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Ultracold atoms: Isolated many-body systems

Bose-Einstein condensate of
Potassium 3°K atoms

g Held by classical magnetic and laser fields

40K

Degenerate Fermi gas No thermal environment



Controlling dimensionality

1D

® .3p deep lattice - 2D deep lattice

® isolated wells +1D weaker lattice
- no hopping \ - 1D hopping
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Simulating condensed-matter

» Realizes important model Hamiltonians from solid-state physics:
=» e.g. Hubbard models
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Potential created by
standing light wave

Understand and Design Quantum Materials
» High temperature superconductivity
» Quantum Magnetism

Emergent many-body phenomena




Non-Equilibrium physics
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» Can control and observe real-time dynamics




Fermionic Expansion
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band insulator: two spin states

Dynamics within lattice



Fermionic Expansion velocity in 2D

Core width:
HWHM
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Core expansion velocity (A2 / (#/J))
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in relaxation time
. L,}/J approximation
» fast local thermalization due to frequent scattering (A. Rosch et.al.)

» slower global dynamics driven by
gradients in temperature & chemical potential

U. Schneider et al., Nat. Phys. 8, 213 (2012)
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Negative absolute temperatures




Temperature

15 < Heat Flow‘.-> T,

» Heat always flows from the hotter to the colder system,
until both systems have the same temperature

Temperature defines an ordering relation between systems!



Thermal states: Canonical distribution

pi«9=

Total energy per particle

Negative Temperatures are hotter than all positive temperatures
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Optical lattice band structure (1D)
Vo= 5 E,
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Quasi-momentum #q (7k)

=>» kinetic energy is bounded from above and below



How to get to negative Temperatures?

» Heat, Heat, Heat, ?
Impossible: Above T = oo entropy decrease again
— Cannot dissipate work in heat anymore

» Quasi-static state change ?
Impossible: No (classical) adiabatic path can change sign of T (Landsberg 1959)

» ,Flip“ the energy axis: " = —f"

Mott insulator:
U=-U

—>Feshbach
resonance




Bose gas at pos. and negative Temperature

LU Vv>0

-4J Energy 4J 0 Occup. (a.u.) 1

Science 339, 52 (2013)



Are negative temperatures stable?

In isolated systems: Yes!
Due to energy conservation they cannot relax to positive
temperatures.
(Same argument as stability of isolated large positive
tempratures.)

In contact with an environment:
Yes, if environment also at negative T.

T>0 <> T<0
“equivalent” to

matter <— antimatter

both stable on their own,
but do not mix!




Dynamics in different dimensions

Independent of all other
initial conditions

1D: NO Thermalization

(Proximity to) Integrability



What can be different in 1D?

Position (um)
-500 0 500

Classically: Two-body collisions can only
exchange momentum, but not redistribute it!

n(k,t) = const. wrt. t

t (ms)

Repulsive 1D Bosons with point-like interaction
without a lattice are integrable in homogeneous case!

—>Lieb-Liniger model

Thermalization constrained by conserved quantities.

0 05 1.0
Normalized optical thickness

T. Kinoshita et al., Nature (2006)

Fineprint: Trap, 3-body collisions, quasi 1D



1D Bosons on a lattice

» 1D Bose—Hubbard model is (in general) not integrable!

classically chaotic for intermediate U and intermediate energy
M. Hiller et al. PRA 79, 023621 (2009)

» Integrable limits:
— Non-interacting

— Hard-core Bosons: U >» J, n € {0, 1}
l.e. no higher occupancies
equivalent to non—interacting spinless Fermions

(Jordan—Wigner transformation)
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Bosonic Expansion velocities

1D Hard-core Bosons:

Integrable + Ballistic

Experiment .
® Expansionin 1D

© Expansionin 2D

Theory i
A 1D t-DMRG,N=10

Lines: guide to

the eye
Q ¢ : Q 14 -
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Interaction U (J) 2D Hard-core Bosons:

Thermalizing + Diffusive

In general, no exact calculations available for D>1
= Quantum Simulations

PRL 110, 205301 (2013) & PRL 115, 175301 (2015)



= 1D-2D Crossover
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PRL 110, 205301 (2013)



Thermal states of nearly free Bosons

Q@ T <T.

