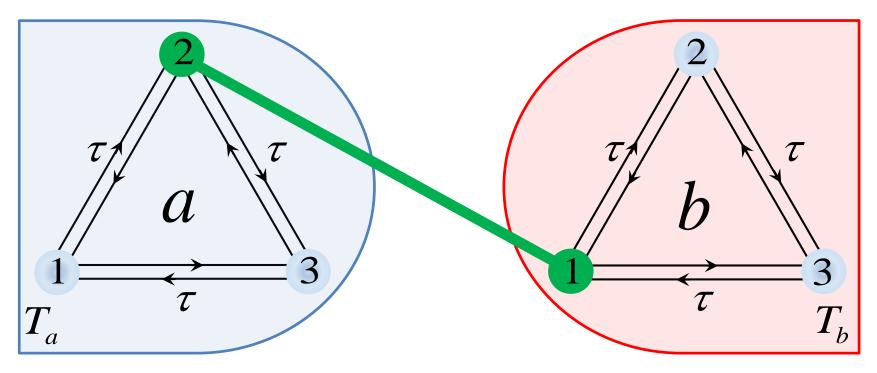


$$\frac{d\rho_{ab}}{dt} = -i[H, \rho_{ab}] + \sum_{\substack{\omega \\ \alpha = a, b}} \gamma_{\alpha}(\omega) \Xi[\Lambda_{\alpha}(\omega)][\rho_{ab}]$$

 $\Xi[\Lambda][\rho_{ab}] = \Lambda \rho_{ab} \Lambda^{+} - \frac{1}{2} \{\Lambda^{+} \Lambda, \rho_{ab}\}$

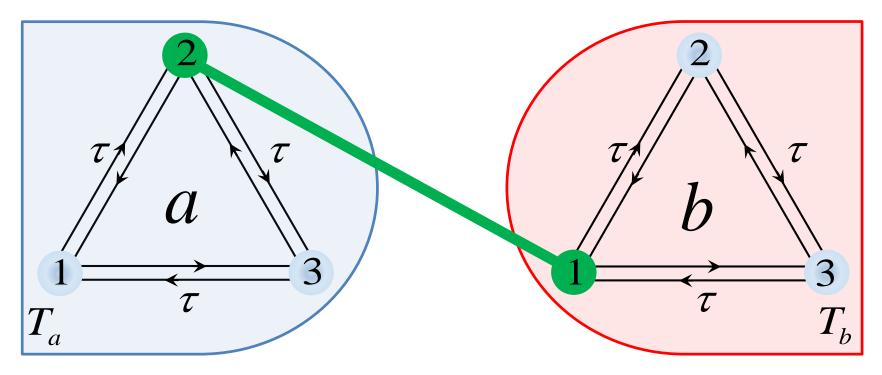


Caroli, Combescot, Nozieres & Saint-James, J. Phys. C 4, 916 (1971)



$$J_{j \to j+1} = \frac{1}{2} \left\{ \frac{dx_{j+1}}{dt}, x_j \right\} - \frac{1}{2} \left\{ \frac{dx_j}{dt}, x_{j+1} \right\}$$

 $J_{j \to j+1} = J_{j \to j+1}^{(\text{tunn})} + J_{j \to j+1}^{(\text{ther})}$



$$J_{j \to j+1}^{(\text{tunn})} = i \tau \left[j \right] \left\langle j+1 \right| - \left| j+1 \right\rangle \left\langle j \right| \right] \otimes I_{b}$$

$$J_{j \to j+1}^{(\text{ther})} = \frac{1}{2} \sum_{\alpha,\omega} \gamma_{\alpha}(\omega) \Big[\Big\{ \Lambda_{\alpha}^{+}(\omega) x_{j+1} \Lambda_{\alpha}(\omega), x_{j} \Big\} - \Big\{ \Lambda_{\alpha}^{+}(\omega) x_{j} \Lambda_{\alpha}(\omega), x_{j+1} \Big\} \Big]$$

$$J_{j \to j'} = \frac{1}{2} \left\{ \frac{dx_{j'}}{dt}, x_j \right\} - \frac{1}{2} \left\{ \frac{dx_j}{dt}, x_{j'} \right\}$$

Holds whenever the evolution is trace preserving. All other definitions are special cases of this expression.

$$J_{j \to j'} = \frac{1}{2} \left\{ \frac{dx_{j'}}{dt}, x_j \right\} - \frac{1}{2} \left\{ \frac{dx_j}{dt}, x_{j'} \right\}$$

Holds whenever the evolution is trace preserving. All other definitions are special cases of this expression.

