

Hierarchy of fluctuation theorems and experimental test of the differential fluctuation theorem

Rui Pan

Peking University

In collaboration with:

Tongcang Li group, Purdue University

2018/06/27, KITP

Reference: Phys. Rev. Lett. 120, 080602 (2018)

Outline

Background

- Length of time's arrow
- Stochastic thermodynamics and fluctuation theorems (FTs)
- Motivation

Hierarchy of fluctuation theorems

- Microscopic reversibility (MR)
- Differential fluctuation theorem (DFT)
- A generalized Jarzynski equality (GJE) for arbitrary initial states

Experimental test

- Setup and data
- Generate arbitrary initial states

Summary

Length of time's arrow

Macroscopic

- Thermal fluctuations are negligible
- Deterministic
- Newton's equation
- $W \ge \Delta F$
- $\Delta S \ge 0$

Microscopic

- Thermal fluctuations are dominant
- Stochastic
- Langevin equation
- Fokker-Planck equation
- $\Psi \quad \langle W \rangle \ge \Delta F$
- $\langle \Delta S \rangle \ge 0$

Stochastic thermodynamics and Fluctuation theorems (FTs)

Thermodynamic quantities based on stochastic trajector
Work ^[1,2]:
$$W[\Gamma(t)] = \int_0^{\tau} \frac{\partial H}{\partial \lambda} \dot{\lambda} dt$$

Heat ^[1,2]: $Q[\Gamma(t)] = \int_0^{\tau} (-\gamma v_t + \xi_t) \circ dx_t = \int_0^{\tau} \frac{\partial H}{\partial \Gamma} \dot{\Gamma} dt$
Entropy production ^[4]:
 $S_{sys}(t) = -\ln \rho(\Gamma_t, t)$
 $\Delta S_{tot} = \Delta S_{sys} - \frac{Q}{T}$
 $\Gamma_t := (x_t, p_t)$

- Jarzynski equality (JE) ^[1]: $\langle e^{-\beta(W-\Delta F)} \rangle = 1$
- Crooks fluctuation theorem (CFT) [3]:

 $\frac{P_R(-W)}{P_F(W)} = e^{-\beta(W - \Delta F)}$

ries: • Hummer-Szabo relation (HSR) ^[5]:

 $\left< \delta(\tilde{\Gamma} - \Gamma_{\tau}) e^{-\beta W} \right> = e^{-\beta U_{\tau}(\tilde{\Gamma})} / Z_0$

• FT of entropy production ^[4]:

$$\frac{P_R(-\Delta S_{tot})}{P_F(\Delta S_{tot})} = e^{-\Delta S_{tot}/k_B}$$

$$\langle e^{-\Delta S_{tot}} \rangle = 1$$

• Hatano-Sasa relation ^[6]:

 $\langle e^{-Y} \rangle = 1, \ Y \coloneqq \int_0^\tau \frac{\partial \phi}{\partial \alpha} (x(t), \alpha(t)) \dot{\alpha} dt$

• Sagawa-Ueda relation [7]:

$$\langle e^{-\beta(W-\Delta F)-I} \rangle = 1$$

.

What is the origin of fluctuation theorems?

Microscopic reversibility [3,4,8,22]:

$$\ln \frac{p(\Gamma(t)|\Gamma_0)}{\tilde{p}(\tilde{\Gamma}(t)|\tilde{\Gamma}_0)} = -\beta Q[\Gamma(t)]$$

$$\tilde{\lambda}_t \coloneqq \lambda_{\tau-t}, \tilde{\Gamma}_t \coloneqq (x_{\tau-t}, -p_{\tau-t})$$

Impossible to test it in experiment!

How about it if we do a little bit coarse-graining?

[3] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[4] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[8] G. E. Crooks. *Journal of Statistical Physics* 90.5-6 (1998).
[22] C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).

