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Entropy production:  
Quantum kinetic approach

e.g., Kita, Prog. Theor. Phys. (2010)
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Strong coupling: the minimal model

PHYSICAL REVIEW B 94, 035436 (2016)
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We analyze the time-resolved energy transport and the entropy production in ac-driven quantum coherent
electron systems coupled to multiple reservoirs at finite temperature. At slow driving, we formulate the first
and second laws of thermodynamics valid at each instant of time. We identify heat fluxes flowing through the
different pieces of the device and emphasize the importance of the energy stored in the contact and central regions
for the second law of thermodynamics to be instantaneously satisfied. In addition, we discuss conservative and
dissipative contributions to the heat flux and to the entropy production as a function of time. We illustrate these
ideas with a simple model corresponding to a driven level coupled to two reservoirs with different chemical
potentials.

DOI: 10.1103/PhysRevB.94.035436

I. INTRODUCTION

The understanding of the energy transfer in nonequilibrium
open quantum systems is a fundamental problem in physics.
The separation of energy in heat and useful work and
dissipation is the key for a thermodynamical description. In
quantum systems under ac driving, the identification of these
different components of energy is a nontrivial task which is
paramount to cold atoms [1], nanomechanical [2,3], nanoscale
optoelectronical [4], and mesoscopic electron physics [5–16].
Typically, the central piece of these systems contains a small
number of particles and are driven out of equilibrium, which
renders a usual thermodynamical description unreliable. How-
ever, they are in contact to one or more macroscopic reservoirs
with well defined thermodynamical intensive parameters.

In the recent years, the name “quantum thermodynamics”
has been coined to identify the area of Physics devoted to
the study of this type of systems, which is an intersection
of solid state and statistical physics. The foundations of
this area were in part developed after the proposal of the
Jarzynski’s equality [17] and Crook’s theorem [18] and a
subsequent number of fluctuations relations [19–30]. Recently,
linear response proposals in close relation to thermodynamics
have been formulated for open quantum systems and quasi-
classical systems under periodic driving [13,31–33]. The
proper definition of the heat exchange between a quantum
driven system and its macroscopic environment has been
recently addressed in the context of few-level or spin systems
in contact to phononic baths [34–36] and in systems of coupled
quantum harmonic oscillators [37–39].

The first law of thermodynamics, being basically the
conservation of the energy, is equally valid for nonequilibrium
and equilibrium phenomena. We have recently considered
a model containing the minimal ingredients to address the
problem of time-resolved heat transport [40]. It consists
of a localized level under ac driving coupled to a single
electron reservoir. We have focused on slow driving and zero
temperature. By slow we mean a regime where the typical
dwell time for the electrons inside the driven structure is
much smaller than the driving period. Even in such a simple

setup, a nontrivial effect manifests itself when the heat flow is
analyzed as a function of time. Namely, the coupling region
between the different parts of the system behaves like an
energy reactance. In this way, the coupling not only provides
a necessary mechanism for particle and energy exchange but
also contributes to the energy balance. This contribution is
of ac nature. It allows for a temporary energy storage which
vanishes when averaged over time.

Our goal now is to analyze the time-resolved energy
redistribution and entropy production in ac-driven quantum
coherent electron systems coupled to multiple reservoirs and
finite temperature. We show that the definition of the heat
current flowing into the reservoirs presented in Ref. [40] is
also suitable for multi-terminal devices. More interestingly,
we study the behavior of the different components of the heat.
We identify conservative and dissipative contributions to a heat
flux and to the entropy production as a function of time. We
illustrate these ideas with a simple system that consists of a
slowly driven resonant level coupled to two electron reservoirs
at a finite temperature and with an applied bias voltage,
see Fig. 1.

The paper is organized as follows. We present the model
in Sec. II. A thermodynamic approach to the case of slight

kBT
L

kBTR

e-

0+V(t)
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FIG. 1. A single electronic level is coupled to two reservoirs
(fermionic baths) kept at the same temperature T . The chemical
potentials of the left and right reservoirs are µL = µ and µR =
µ − δµ, respectively. The electronic level slowly evolves in time
with a periodic parameter V (t), and hence after a completed period
the central part of the systems returns to its initial state.
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 NEGF solution

where Tc denotes the contour ordering operator, and τ1 and
τ2 are the contour variables. Here and below, ℏ ¼ kB ¼ 1.
When the time-dependent driving force is slow relative to
the system relaxation time, the dynamics of the GF [Eq. (1)]
can be evaluated using the first order gradient expansion
[31–33]. Within this limit, the system dynamics is fully
characterized by two quantities, the probability to find the
level filled at the energy E, ϕðt; EÞ, and the retarded
projection of the Green function Grðt; EÞ. The energy
dependence of these quantities results from the fact that
the energy of the level is not sharply defined at εðtÞ as in the
weak coupling limit, but gets broadened by the strong
coupling to the reservoirs. As shown is [32,34–37] (see also
[38]), the retarded Green function is given by

Grðt; EÞ ¼ ½E − εðtÞ − Σrðt; EÞ%−1; ð2Þ

where the real and imaginary part of the total retarded self-
energy, Σrðt; EÞ ¼ Λðt; EÞ − iΓðt; EÞ=2, describe, respec-
tively, the Lamb shift Λðt; EÞ and the broadening Γðt; EÞ of
the system level caused by the coupling. In the weak
coupling limit, Γ → 0 and Λ → 0. The occupation prob-
ability of the level, ϕðt; EÞ, is obtained by solving the
equation of motion

fE − εðtÞ − Λðt; EÞ;Aðt; EÞϕðt; EÞg
þ fReGrðt; EÞ;Γðt; EÞϕðt; EÞg ¼ Cðt; EÞ; ð3Þ

where ff1; f2g denotes the Poisson bracket operation
∂Ef1∂tf2 − ∂tf1∂Ef2 and Aðt; EÞ ¼ −2ImGrðt; EÞ is the
system spectral function describing the Lorentzian proba-
bility amplitude for finding the system at energy E

Aðt; EÞ ¼ Γðt; EÞ
½E − εðtÞ − Λðt; EÞ%2 þ ½Γðt; EÞ=2%2

: ð4Þ

It becomes a delta function centered around εðtÞ in the
weak coupling limit. Σr as well as Λ and Γ are sums of
reservoirs contributions: respectively, Σr

νðt; EÞ, Λνðt; EÞ,
and Γνðt; EÞ. Finally, the net particle current entering the
level at energy E, Cðt; EÞ in Eq. (3), is also the sum of
different reservoirs contributions, each expressed as a
difference between incoming (þ) and outgoing (−) elec-
tronic currents