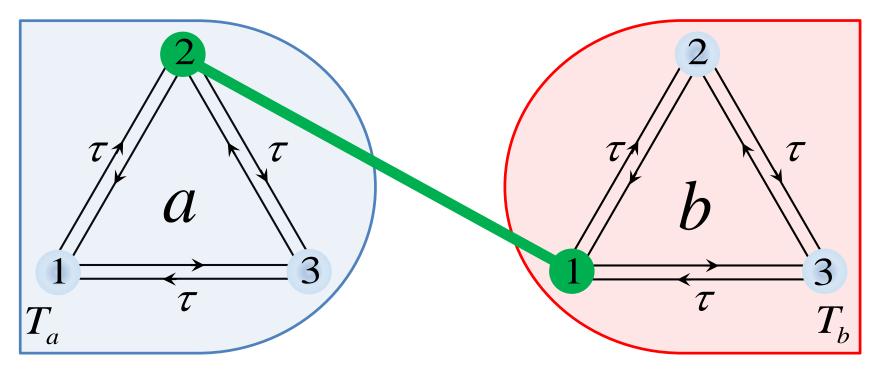
$$\left\langle J_{j \to j'} \right\rangle = \lim_{\varepsilon \to 0} \frac{P[x_j(t) \mid x_{j'}(t+\varepsilon)] p[x_{j'}(t+\varepsilon)] - (j \leftrightarrow j')}{\varepsilon}$$
$$P[x_j(t) \mid x_{j'}(t+\varepsilon)] = \operatorname{Re} \frac{\operatorname{Tr}[\rho_{ab} x_{j'}(t+\varepsilon) x_j(t)]}{\operatorname{Tr}[\rho_{ab} x_{j'}(t+\varepsilon)]}$$

Weakly measured average of x_j at moment t conditioned on the strong measurement outcome j' at moment $t + \varepsilon$.

Aharonov, Albert & Vaidman, Phys. Rev. Lett. 60, 1351 (1988) Dressel, Agarwal & Jordan Phys. Rev. Lett. 104, 240401 (2010)

Symmetries and transport

Symmetries of the model



Global rotation:
$$(j_a, j_b) \rightarrow (j_a + 1, j_b + 1)$$
ALWAYS symmetricParticle swap: $(j_a, j_b) \rightarrow (j_b, j_a)$ Symmetric ONLY
for $\phi = k\pi/3$

Symmetry breaking

Classical regime:

Particle swap symmetry breaking is necessary for non-zero current.

Direction of current determined by ϕ .

Quantum regime:

Particle swap symmetry breaking is necessary for non-zero thermal current.

Total current can be non-zero even if particle swap symmetry holds.

Direction of current can change depending also on τ .

Symmetry breaking

Classical regime:

Particle swap symmetry breaking is necessary for non-zero current.

Direction of current determined by ϕ .

Quantum regime:

Particle swap symmetry breaking is necessary for non-zero thermal current.

Total current can be non-zero even if particle swap symmetry holds.

Direction of current can change depending also on τ .

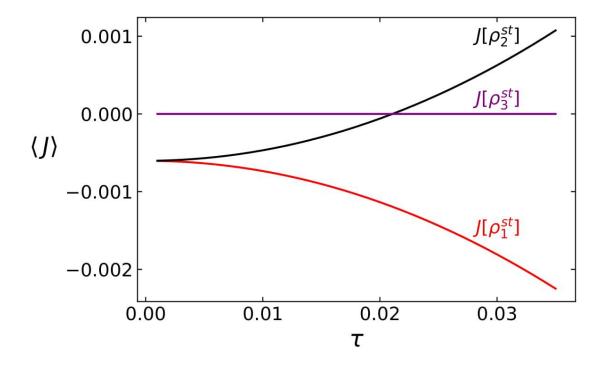
In both cases, symmetry breaking has no effect on heat flux

Current inversion

Due to global rotation symmetry, there are 3 linearly-independent steady states: $\rho_{1,2,3}^{st}$.

Buca and Prosen, New J. Phys. 14, 073007 (2012)

Total current can change direction as the tunnelling rate is varied:



If T_a is small, entanglement is free: $\frac{1}{Z}e^{-H/T_a}$ is entangled.

If T_a is small, entanglement is free: $\frac{1}{Z}e^{-H/T_a}$ is entangled.

For sufficiently high T_a the thermal state $\frac{1}{Z}e^{-H/T_a}$ cannot be entangled

If T_a is small, entanglement is free: $\frac{1}{Z}e^{-H/T_a}$ is entangled.

For sufficiently high T_a the thermal state $\frac{1}{Z}e^{-H/T_a}$ cannot be entangled

Instead, due to global rotation symmetry, all ρ_k^{st} are entangled for any T_a, T_b

We can use this to entangle uncorrelated states:

$$\rho_a \otimes \rho_b \to \rho_{ab}^{st} = \lambda_1 \rho_1^{st} + \lambda_2 \rho_2^{st} + \lambda_3 \rho_3^{st}$$

If T_a is small, entanglement is free: $\frac{1}{Z}e^{-H/T_a}$ is entangled.