Differential fluctuation theorem (DFT)

- **DFT version 1** (2000, Jarzynski) ^[9]: $\frac{P_R(-Q,\Gamma_0^{\dagger}|\Gamma_{\tau}^{\dagger})}{P_F(Q,\Gamma_{\tau}|\Gamma_0)} = e^{\beta Q}$
- **DFT version 2** (2008, Karplus) ^[10]: $\frac{P_R(-W,\Gamma_{\tau}^{\dagger} \rightarrow \Gamma_{0}^{\dagger})}{P_F(W,\Gamma_{0} \rightarrow \Gamma_{\tau})} = e^{-\beta(W-\Delta F)}$

The most detailed fluctuation theorem that can be tested experimentally.

[9] C. Jarzynski, J. Stat. Phys. 98, 77 (2000).[10] P. Maragakis, et al. J. Phys. Chem. B 112, 6168 (2008).

[11] R. Kawai, et al. Phys. Rev. Lett. 98, 080602 (2007).[12] Z. Gong and H. T. Quan, Phys. Rev. E 92, 012131 (2015).

Hierarchy of fluctuation theorems

Previous experiments

Stretching RNA molecules [13-15]

Electronic circuit ^[24,25]

[13] J. Liphardt, et al. Science 296, 1832 (2002).
[14] D. Collin, et al. Nature (London) 437, 231 (2005).
[15] A. N. Gupta, et al. *Nature Physics* 7,631 (2011).
[16] E. Trepagnier, et al. Proc. Natl. Acad. Sci. 101, 15038 (2004).
[17] D. Y. Lee, et al. Phys. Rev. Lett. 114, 060603 (2015).
[24] J. P. Pekola, Nat. Phys. 11, 118 (2015).
[25] S. Singh, et al. arXiv:1712.01693 (2017).

Brownian particle trapped in water [16,17]

Our experiment

Silica nanosphere levitated in **AIR** using optical tweezers ^[18-20]

We can study the thermodynamics of the **phase space**.

[18] T. Li, et al. Science 328, 1673 (2010).
[19] S. Kheifets et al. Science 343, 1493 (2014) .
[20] T. M. Hoang, et al. Nat. Commun. 7, 12250 (2016).

Measurement of the instantaneous velocity

Our experiment

- In air, room temperature (296K) $H(x, v, t) = \frac{1}{2}kx^{2} - f(t)x + \frac{1}{2}mv^{2}$ $f(t): f_{off} \rightarrow f_{on}$ $\Delta F = -\frac{f_{on}^{2} - f_{off}^{2}}{2k}, W = \int_{0}^{\tau} \frac{\partial H}{\partial f} \dot{f}(t) dt$
- Challenges of our experiment:
 Very large statistics

> one million cycles, 500 μs /cycle

 ${\sim}10^{10}$ data points in the phase space with 10 MHz acquisition rate

Track individual trajectories in the phase space (instantaneous velocity measurement)

Test the differential fluctuation theorem

Test the differential fluctuation theorem

• Underdamped regime (50 Torr)

$$\frac{P_R(-W, x_2 \to x_1)}{P_F(W, x_1 \to x_2)} = e^{-\beta(W - \Delta F)}$$

$$\frac{P_R(-W,-v_2\to-v_1)}{P_F(W,v_1\to v_2)} = e^{-\beta(W-\Delta F)}$$

 $F_{off} = 0, f_{on} = 340 \ fN$ $Ramp time \sim 4.6 \ \mu s$ $Particle size \ r = 209 \pm 9 \ nm$ $\Omega = 60.4 \pm 0.3 \ (2\pi \cdot kHz)$ $\Delta F = -1.3 \ k_BT$

Test the GJE for delta distribution and the HSR

Test the GJE for arbitrary initial states

• GJE for arbitrary initial states

Data in the overdamped regime

• Overdamped regime (760 Torr)

[12] Z. Gong and H. T. Quan, Phys. Rev. E 92, 012131 (2015).
[21] E. H. Feng and G. E. Crooks, Phys. Rev. Lett. 101, 090602 (2008).
[23] T. Li et al. *Nature Physics* 7, 527 (2011).