Cνðt; EÞ ¼ Cþν ðt; EÞ − C−ν ðt; EÞ;
Cþν ðt; EÞ ¼ Aðt; EÞΓνðt; EÞfνðEÞ½1 − ϕðt; EÞ%;
C−ν ðt; EÞ ¼ Aðt; EÞΓνðt; EÞϕðt; EÞ½1 − fνðEÞ%; ð5Þ

where fνðEÞ is the Fermi-Dirac distribution of reservoir ν.
In absence of time-dependent driving, ε, Λ and Γ do not

depend on time. If the level is in contact with a single
reservoir at temperature T and chemical potential μ, it will
relax to an equilibrium state where ϕðt; EÞ will correspond

to the Fermi distribution fðEÞ at T and μ. If another
reservoir at the same T and μ is put in contact with the level,
the system will remain at equilibrium with respect to the
two reservoirs. In that sense, the NEGF satisfies the zeroth
law of thermodynamics.
We introduce the renormalized spectral function

Aðt; EÞ ¼ Að1 − ∂EΛÞ þ Γ∂EReGr ≥ 0; ð6Þ

which as its standard version Eq. (4), can be proven non-
negative, normalized to one, and to converge to a delta in
the weak coupling limit A → 2πδðE − εÞ [38]. We define
the particle number, energy, and entropy of the system as
energy-resolved versions of the standard weak coupling
definitions where the energy resolution is controlled by the
renormalized spectral function A

N ðtÞ ¼
Z

dE
2π

Aðt; EÞϕðt; EÞ; ð7Þ

EðtÞ ¼
Z

dE
2π

Aðt; EÞEϕðt; EÞ; ð8Þ

SðtÞ ¼
Z

dE
2π

Aðt; EÞσðt; EÞ; ð9Þ

where σðt; EÞ is an energy resolved Shannon entropy

σðt; EÞ ¼ −ϕðt; EÞ lnϕðt; EÞ

− ½1 − ϕðt; EÞ% ln½1 − ϕðt; EÞ%: ð10Þ

When attempting to use the standard spectral function
rather then the renormalized one in Eqs. (7)–(9), one fails to
define a proper entropy production and second law.
The entropy [Eq (9)] was introduced in Refs. [35,36] in

the context of the quantum Boltzmann equation. We
emphasize that this entropy satisfies the third law.
Indeed at equilibrium when ϕðEÞ ¼ fðEÞ, if we take the
limit T → 0, σeqðEÞ → 0 and therefore, Seq → 0.
The evolution of the particle number [Eq. (7)]

dtN ðtÞ ¼
X

ν

IνðtÞ ð11Þ

is given by the sum of the energy-integrated particle
currents [Eq. (5)] from reservoir ν

IνðtÞ ¼
Z

dE
2π

Cνðt; EÞ: ð12Þ

The evolution of the energy [Eq. (8)] in turn can be
expressed as a first law

dtEðtÞ ¼
X

ν

_QνðtÞ þ _W þ _Wc: ð13Þ
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Quantum Thermodynamics: A Nonequilibrium Green's Function Approach
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We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting
open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium
Green’s functions. The energy of the system and its coupling to the reservoirs are controlled by a slow
external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic
laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is
recovered in the weak coupling limit.

DOI: 10.1103/PhysRevLett.114.080602 PACS numbers: 05.70.Ln, 05.60.Gg

Nonequilibrium thermodynamics of open quantum sys-
tems is a powerful tool for the study of mesoscopic and
nanoscale systems. It allows one to reliably assess the
performance of energy-converting devices such as thermo-
electrics or photoelectrics, by identifying the system
entropy production. It enables one to meaningfully com-
pare these different devices by discriminating the system-
specific features from the universal ones and to appraise the
role of quantum effects. It can also be used to verify the
thermodynamic consistency of approximation schemes.
Such a theory is nowadays available for systems weakly
interacting with their surrounding [1–6], where it has
proven very useful [7–15]. However, in case of strong
system-reservoir interactions, finding definitions for heat,
work, entropy, and entropy production, which satisfy the
basic laws of thermodynamics is an open problem. Each
proposal has its own limitations [16–23], even at equilib-
rium [24–30]. Reversible transformations, for instance, are
never explicitly characterized. Establishing a consistent
nonequilibrium thermodynamics for open quantum sys-
tems strongly coupled to their surrounding is therefore an
important step towards a more realistic thermodynamic
description of mesoscopic and nanoscale devices. It is also
essential to improve our understanding of the microscopic
foundations of thermodynamics.
In this Letter, we use the nonequilibrium Green’s

functions (NEGF) to establish a fully consistent nonequili-
brium thermodynamic description of a fermionic single
quantum level strongly coupled to multiple fermionic
reservoirs. A slow time-dependent driving force controls
the level energy as well as the system-reservoir interaction.
We propose definitions for the particle number, the energy,
and the entropy of the system, as well as for entropy
production, heat, and work, which give rise to a consistent
zeroth, first, second, and third law. These definitions can be

seen as energy resolved versions of the weak coupling
definitions used in stochastic thermodynamics. An inter-
esting outcome of our approach is that the general form of
the energy and particle currents is different from the
standard form used in the NEGF and cannot be expressed
as an expectation value of operators. We recover the known
expressions when considering nonequilibrium steady states
(i.e., in absence of driving) or in the weak coupling limit.
The total Hamiltonian that we consider is ĤðtÞ ¼

ĤSðtÞ þ
P

νĤν þ
P

νV̂νðtÞ, where ν labels the different
fermionic reservoirs (see Fig. 1), ĤSðtÞ ¼ εðtÞd̂†d̂ is the
fermionic single level Hamiltonian, Ĥν ¼

P
k∈νεkĉ

†
kĉk is

the reservoir νHamiltonian, and V̂νðtÞ¼
P

k∈νðVν
kðtÞd̂

†ĉkþ
H:c:Þ is the level-reservoir coupling. The time dependence
in the system and in the coupling is due to the external time-
dependent driving force.
The central object in the NEGF theory is the single

particle Green function (GF) [31]

Gðτ1; τ2Þ ¼ −ihTcd̂ðτ1Þd̂†ðτ2Þi; ð1Þ

L

TL

R

TR

0

0+

FIG. 1 (color online). Sketch of a fermionic single quantum
level junction. The level is broadened by the strong coupling to
the reservoirs and is driven by a time-dependent force.
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 problems of the NEGF solution
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Z
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Improvement
A. Bruch,  M. Thomas, S. Viola-Kusminskiy, F. von Oppen, A. Nitzan, PRB (2016)

(adiabatic) expansion in powers of the driving velocity

ANTON BRUCH et al. PHYSICAL REVIEW B 93, 115318 (2016)

dict a positive entropy production reflecting the irreversibility
of the transformations, and (iv) correctly connect to the forces
experienced by the driving (see Refs. [12] and [13] for a general
discussion and calculations of these forces). In departure from
attempts to address the thermodynamic functions of the dot
itself, which are marred by the need for a proper partitioning of
the dot-lead coupling between the various subsystems [2,3,14],
we focus on the changes in the thermodynamic properties
of the overall system (dot and lead) which result from local
changes in parameters (i.e., the energy of the resonant level in
the present context). This circumvents the need to address the
contribution of the system-bath coupling to the thermodynamic
functions of the dot and instead defines the system as that part
of the “world” which is influenced by the dynamics of the
externally driven resonant level. We will henceforth refer to
this part of the overall system as the extended resonant level.2

This paper is organized as follows: In Sec. II, we introduce
the model. Section III contains a derivation of the equilibrium
thermodynamics of the extended resonant level from the grand
potential. Section IV extends these thermodynamic functions
to finite driving speed. To this end, we start with their
representations in terms of quasistatic expectation values of
operators, obtained in Sec. III, and expand these to linear order
in the driving speed. This is done by using a gradient expansion
within the framework of nonequilibrium Green’s functions.
In Sec. V, we show that, for weak level-lead coupling,
our theory approaches the expected classical master-equation
limit. We conclude in Sec. VI. We have relegated most explicit
calculations to a series of appendixes in order not to break the
flow of the main arguments.

