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Resolution of the paradox

* Landauer’s Principle: Erasure of one bit of information costs at
least work W = kg1'log 2

e FErasure”: Reset of information, i.e., an unknown bit is reset to a
known value, e.g., ,0° = after erasure, we have full information

about the bit

* Which unknown bit? Matter of viewpoint!

* Demon’s view: could describe box, but not changes to itself

= since the measurement would act on box and demon
together, it could not be described in this view

* Box and demon viewed together from the outside: whole
cycle can be described = here the demon’s bit is unknown
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e Using one bit of information we can extract work (W) = kg7 log 2
from a heat bath. This requires that at each point in time the system
IS In thermal equilibrium.
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Motivation

« Using one bit of information we can extract work (W) = kp1'log 2
from a heat bath. This requires that at each point in time the system

IS In thermal equilibrium.
 What if thermalization is not complete”
p—ap+(1—a)T

* (¢ may arise due to finite-time interactions with the bath, or in
collisional models due to imperfect unitaries

« Goal: Test the robustness of a work extraction protocol for an error
model as general as possible

« Main result: Optimal isothermal processes are possible for any av < 1
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Framework 1:
Collisional Model

e 3 systems:

O

| . . 4
* System S of one information qubit n P

* Thermal bath B at fixed temperature I": N thermal states (free
resource) with different Hamiltonians Hg“), k=0,...N ¥

=
* Work storage system W F

= Using the information of the system qubit, we apply /N thermal
operations to convert heat from the coupled thermal bath B into
work stored in system W:
In the k" interaction step the energy-conserving unitary US(I];)W
acts on S, W and the k" bath qubit
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a random time and without isolation
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Error Model

o System still interacts successively with each bath gubit and always
on all three systems, S, B and W, but in an uncontrolled way, i.e., for
a random time and without isolation

= arbitrary thermal operations restricted on the relevant
degenerate subspace

« All errors of this form yield the same noise model, describing the
reduced state of the system as

A = gD 4+ (1~ ag)r®

= Partial thermalization, where the degree of thermalization is
quantified by « :

- For a« = 0 : standard case of full thermalization

- For &« = 1 : no interaction between S, B, W
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Results

(W)Y=AF —v—¢

1

v =0 (N) . Error due to finite number of steps

1l «
N1—«

= Optimal isothermal processes can be constructed
for any a < 1 with sufficiently many steps

*¥e=0 ( ) . Error due to noise quantified by «

* \We can trade the number of steps /N for precision

* Proof can be extended to qudits
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Results

 Determined an almost tight upper bound for a
specific example
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error as a function of N for a = 1/2 and of « for

N = 1000, respectively, with kgTlog2 =1, pr = k/2N
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Results

e Characterized the work fluctuations which
decrease for large N

histrograms showing the fluctuations for N = 100, N = 200, N = 500 and N = 1000
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* As experimentally the interaction time is finite, the system will
only get partially thermalized and its state is again of the form

o) = . pB1 4 (1 — ) r®

where a depends on the interaction time and strength
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« Work is extracted during /V quenches of the system
Hamiltonian, each followed by some interaction with a
thermal bath at temperature I’

* As experimentally the interaction time is finite, the system will
only get partially thermalized and its state is again of the form

o) = . pB1 4 (1 — ) r®

where a depends on the interaction time and strength

= Again, the extracted work is given by
1

wi-aro(L)
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Extension: Qudits

» Evolution described by [V Gibbs preserving
Maps Gy Gk(T(k)) _ T(k)

| Ge(p) =7 i< ar | p—7® [l (en < 1)

1
|7 0 =0 ()

with
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Extension: Qudits

» Evolution described by [V Gibbs preserving
Maps Gy Gk(T(k)) _ T(k)

| Ge(p) =7 i< ar | p—7® [l (en < 1)

1
|7 0 =0 ()

= Again, the extracted work Is given by

WY = AF — O (%)
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summary

* Alarge class of errors act essentially as a partial
thermalization

e Transformations that bring us closer to the thermal state
can still lead to optimal isothermal processes

e Big freedom in distribution of bath qubits / Hamiltonians

= Simplifies experimental implementation of optimal
processes e.g. for small engines

= Optimal processes are much more common than
poreviously expected in small guantum systems
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