For sufficiently high T_a the thermal state $\frac{1}{Z}e^{-H/T_a}$ cannot be entangled

Instead, due to global rotation symmetry, all ho_k^{st} are entangled for any T_a, T_b

We can use this to entangle uncorrelated states:

$$\rho_a \otimes \rho_b \to \rho_{ab}^{st} = \lambda_1 \rho_1^{st} + \lambda_2 \rho_2^{st} + \lambda_3 \rho_3^{st}$$

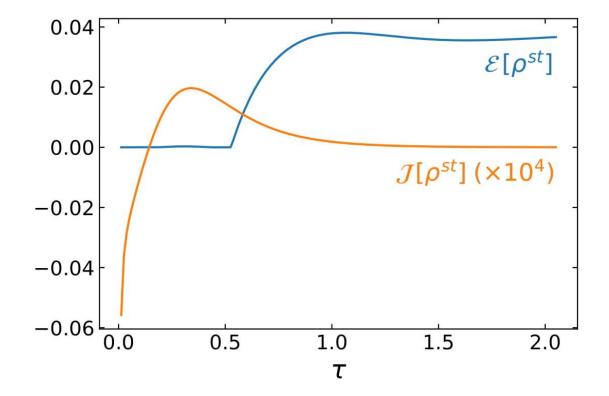
The higher the T_a, T_b the more coherent ρ_a, ρ_b need to be.

The machine converts local coherence into entanglement.

Ergotropy generation

 $\frac{1}{Z}e^{-H/T_a}$ is free but useless for work extraction.

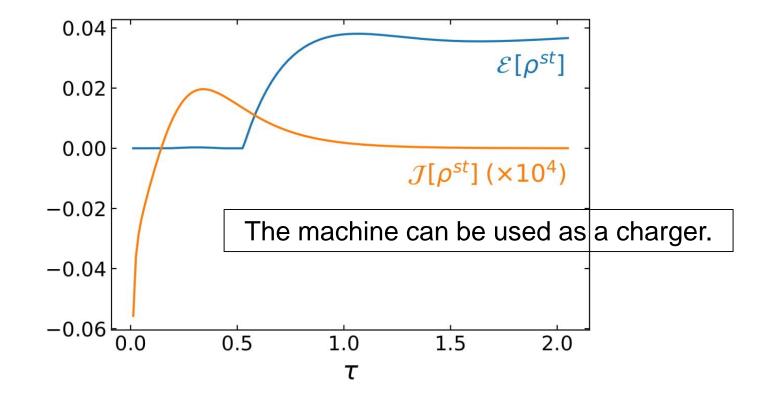
The machine can convert $\frac{1}{Z}e^{-H/T_a}$ into a non-passive steady state.



Ergotropy generation

 $\frac{1}{Z}e^{-H/T_a}$ is free but useless for work extraction.

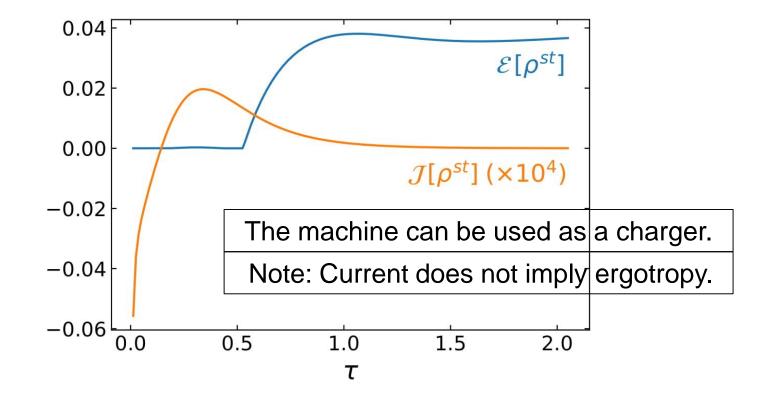
The machine can convert $\frac{1}{Z}e^{-H/T_a}$ into a non-passive steady state.



Ergotropy generation

 $\frac{1}{Z}e^{-H/T_a}$ is free but useless for work extraction.

The machine can convert $\frac{1}{Z}e^{-H/T_a}$ into a non-passive steady state.



Lastly...

Global GKSL	Local GKSL
Current is via 1 weak and 1 strong measurement	Current is via 2 strong measurements
$\dot{Q}=0$ when $T_a=T_b$	$\dot{Q} \propto au^2$ when $T_a = T_b$
Current is inverted	Current is inverted

Summary

- > We derived a universal expression for current operator.
- Symmetry breaking is beneficial for current.
- > Symmetry is beneficial for entanglement and ergotropy.