II. MODEL

We consider a single localized electronic level coupled to
a free-electron metal at temperature T and chemical potential
µ. The Hamiltonian of the full system is

H = HD + HV + HB, (1)

where HD , HB , and HV denote the Hamiltonians of the dot,

HD = εd (t)d†d, (2)

of the metal lead,

HB =
∑

k

εkc
†
kck, (3)

and of the lead-dot coupling,

HV =
∑

k

(Vkd
†ck + H.c.). (4)

Here, d annihilates an electron in the dot level, ck annihilates
an electron with momentum k and energy εk in the lead, and
Vk denotes the coupling strength between dot level and lead.

The dot energy εd (t) is driven by an external force. Our goal
is to elucidate the effect of this driving on the thermodynamic

2Note that, because we work in the grand canonical ensemble
framework, the metal lead in our world is assumed to be weakly open
to an equilibrium bath of given temperature and electronic chemical
potential.

properties of the system. We limit ourselves to the simplest
situation of a single driven dot level, a single macroscopic
lead, and the wide-band approximation. (Alternative coupling
models, see, e.g., Ref. [15], can be considered.) Apart from
the driving, the lead is assumed to be in thermal equilibrium
characterized by a temperature T and an electronic chemical
potential µ. In the wide-band approximation the retarded dot
self-energy

"R(ε) = lim
η→0

k∑ |Vk|2

ε − εk + iη
= − i

2
$ (5)

can be taken as purely imaginary and energy independent
for energies ε well within the bandwidth of the lead and
vanishes for energies outside the band (see Appendix B). It is
furthermore proportional to the decay rate of the dot electrons
into the lead $ = 2π

∑
k |Vk|2δ(ε − εk). Consequently, the

spectral function associated with the dot’s electronic state is a
Lorentzian of width $ centered at εd ,

A(ε) = $

(ε − εd )2 + ($2)2
. (6)

The broadening necessitates an energy-resolved description of
the electronic response to changes in the level energy and is
responsible for the quantum nature of the problem. In Sec. V
we show that our quantum results reduce to their classical
counterparts in the limit $ ≪ kBT (kB is the Boltzmann
constant). As already mentioned, strong hybridization of dot
and lead results in a reaction of the lead to changes in the level
energy. This makes the definition of thermodynamic quantities
associated with the driven subsystem alone a difficult task. We
overcome this problem by considering as the driven system
the entire part of the world that is affected by changes in the
dot level, as shown in the next section.

III. EQUILIBRIUM THERMODYNAMICS

When εd (t) moves infinitely slowly, the change induced by
the driving is quasistatic and reversible.3 The system stays
in equilibrium at all times and follows the change in εd

adiabatically. The desired thermodynamic functions can then
be calculated from equilibrium thermodynamics. We do this
in the grand canonical framework, where our “full” system
(i.e., dot and lead) is coupled to a reservoir that controls
its temperature T = kBβ−1 and chemical potential µ. In the
free-electron model, the grand partition function ( and the
grand potential ) = −kBT ln ( can be evaluated exactly,
yielding

)tot = −kBT

∫
dε

2π
ρ(ε) ln(1 + e−β(ε−µ)), (7)

where the label “tot” stands for this being the grand potential of
the total system. We emphasize that the total system comprises
everything that is described by the Hamiltonians (2)–(4);
namely, the dot, the lead, and their coupling. In Eq. (7), ρ(ε)

3The velocity of the level is measured by ε̇d/$, and the detailed
condition for the process being quasistatic depends on whether kBT <

$ or kBT > $. In these limits, one obtains the conditions ε̇d/$ ≪ $

and ε̇d/$ ≪ kBT , respectively.
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is the density of states of the system as given by the trace of
the spectral function,

ρ(ε) =
∑

n

Ann(ε). (8)

Here, Ann(ε) = −2 ImGR
nn(ε) with the retarded Green’s func-

tion

GR
nn′ (t,t ′) = −i#(t − t ′)⟨{cn(t),c†n′(t ′)}⟩. (9)

The index n enumerates all single-particle states (lead and
dot). For better comparison with the recent work of Ref. [3],
we present the calculation of the density of states beyond the
wide-band limit, which is shown in Appendix A. The result is

ρ(ε) = Add (ε)
(

1 − d

dε
Re$R(ε)

)

+ 2ReGR
dd (ε)

d

dε
Im$R(ε) + ν(ε), (10)

where Add (ε) is the full spectral function associated with the
dot’s electronic state (i.e., not in the wide-band limit), $R is
the corresponding retarded self-energy, and ν(ε) is the density
of states of the free lead. The εd -dependent term of the grand
potential stems from the density of states ρ(ε) and arises from
the first three of the four terms in Eq. (10). In the wide-band
limit, the second and third terms on the right-hand side of
Eq. (10) vanish, and the εd -dependent part of the density of
states ρεd

is given by the spectral function A(ε) [Eq. (6)].
In the general (non-wide-band) case, the εd -dependent part
of the density of states is similar to the modified spectral
function proposed in Ref. [3], with the difference that the
energy derivative in the third term is taken of the imaginary
part of the self-energy, while Esposito et al. have a contribution
−2 Im$R∂ε ReGR

dd (ε) to their modified spectral function. This
leads to different thermodynamic functions calculated with
the help of the density of states, also in the wide-band
limit. We refer to the εd -dependent part of the system as the
extended resonant level, since it accounts for the change of the
surrounding in response to changing the level energy.

We now use the εd -dependent part of the density of states
ρεd

(ε) = A(ε) to calculate the εd -dependent contribution to
the grand potential ', which in turn yields the corresponding
εd -dependent contributions to all the thermodynamic functions
of the system. In particular, we calculate the entropy S(0),
the internal energy E(0), and the particle number N (0) of the
extended resonant level in equilibrium, i.e., for a frozen dot
level, and show how they evolve when the dot level is changed
quasistatically by an external force. We use superscripts on
the thermodynamic functions to indicate to which order in
the level velocity ε̇d they are calculated. Furthermore, we
show how these quantities can be represented, in the model
considered, as quasistatic expectation values of operators.
This observation provides a convenient route for extending
the quasistatic thermodynamic quantities to nonequilibrium,
i.e., to situations where the dot level is moved at finite speed
(see Sec. IV).