Summary

- Test the DFT and the GJE in both underdamped and overdamped regimes
 - The most detailed fluctuation theorem that can be tested in experiment
 - DFT can unify most of the FTs
 - Length of time's arrow ^[21]
 - Unprecedentedly detailed level
- Technique to generate arbitrary initial states
 - Post-selection of trajectories
- Outlook: extension to quantum regime ^[12,23]

Collaborators

Haitao Quan group (Peking University): Haitao Quan, Rui Pan

Tongcang Li group (Purdue University): Tongcang Li, Thai M. Hoang, Jonghoon Ahn, Jaehoon Bang

References

- [1] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
- [2] K. Sekimoto. Progr. Theor. Phys. Suppl. 130 (1998).
- [3] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
- [4] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
- [5] G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. 98, 3658 (2001).
- [6] T. Hatano, and S. Sasa. Phys. Rev. Lett. 86, 3463 (2001).
- [7] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010).
- [8] G. E. Crooks. Journal of Statistical Physics 90.5-6 (1998).
- [9] C. Jarzynski, J. Stat. Phys. 98, 77 (2000).
- [10] P. Maragakis, et al. J. Phys. Chem. B 112, 6168 (2008).
- [11] R. Kawai, et al. Phys. Rev. Lett. 98, 080602 (2007).
- [12] Z. Gong and H. T. Quan, Phys. Rev. E 92, 012131 (2015).
- [13] J. Liphardt, et al. Science 296, 1832 (2002).

- [14] D. Collin, et al. Nature (London) 437, 231 (2005).
- [15] A. N. Gupta, et al. *Nature Physics* 7,631 (2011).
- [16] E. Trepagnier, et al. Proc. Natl. Acad. Sci. 101, 15038 (2004).
- [17] D. Y. Lee, et al. Phys. Rev. Lett. 114, 060603 (2015).
- [18] T. Li, et al. Science 328, 1673 (2010).
- [19] S. Kheifets et al. Science 343, 1493 (2014) .
- [20] T. M. Hoang, et al. Nat. Commun. 7, 12250 (2016).
- [21] E. H. Feng and G. E. Crooks, Phys. Rev. Lett. 101, 090602 (2008).
- [22] C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
- [23] T. Li et al. Nature Physics 7, 527 (2011).
- [24] J. P. Pekola, Nat. Phys. 11, 118 (2015).
- [25] S. Singh, et al. arXiv:1712.01693 (2017).

Thanks for your attention!

A generalized JE (GJE) for arbitrary initial states

•
$$e^{-\beta(W-\Delta F)}P_F(W,\Gamma_0\to\Gamma_\tau)=P_R(-W,\Gamma_\tau^{\dagger}\to\Gamma_0^{\dagger})$$

$$\iint d\Gamma_0 d\Gamma_\tau : \quad e^{-\beta(W - \Delta F)} P_F(W) = P_R(-W)$$
 (CFT)

$$\iint d\Gamma_0 dW: \quad \left\langle e^{-\beta(W-\Delta F)} | \Gamma(\tau) = \Gamma_\tau \right\rangle_F = \frac{P_R^{eq}(\widetilde{\Gamma}(0) = \Gamma_\tau^{\dagger})}{P_F(\Gamma(\tau) = \Gamma_\tau)} \qquad \text{(HSR)}$$

A generalized JE (GJE) for delta initial distribution ^[11]:

$$\iint d\Gamma_{\tau} dW: \quad \left\langle e^{-\beta(W-\Delta F)} | \Gamma(0) = \Gamma_0 \right\rangle_F = \frac{P_R(\tilde{\Gamma}(\tau) = \Gamma_0^{\dagger})}{P_F^{eq}(\Gamma(0) = \Gamma_0)}$$

A generalized JE (GJE) for arbitrary initial states ^[12]:

$$\left\langle e^{-\beta(W-\Delta F)} \right\rangle_{P_{ini}(\Gamma(0)=\Gamma_0)} = \int \frac{P_R\left(\tilde{\Gamma}(\tau)=\Gamma_0^{\dagger}\right)}{P_F^{eq}(\Gamma(0)=\Gamma_0)} P_{ini}(\Gamma(0)=\Gamma_0) d\Gamma_0$$