Can Bosons also bunch
in the middle of the
spectrum?

Not in thermal
equilibrium!

X

T>T.

&

N

T

00




1D Hard-Core Bosons on a lattice

=\

— Hard-core Bosons: \ N
Jordan-Wigner Transformation

ng (t) = ny (t)

ng (t) # ng(t)

Experiments:
Paredes, Bloch, Weiss, Nagerle,...



Emergence of correlations
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First proposal: M. Rigol et al. L. Vidmar et al. PRL 115, 175301 (2015)




Long time behaviour of expanding 1D HCB

1
v2 (1) = < Xk: ()2

Numerics
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Quasicondensation is transient effect

Long times: Fermionization

Timescales depends on chain length
Experiment done in parallel on different chains

L. Vidmar et. al, PRB 88, 235117 (2013)



Robust alternatives
to thermalization ?




Localization

» Anderson (1958):
A single particle in a disordered potential can become localized by disorder
—>Anderson localization
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1D: arbitrarily small disorder localizes Eigenstates at all energies
- quantum-mechanical interference effect

» Interactions: Many-body localization

Theory: Yes! D. M. Basko, I. L. Aleiner, B. L. Altschuler
+ essentially everyone (since 2005)

Experiments:
Cold Atoms (Aspect, Modugno, DeMarco, Schneble, ...)
lons (Monroe), NV Centers (Lukin), Disordered supraconductors (Sharhar)



Many-body localization

Stability of (disorder induced) Anderson localization
in the presence of interactions (and finite energy density)

So what? Non-ergodic behaviour!

No thermalization, no standard statistical mechanics

=» Potential for novel long-time dynamics



Ergodicity breaking in Many-body localization

Initial state

\ v » fermionic 4°K
VL 'y VL
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t » free evolution
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. : Persistent CDW signals
Ergodic time evolution dic behavi
destroys initial CDW | | Imbalance flon-ergogic 2enavior

= localization
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Aubry-André model

» Superimpose two in-commensurable lattices (A, ~ 532 nm, A; =~ 738 nm)
—>projected version of 2D Harper hamiltonian

H=-] Z(éifa Civ10 T D c) + Az sin(2nBi + qb)é;,’aéi’a
[,0

/

irrational

* Real random: LocalizationforA > 0
* Quasi-periodic: Localization for A > 2]

* Critical behaviour controlled by f!
A. Szabo, U. Schneider arXiv:1803.09756



Localization in Aubry-André model

Imbalance Z

- inte ' ,pin) fermions
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Science 349,842 (2015)



Many-body localization

Two-component
Fermi gas

» Remaining CDW aftert = 15 —-201

Ergodicity broken also for
interacting atoms

=» direct observation of
Many-body localization

Deep in localized phase

- Particles only probe their
direct surrounding,

- no differences between
quasi-periodic and
disordered

Science 349,842 (2015)



Photon Scattering
Coupling an MBL system to a T = oo bath.

[' « Intensity

Localizes atom to
(essentially)

single lattice site
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-2 Photon induced hopping: Randomizing positions for 't — oo



Closed System Phase transition?

>

strong coupling regime

coupling strength ~y

Many-body localized

disorder strength A

—> Susceptibility y expected to diverge at phase transition




Imbalance dynamics
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» Strong dependence on localization length

H.P. Lischen et al., PRX 7, 011034 (2017)
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Disorder & Interactions

1
Experiment

® A=4J
® A=6J

TEBD

A=4d
A=6J

20

No re-entrant
behaviour in
Experiment!

Increasing susceptibility
with interaction
at small disorder!

-2 consistent with MBL

Challenge:
Losses and population of non-localized band become relevant

H.P. Lischen et al., PRX 7, 011034 (2017)



T U V>0 ||

UV 0

-4J Energy 4J 0 Occup. (a.u.) 1

u@CaMBQD
www.manybody.phy.cam.ac.uk

[
o
T

= —
o th
T T

Core expansion velocity v (d/T)

Experiment
¢ Expansion in 1D
© Expansionin 2D

Theory i
A 1D t-DMRG,N=10
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coupling strength ~y

20

nteraction U {J)

strong coupling regime

QCP

disorder strength A Many-body localized