In the following, the notation ', S(0), E(0), N (0) and the
corresponding names grand potential, entropy, energy, and
particle number always refer to the εd -dependent parts of these

functions. The grand potential takes the form

' = −kBT

∫
dε

2π
A ln(1 + e−β(ε−µ)). (11)

Here and in the following, we omit energy arguments for better
readability. The particle number, entropy and energy are given
by

N (0) = −∂'

∂µ
=

∫
dε

2π
Af, (12)

S(0) = −∂'

∂T

= kB

∫
dε

2π
A[β(ε − µ)f + ln(1 + e−β(ε−µ))]

= kB

∫
dε

2π
A[−f ln f − (1 − f ) ln(1 − f )], (13)

and

E(0) = ' + µN (0) + T S(0) =
∫

dε

2π
εAf, (14)

where f is the Fermi–Dirac distribution. In the wide-band
limit, the grand potential as well as the internal energy
depend on the bandwidth D and diverge in the limit D → ∞.
However, this only affects the reference point from which the
grand potential and the internal energy are measured. Here, we
are interested in the thermodynamic relations between changes
in these quantities as the dot level ϵd varies. These changes
converge to bandwidth-independent values in the limit of an
infinite bandwidth (see the detailed discussion in Appendix B).

Equation (12) implies that, in the wide-band limit, the
εd -dependent part of the equilibrium particle number N (0) is
given by the quasistatic dot occupation N (0) = ⟨d†(t)d(t)⟩(0);
namely, the equilibrium occupation for the instantaneous value
of εd . The contribution to the energy, Eq. (14), explicitly shows
that the coupling to the environment affects the energy cost
associated with changes of the bare dot energy εd , because it
cannot be represented as an expectation value of HD only.
Equation (13) is the energy-resolved version of the Gibbs
entropy of a single fermionic level with equilibrium occupation
probability f , weighted by the spectral function of the dot
electrons. For T → 0, the term in square brackets in Eq. (13)
for S(0) tends to zero for ε ̸= µ and to ln 2 for ε = µ, reflecting
the degeneracy at the Fermi edge. Integrating over energy
leads to a vanishing equilibrium entropy S(0) of the extended
resonant level for T → 0.

It is important to note that the equilibrium energy of the
extended resonant level; namely, the εd -dependent part of
the total (dot plus lead) internal energy, can be expressed
as a sum of contributions from the different terms in the
Hamiltonian (1). In particular, as shown in Appendix E,
the part of the internal energy E(0) given by Eq. (14) can
be represented by the quasistatic expectation value E(0) =
⟨HD⟩(0) + 1

2 ⟨HV ⟩(0). This appears to indicate that, in the model
considered, half of the energy associated with the coupling
HV can be attributed to the extended resonant level. This
interpretation, however, is an oversimplification as may be
realized from the following: Calculating the εd -dependent
part of the averages of HD , HV , and HB from the grand
potential, Eq. (11), we obtain ⟨HB⟩εd

= −
∫

dε
2π

(ε − εd )Af ,
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⟨HV ⟩εd
= 2

∫
dε
2π

(ε − εd )Af , and ⟨HD⟩εd
= εd

∫
dε
2π

Af (see
Appendix E). It is interesting to note that not only ⟨HV ⟩ but
also ⟨HB⟩ has an εd -dependent part and together with ⟨HD⟩
they add up to E(0), Eq. (14). In fact, the contributions of HV

and HB add to ⟨HB⟩εd
+ ⟨HV ⟩εd

= 1
2 ⟨HV ⟩(0), which shows the

intricate physical origin of the symmetric splitting.
An apparent symmetric splitting of the coupling energy

in the wide-band limit of the resonant level model between
an effective driven system HD + 1

2HV and an effective bath
HB + 1

2HV was also found in the case of periodic driving [2].
It should be emphasized that this separation; namely, assigning
parts of the calculated thermodynamic functions to the differ-
ent subsystems, is not needed in the present analysis of the
equilibrium thermodynamics. We allude to it both because it
has been considered in recent discussions [2] and because it can
help building intuition about the system behavior. Furthermore
it serves as a convenient starting point for the Green’s-function-
based calculation of the internal energy when the level moves
at finite velocity.

Next, we consider the evolution of the thermodynamic
functions when changing the dot level quasistatically. In
particular, we examine the different contributions to the
reversible energy change dE(0), the reversible work dW (0),
the heat dQ(0), and the chemical work µdN (0). These satisfy
energy conservation as expressed by the first law,

dE(0) = dW (0) + dQ(0) + µdN (0), (15)

when applied to the extended resonant level. Note that this
equation relates properties of the full system (dot + lead). But
because the individual terms result from changes in the bare
dot energy εd , they are often referred to as changes in the
corresponding dot property.

The reversible work is given by the change in the grand
potential upon changing the level energy, dW (0) = dεd∂εd

$.
Expressed as an equation for the power Ẇ (1), this takes the
form

Ẇ (1) = ε̇dN
(0)(εd ) = ε̇d⟨d†(t)d(t)⟩(0). (16)

It is frequently the case that the time dependence of εd (t)
reflects the dynamics of some external coordinate, εd (t) =
Mxd (t) with a coupling parameter M . The quantity F =
−M⟨d†(t)d(t)⟩(0) is then the quasistatic force needed to change
the level energy. General expressions for such forces were
obtained in the context of adiabatic reaction forces [12,13].

The quasistatic heat leaving or entering the system is
calculated from dQ(0) = T dεd∂εd

S(0), with S(0) given by
Eq. (13). By noting that A(ε) depends only on (ε − εd ) and
integrating by parts, the corresponding quasistatic heat current
takes the form

Q̇(1) = T ε̇d

∂S(0)

∂εd

= ε̇d

∫
dε

2π
(ε − µ)A∂εf. (17)

With N (0) in Eq. (12), the quasistatic particle current Ṅ (1) =
ε̇d∂εd

N (0) is given by

Ṅ (1) = ε̇d

∫
dε

2π
A∂εf. (18)

The quasistatic change in the system’s energy associated with
the change in εd is given by

Ė(1) = ε̇d

∂E(0)

∂εd

= ε̇d

∫
dε

2π
ε

∂A

∂εd

f (19)

and is easily seen to indeed satisfy the first law, Eq. (15),
since Ė(1) = Ẇ (1) + Q̇(1) + µṄ (1). Note that the quasistatic
power Ẇ (1), the currents Ṅ (1) and Q̇(1), and the rate of energy
change Ė(1) are linear in the driving speed, as indicated by the
superscript.

We end our discussion of quasistatic (equilibrium) pro-
cesses with several comments:

(a) The integrand of Ṅ (1) can be understood as an energy-
resolved particle current J (1)(ε) = ε̇dA∂εf and the right-hand
side of Eq. (17) can be expressed in terms of the same current

Q̇(1) =
∫

dε

2π
J (1)(ε)(ε − µ). (20)

Consequently, J
(1)
Q (ε) = J (1)(ε)(ε − µ) can be identified as

the energy-resolved heat current, providing physical insight
into the nature of this current. It is important to note that
identifying the integrand of an energy integral such as the
particle current Ṅ (1) in Eq. (18) as an energy-resolved current
is open to ambiguity. Other expressions could also be chosen
following integration by parts. Considering the particle and
heat currents together serves to resolve this ambiguity.

