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Resolution of the paradox
• Landauer’s Principle: Erasure of one bit of information costs at 

least work 

• „Erasure“: Reset of information, i.e., an unknown bit is reset to a 
known value, e.g., „0“     after erasure, we have full information 
about the bit

• Which unknown bit? Matter of viewpoint!
✴ Demon’s view: could describe box, but not changes to itself

➡ since the measurement would act on box and demon 
together, it could not be described in this view

✴ Box and demon viewed together from the outside: whole 
cycle can be described     here the demon’s bit is unknown
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Motivation
• Using one bit of information we can extract work                          ,                      

from a heat bath. This requires that at each point in time the system 
is in thermal equilibrium.

• What if thermalization is not complete?

✴      may arise due to finite-time interactions with the bath, or in 
collisional models due to imperfect unitaries

• Goal: Test the robustness of a work extraction protocol for an error 
model as general as possible

• Main result: Optimal isothermal processes are possible for any
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Framework 1:  
Collisional Model

• 3 systems:

✴ System S of one information qubit

✴ Thermal bath B at fixed temperature    :      thermal states (free 
resource) with different Hamiltonians        , 

✴ Work storage system W

➡ Using the information of the system qubit, we apply      thermal 
operations to convert heat from the coupled thermal bath B into 
work stored in system W: 

In the        interaction step the energy-conserving unitary             
acts on S, W and the        bath qubit
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• System still interacts successively with each bath qubit and always 
on all three systems, S, B and W, but in an uncontrolled way, i.e., for 
a random time and without isolation

• All errors of this form yield the same noise model, describing the 
reduced state of the system as 
 
➡ Partial thermalization, where the degree of thermalization is 
quantified by     :

- For              : standard case of full thermalization

- For              : no interaction between S, B, W

↵ = 0

Error Model
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Summary
• A large class of errors act essentially as a partial 

thermalization

• Transformations that bring us closer to the thermal state 
can still lead to optimal isothermal processes

• Big freedom in distribution of bath qubits / Hamiltonians

14

➡ Optimal processes are much more common than 
previously expected in small quantum systems

➡ Simplifies experimental implementation of optimal 
processes e.g. for small engines