(b) For quasistatic processes, we could calculate the
particle, energy, and heat currents without assigning these
variables to expectation values of the dot operators themselves.
Especially the quasistatic heat current, Eq. (17), was obtained
without relying on any specific forms for the energetic
properties of the dot itself. In particular, the symmetric splitting
of the coupling Hamiltonian between dot and lead, discussed
above, was not used. It can, however, also be calculated
from expectation values by using the symmetric splitting into
effective bath and system introduced above. Indeed, we show
in Appendix F that, to lowest order in the level speed, the
adiabatic heat current Q̇(1) given in Eq. (17) is reproduced
by the change of the energy of the effective bath HB + 1

2HV

minus the chemical contribution of the particle flow,

Q̇(1) = − d

dt

〈
HB + 1

2
HV

〉(0)

− µ
d

dt
N (0). (21)

Equation (21) confirms, for the present model and the wide-
band limit, the consistency of the symmetric splitting of
the coupling Hamiltonian HV into an effective bath and an
effective driven system. This will serve as a convenient starting
point for the calculation of the heat current at finite level
speed. Note, however, that for more general models (e.g.,
beyond the wide-band approximation and with variations in
the level-lead coupling), the possibility to express the change
in thermodynamic variables in terms of expectation values of
“system operators” is an open problem and subject to several
difficulties [14].

(c) In the quasistatic process, the entropy change Ṡ(1) =
ε̇d∂εd

S(0) is given by the corresponding heat current, Q̇(1) =
T Ṡ(1), indicating that no entropy is produced. This is not the
case when the level moves at finite speed and dissipation sets
in, as discussed in the next section.
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⟨HV ⟩εd
= 2

∫
dε
2π

(ε − εd )Af , and ⟨HD⟩εd
= εd

∫
dε
2π

Af (see
Appendix E). It is interesting to note that not only ⟨HV ⟩ but
also ⟨HB⟩ has an εd -dependent part and together with ⟨HD⟩
they add up to E(0), Eq. (14). In fact, the contributions of HV

and HB add to ⟨HB⟩εd
+ ⟨HV ⟩εd

= 1
2 ⟨HV ⟩(0), which shows the

intricate physical origin of the symmetric splitting.
An apparent symmetric splitting of the coupling energy

in the wide-band limit of the resonant level model between
an effective driven system HD + 1

2HV and an effective bath
HB + 1

2HV was also found in the case of periodic driving [2].
It should be emphasized that this separation; namely, assigning
parts of the calculated thermodynamic functions to the differ-
ent subsystems, is not needed in the present analysis of the
equilibrium thermodynamics. We allude to it both because it
has been considered in recent discussions [2] and because it can
help building intuition about the system behavior. Furthermore
it serves as a convenient starting point for the Green’s-function-
based calculation of the internal energy when the level moves
at finite velocity.

Next, we consider the evolution of the thermodynamic
functions when changing the dot level quasistatically. In
particular, we examine the different contributions to the
reversible energy change dE(0), the reversible work dW (0),
the heat dQ(0), and the chemical work µdN (0). These satisfy
energy conservation as expressed by the first law,

dE(0) = dW (0) + dQ(0) + µdN (0), (15)

when applied to the extended resonant level. Note that this
equation relates properties of the full system (dot + lead). But
because the individual terms result from changes in the bare
dot energy εd , they are often referred to as changes in the
corresponding dot property.

The reversible work is given by the change in the grand
potential upon changing the level energy, dW (0) = dεd∂εd

$.
Expressed as an equation for the power Ẇ (1), this takes the
form

Ẇ (1) = ε̇dN
(0)(εd ) = ε̇d⟨d†(t)d(t)⟩(0). (16)

It is frequently the case that the time dependence of εd (t)
reflects the dynamics of some external coordinate, εd (t) =
Mxd (t) with a coupling parameter M . The quantity F =
−M⟨d†(t)d(t)⟩(0) is then the quasistatic force needed to change
the level energy. General expressions for such forces were
obtained in the context of adiabatic reaction forces [12,13].

The quasistatic heat leaving or entering the system is
calculated from dQ(0) = T dεd∂εd

S(0), with S(0) given by
Eq. (13). By noting that A(ε) depends only on (ε − εd ) and
integrating by parts, the corresponding quasistatic heat current
takes the form

Q̇(1) = T ε̇d

∂S(0)

∂εd

= ε̇d

∫
dε

2π
(ε − µ)A∂εf. (17)

With N (0) in Eq. (12), the quasistatic particle current Ṅ (1) =
ε̇d∂εd

N (0) is given by

Ṅ (1) = ε̇d

∫
dε

2π
A∂εf. (18)

The quasistatic change in the system’s energy associated with
the change in εd is given by

Ė(1) = ε̇d

∂E(0)

∂εd

= ε̇d

∫
dε

2π
ε

∂A

∂εd

f (19)

and is easily seen to indeed satisfy the first law, Eq. (15),
since Ė(1) = Ẇ (1) + Q̇(1) + µṄ (1). Note that the quasistatic
power Ẇ (1), the currents Ṅ (1) and Q̇(1), and the rate of energy
change Ė(1) are linear in the driving speed, as indicated by the
superscript.

We end our discussion of quasistatic (equilibrium) pro-
cesses with several comments:

(a) The integrand of Ṅ (1) can be understood as an energy-
resolved particle current J (1)(ε) = ε̇dA∂εf and the right-hand
side of Eq. (17) can be expressed in terms of the same current

Q̇(1) =
∫

dε

2π
J (1)(ε)(ε − µ). (20)

Consequently, J
(1)
Q (ε) = J (1)(ε)(ε − µ) can be identified as

the energy-resolved heat current, providing physical insight
into the nature of this current. It is important to note that
identifying the integrand of an energy integral such as the
particle current Ṅ (1) in Eq. (18) as an energy-resolved current
is open to ambiguity. Other expressions could also be chosen
following integration by parts. Considering the particle and
heat currents together serves to resolve this ambiguity.

(b) For quasistatic processes, we could calculate the
particle, energy, and heat currents without assigning these
variables to expectation values of the dot operators themselves.
Especially the quasistatic heat current, Eq. (17), was obtained
without relying on any specific forms for the energetic
properties of the dot itself. In particular, the symmetric splitting
of the coupling Hamiltonian between dot and lead, discussed
above, was not used. It can, however, also be calculated
from expectation values by using the symmetric splitting into
effective bath and system introduced above. Indeed, we show
in Appendix F that, to lowest order in the level speed, the
adiabatic heat current Q̇(1) given in Eq. (17) is reproduced
by the change of the energy of the effective bath HB + 1

2HV

minus the chemical contribution of the particle flow,

Q̇(1) = − d

dt

〈
HB + 1

2
HV

〉(0)

− µ
d

dt
N (0). (21)

Equation (21) confirms, for the present model and the wide-
band limit, the consistency of the symmetric splitting of
the coupling Hamiltonian HV into an effective bath and an
effective driven system. This will serve as a convenient starting
point for the calculation of the heat current at finite level
speed. Note, however, that for more general models (e.g.,
beyond the wide-band approximation and with variations in
the level-lead coupling), the possibility to express the change
in thermodynamic variables in terms of expectation values of
“system operators” is an open problem and subject to several
difficulties [14].

(c) In the quasistatic process, the entropy change Ṡ(1) =
ε̇d∂εd

S(0) is given by the corresponding heat current, Q̇(1) =
T Ṡ(1), indicating that no entropy is produced. This is not the
case when the level moves at finite speed and dissipation sets
in, as discussed in the next section.
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We have described the equilibrium thermodynamics of the
resonant level model and calculated the reversible change
of the thermodynamic quantities in the wide-band limit. We
represented all thermodynamic quantities of the extended
resonant level as quasistatic expectation values of operators.
Next we extend our discussion to the nonadiabatic regime and
consider the effect of moving the dot level energy at a small,
but finite speed.

IV. NONEQUILIBRIUM THERMODYNAMICS

In this section, we consider the changes in thermodynamic
quantities when the dot level moves at finite speed. For
this nonequilibrium process we cannot use the equilibrium
grand potential as a starting point. Instead, we extend our
quasistatic results to finite-speed processes by expanding
the expectation values of the operators associated with the
thermodynamic variables in powers of the level velocity,
using the nonequilibrium Green’s function approach together
with the gradient expansion in the Wigner representation. Our
theory should follow three guidelines: First, all nonequilibrium
quantities should converge to their equilibrium forms, obtained
in the previous section, in the limit of vanishing speed.
Second, higher-order corrections should satisfy conservation
of energy and particle number at the corresponding order.
Third, the nonequilibrium entropy of the extended resonant
level should lead to positive entropy production characterizing
the irreversibility of the process. Note that the corrections
obtained below are of different orders in the level speed. The
corrections to the equilibrium values of the thermodynamic
variables themselves are linear in ε̇d , while the correction to
their fluxes are quadratic. The corresponding order is again
indicated by the superscript assigned to the different variables.
We also assume a linear motion of the dot level, ε̈d = 0.

Particle number. We extend the calculation of the particle
number of the resonant level to finite speed by expanding
the lesser Green’s function ⟨d†(t)d(t)⟩ = −iG<

dd (t,t) to linear
order in the level speed. This is done in Appendix C. Alterna-
tively, the effect of the level speed on the dot occupation can
be expressed through a nonequilibrium distribution function φ
(as done in Ref. [3]), which is related to the Wigner transform
of the lesser Green’s function via G< = iAφ. The equation of
motion for φ and its solution are given in Appendix D, and the
final result for the nonequilibrium distribution φ is

φ = f − ε̇d

2
∂εf A. (22)

Both approaches are equivalent and lead to G< = iA(f −
ε̇d

2 ∂εf A) and therefore to a correction to the particle number
linear in the velocity,

N (1) = − ε̇d

2

∫
dε

2π
∂εf A2. (23)

This correction in particle number accounts for the fact that
the dot population lags behind the equilibrium value since
electrons are not exchanged fast enough with the leads.
The time derivative of Eq. (23) now yields the correction
Ṅ (2) = d

dt
N (1) to the quasistatic current Ṅ (1), which takes the

form

Ṅ (2) = − ε̇2
d

2

∫
dε

2π
∂2
ε f A2. (24)

One might be tempted to identify the integrand of Ṅ (2) as
the second-order correction to the energy-resolved particle
current. However, this cannot be done unambiguously because
other expressions can be obtained after integration by parts. As
before, more information can be obtained by considering the
particle and heat currents together, as further discussed below.

Work. The quasistatic work per unit time Ẇ (1) = ε̇dN
(0)

can be extended to finite level speed with the correction to the
dot occupation N (1) [Eq. (23)]. With this we readily obtain the
extra power that the external driving has to provide for moving
the level at finite speed by multiplying N (1), Eq. (23), by the
level speed

Ẇ (2) = − ε̇2
d

2

∫
dε

2π
∂εf A2. (25)

Ẇ (2) thus corresponds to the power dissipated by driving the
system at finite speed. When considering the time dependence
of εd (t) as reflecting the dynamics of some external coordinate,
εd (t) = Mxd (t), the dissipated power is caused by a friction
force acting on the external coordinate Ffric = −MN (1) =
−γ ẋd . This yields the friction coefficient

γ = −M2

2

∫
dε

2π
∂εf A2. (26)

The same expression for the friction in the resonant level model
was found in Ref. [13].

Internal energy. We showed above that the equilibrium
internal energy of the extended resonant level can be repre-
sented as the quasistatic expectation value E(0) = ⟨HD⟩(0) +
1
2 ⟨HV ⟩(0). Expanding the expectation values to first order in the
velocity (see Appendix E), we obtain the first-order correction
to the internal energy,

E(1) = −ε̇d

2

∫
dε

2π
ε∂εf A2. (27)

Heat flux. Taking the next-order correction to the expression
of the quasistatic heat flux, Eq. (21), in terms of the energy
change in the effective bath and the chemical contribution
(shown in Appendix F) gives the correction to the heat flux
that originates from moving the level at finite speed,

Q̇(2) = − ε̇2
d

2

∫
dε

2π
(ε − µ)∂2

ε f A2. (28)

As in the case of the quasistatic heat current, the integrand
of the correction Q̇(2) can be understood as heat (ε − µ)
carried into the lead by the energy-resolved particle current
J (2)(ε), Q̇(2) =

∫
dε
2π

(ε − µ)J (2)(ε). The energy-resolved par-
ticle current J (2)(ε) in turn is the properly chosen integrand in
Ṅ (2) =

∫
dε
2π

J (2)(ε) as given by Eq. (24). This unambiguously
defines the second-order correction to the energy-resolved
particle current as J (2) = − ε̇2

d

2 ∂2
ε f A2.

Consistency checks. The consistency of our thermodynamic
description should be examined by its behavior in the qua-
sistatic limit by satisfying particle conservation and by its
adherence to the first law (energy conservation). Furthermore,
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We have described the equilibrium thermodynamics of the
resonant level model and calculated the reversible change
of the thermodynamic quantities in the wide-band limit. We
represented all thermodynamic quantities of the extended
resonant level as quasistatic expectation values of operators.
Next we extend our discussion to the nonadiabatic regime and
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2
∂εf A. (22)
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ε̇d
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N (1) = − ε̇d

2

∫
dε

2π
∂εf A2. (23)
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Ṅ (2) = d
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d

2
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dε

2π
∂2
ε f A2. (24)
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level speed
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2π
∂εf A2. (25)
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2
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dε

2π
∂εf A2. (26)
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2 ⟨HV ⟩(0). Expanding the expectation values to first order in the
velocity (see Appendix E), we obtain the first-order correction
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2
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dε

2π
ε∂εf A2. (27)
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2π
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ε f A2. (28)
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description should be examined by its behavior in the qua-
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We analyze the time-dependent energy and heat flows in a resonant level coupled to a fermionic continuum.
The level is periodically forced with an external power source that supplies energy into the system. Based on the
tunneling Hamiltonian approach and scattering theory, we discuss the different contributions to the total energy
flux. We then derive the appropriate expression for the dynamical dissipation, in accordance with the fundamental
principles of thermodynamics. Remarkably, we find that the dissipated heat can be expressed as a Joule law with
a universal resistance that is constant at all times.
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Quite generally, energy flows through a physical system
coupled to a power source. In the last decades, typical system
sizes have been reduced to the nanoscale and, as a conse-
quence, energy transfer is to be treated quantum mechanically
[1]. The fundamental aspects of light-powered biological
energy transport [2], thermoelectric waste heat recovery [3],
and ultimate refrigeration protocols [4] have been recently
uncovered using quantum mechanical principles. However,
most discussions are limited to stationary or time-averaged
properties [5–9].

Time-dependent quantum transport reveals the dynamical
scales that dominate charge transfer across phase-coherent
conductors [10,11]. A prominent example is the experi-
mentally realized quantum capacitor, which exhibits a pure
ac response [12,13]. Applied time-periodic potentials also
become a crucial tool to generate directed transport of charge
and spin in spatially asymmetric ratchetlike systems [14,15]
and to control matter tunneling in Bose-Einstein condensates
[16]. Furthermore, the study of ac-driven quantum systems
sheds light on the role of fluctuating forces in nanoelec-
tromechanical resonators [17,18]. Several aspects related to
time-dependent energy transport in electron systems have
been also investigated. Heat production in nanoscale engines
is discussed in Refs. [19,20] while molecular heat pumping
against thermal gradients is proposed in Ref. [21]. Further-
more, the concept of local temperature in ac pumps has been
generalized in Ref. [22] whereas universal thermal resistance
has been predicted for low-temperature dynamical transport in
Ref. [23].

Here, we aim at the time-resolved energy production and
redistribution in ac-driven quantum coherent electron systems.
We show that the coupling between the different parts of
the system not only provides a necessary mechanism for
particle exchange, as in the case of charge transport, but also
contributes to the energy transport. This contribution is of an

*These authors contributed equally to this work.

ac nature. Though the time average of this energy vanishes, it
allows for a temporary energy storage. Therefore, the coupling
region can be referred to as an energy reactance, which only
affects peak power developed in the dynamics. Our goal is also
to discuss which portion of the time-resolved energy can be
identified as heat, in accordance with the fundamental laws of
the thermodynamics.

To be more precise, let us consider a simple but generic
model, the resonant level model sketched in Fig. 1. It describes
a localized fermion (the impurity) coupled to a fermionic band
of continuous density of states (the reservoir). This model
has been widely used across disciplines to study asymmetric
atomic spectra [24], dissipative quantum mechanics [25], and
resonant-tunneling semiconductor heterostructures [26], to
name a few. Transitions from the quantum level to the reservoir
yield a finite lifetime to the localized fermion which can be
represented with a Lorentzian density of states. We consider
the case in which the level is attached to a harmonically
driven power source as in Fig. 1. Then, the Hamiltonian
reads

H = HC + HT + HD(t), (1)

FIG. 1. (Color online) Energy diagram of the system under con-
sideration. A single electronic level (the impurity with charge e) is
coupled to a Fermi sea (the reservoir with chemical potential µ).
Energy is supplied into the system by a power source (amplitude Vac

and frequency !) attached to the quantum level. Thus, energy rates
are created not only at the impurity (WD) but also at the reservoir
(WC) and in the contact region (WT ).

1098-0121/2014/89(16)/161306(5) 161306-1 ©2014 American Physical Society
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Entropy production: microscopic construction
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Scattering approach

2

FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],

IN↵ (t) =

Z 1

�1

d✏

2⇡

�

�out

↵↵ (t, ✏)� �in

↵↵(✏)
 

, (3)

where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform

�out
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Similarly, the energy current IE↵ in channel ↵ reads
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Z 1
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✏
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. (5)

The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out

IQ
tot

(t) =

Z 1

�1

d✏

2⇡
(✏� µ)trc

�

�out(t, ✏)� �in(✏)
 

, (6)

where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
(7)

to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as

IS in

↵ =

Z 1

�1

d✏

2⇡
� [f↵(✏)] . (8)

Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads

IS in(out)(t) =

Z 1

�1

d✏

2⇡
trc

n

�[�in(out)(t, ✏)]
o

. (9)

To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads

L = �Tr [⇢ ln ⇢] +
X

↵�

�↵�
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.
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ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
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The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
(7)

to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform
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The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
(7)

to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as

IS in
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads

IS in(out)(t) =
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform
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The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
(7)

to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as

IS in

↵ =

Z 1

�1

d✏

2⇡
� [f↵(✏)] . (8)

Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads

IS in(out)(t) =
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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X

↵�

�↵�

⇣

Tr
h

⇢c†�c↵

i

� �̄↵�

⌘

� � (Tr⇢� 1) , (10)

Wigner transform

2

FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform
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The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
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to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads

IS in(out)(t) =

Z 1

�1

d✏

2⇡
trc

n

�[�in(out)(t, ✏)]
o

. (9)

To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform
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The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
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to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
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going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],
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where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
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The heat current IQ↵ = IE↵ �µ↵I
N
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in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out

IQ
tot

(t) =

Z 1

�1

d✏

2⇡
(✏� µ)trc

�

�out(t, ✏)� �in(✏)
 

, (6)

where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
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to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,
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Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.
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in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
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where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with
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Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads
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To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
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where Tr denotes the many-particle trace over all pos-
sible occupations and � as well as the �’s are Lagrange
multipliers. It is convenient to diagonalize the Hermitian
matrix �̄ and introduce a rotated basis, namely

�̄ = U⇤U † and c↵ =
X

c

U↵cdc , (11)

where U is a unitary matrix and ⇤↵� = ⇤↵�↵� is diag-
onal containing the real eigenvalues of �̄. In the rotated
basis the Lagrangian L allows us to maximize the von-
Neumann entropy with the given constraints. This yields
the density matrix

⇢ =
Y

↵

(1� ⇤↵)

✓

⇤↵

1� ⇤↵

◆n̂↵

, (12)

where n̂↵ is the occupation of mode ↵ in the rotated
basis. We calculate the entropy S of this density matrix
by summing over all possible occupations in the rotated
basis,

S =
X

↵

�[⇤↵] = tr (�[⇤]) , (13)

where the sum over the diagonal elements of ⇤ is in-
cluded through the single-particle trace tr. Finally, ro-
tating back to the original basis, ⇤ = U†�̄U , we find the
entropy in terms of the distribution matrix �̄,

S = tr
�

�[�̄]
�

. (14)

For a slowly changing scattering potential, we associate
the entropy with the time-dependent distribution matrix
�↵�(t, ✏) of the scattering states in Eq. (4), for which the
single-particle trace represents an integral over energy
and a trace trc over channel and lead indices.

By combing in- and outgoing entropy currents we write
the total entropy current into the leads as

IS
tot

(t) =

Z 1

�1

d✏

2⇡
trc

�

�[�out(t, ✏)]� �[�in(✏)]
 

. (15)

In the case of a static scatterer between two biased reser-
voirs at zero temperature, the entropy current can be
used to quantify the entanglement of outgoing electron-
hole pairs created in a tunneling event. Indeed, we ver-
ify that an immediate generalization of Eq. (15) repro-
duces the quantum mutual information between outgoing
scattering channels on the left and right as obtained in
Ref. [24] (see [35] for details).

Entropy current induced by a dynamic scatterer.�The
entropy and heat currents generated by a slowly changing
scattering potential V [X(t)] are obtained by expanding
the scattering matrix and the outgoing distribution ma-
trix about the frozen configuration in powers of the ve-
locity Ẋ [26–29]. Up to first order, the Wigner transform
of the scattering matrix can be expressed in terms of the

frozen scattering matrix S and its first order correction
A, S(✏, t) = S+ẊA. This expansion is well motivated in
the regime where X(t) changes on a characteristic time
scale much longer than the electronic dwell time in the
scattering region. Accordingly, we write �out as

�out ' Î f + �out(1) + �out(2) , (16)

where Î is a unit matrix in channel and lead space and
the superscript stands for the order in Ẋ. (We omit time
and energy labels for better readability.) Similarly, we
expand �[�out(✏)] up to second order about the uncorre-
lated equilibrium
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Note that the second order contribution proportional to
d2� [f ] /df2 = (T@✏f)

�1 is always negative due to the
concavity of �.
By inserting the above expression in Eq. (15) we obtain
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where we have used that �in = Î f(✏). By the same token,
Eqs. (6) and (16) give
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These expressions nicely elucidate the connection be-
tween heat and entropy currents, and the departure from
dQ = TdS beyond the quasistatic limit. At first order
in Ẋ, corresponding to the quasistatic regime, the en-
tropy current is entirely given by the heat current over

temperature I
S(1)

tot

= I
Q(1)

tot

/T , i.e., the proposed form of
the entropy current correctly connects to the quasistatic
equilibrium. In contrast, at second order an additional
negative correction appears
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Since trc{(�out(1))2} contains all o↵-diagonal elements of
�out(1), it encodes the correlations created by the dy-
namic scatterer. These correlations determine by how
much the entropy current in the leads is smaller than the
corresponding heat current over temperature. This net
inflow of entropy into the scattering region reflects the
local dissipation-induced increase of entropy.
We calculate � explicitly within the gradient expansion

[26–28]. Assuming that f↵(✏) = f(✏), one writes �out(1)

in terms of the frozen scattering matrix S,

�out(1) (✏, t) = iẊ@✏f S@XS† . (21)
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FIG. 1. The scattering potential in the central region, e.g. a
quantum dot, slowly changed by an external parameter X(t),
driving a net heat and entropy current into the leads.

these currents permit one to deduce the change of en-
ergy and particle number in the scattering region (inside-
outside duality). Here, we show that the same approach
extends to the entropy, thereby completing the thermo-
dynamic description of strongly coupled systems. Since
the von-Neumann entropy S is conserved under coherent
unitary dynamics, the change of entropy in the scattering
region can also be inferred from the entropy currents car-
ried by the scattered electrons. We find that this method
overcomes the limitations of previous approaches arising
from the strong system-bath coupling [6–8, 30, 31].

Entropy current carried by scattering states.�We con-
sider a time-dependent scattering region connected to one
or multiple ideal leads, in which the electrons propagate
in transverse scattering channels, and leave the electronic
spin degree of freedom implicit. Electrons in incoming
and outgoing channels are described by annihilation op-
erators a and b, related by the scattering matrix S,

0

B

@

b
1

(✏)
...

bN (✏)

1

C

A

=

Z

d✏0

2⇡
S(✏, ✏0)

0

B

@

a
1

(✏0)
...

aN (✏0)

1

C

A

. (2)

Here the subscript ↵ = 1, · · · , N labels the channels and
leads. The leads are connected to electronic reservoirs,
which determine the distribution of the incoming chan-
nels to be ha†�(✏)a↵(✏0)i = �in

↵�(✏)2⇡�(✏ � ✏0) in terms of

a diagonal distribution matrix �in

↵�(✏) = �↵�f↵(✏), where
f↵(✏) is the Fermi distribution with temperature T and
chemical potential µ↵.

The particle current in channel ↵ through any cross-
section of the corresponding lead is obtained by account-
ing for in- and outgoing electrons [18],

IN↵ (t) =

Z 1

�1

d✏

2⇡

�

�out

↵↵ (t, ✏)� �in

↵↵(✏)
 

, (3)

where the one-dimensional density of states %↵(✏) =
[2⇡v↵(✏)]�1 and the group velocity v↵(✏) compensate (we
set ~ = 1). �out(t, ✏) is given by the Wigner transform

�out

↵� (t, ✏) =

Z

d✏̃

2⇡
e�i"̃t

D

b†�(✏� ✏̃/2)b↵(✏+ ✏̃/2)
E

. (4)

Similarly, the energy current IE↵ in channel ↵ reads

IE↵ (t) =

Z 1

�1

d✏

2⇡
✏
�

�out

↵↵ (t, ✏)� �in

↵↵(✏)
 

. (5)

The heat current IQ↵ = IE↵ �µ↵I
N
↵ carried by the electrons

in the leads is a combination of the particle current IN↵
into the corresponding reservoir with chemical potential
µ↵ and the energy current IE↵ . We can express the total
heat current in terms of the diagonal elements of the
distribution matrix �out

IQ
tot

(t) =

Z 1

�1

d✏

2⇡
(✏� µ)trc

�

�out(t, ✏)� �in(✏)
 

, (6)

where the trace runs over channel and lead space. Here,
for simplicity we assume the same chemical potential µ
in all reservoirs.
To obtain the entropy current, we begin by consider-

ing the entropy of a single incoming channel. For a given
energy the channel can be either occupied or empty, ac-
cording to f↵(✏), and contributes with

� [f↵(✏)] = �f↵(✏) ln [f↵(✏)]� (1� f↵(✏)) ln [1� f↵(✏)]
(7)

to the system entropy. By analogy with the particle cur-
rent, Eq. (3), we write the incoming entropy current as

IS in

↵ =

Z 1

�1

d✏

2⇡
� [f↵(✏)] . (8)

Hence, as expected [32], each of the incoming spin-
resolved channels carries an entropy current of ⇡T/6 to-
wards the scattering region.
Scattering redistributes the electrons between the out-

going channels, thereby modifying the entropy flow into
the leads. The scattering-induced correlations between
outgoing scattering states [21, 23] are encoded in the non-
diagonal distribution matrix �out

↵� (t, ✏) for the outgoing
electrons. As we show below, the natural extension of
Eq. (8) reads

IS in(out)(t) =

Z 1

�1

d✏

2⇡
trc

n

�[�in(out)(t, ✏)]
o

. (9)

To motivate Eq. (9) we derive the non-interacting
fermionic density matrix for a given distribution matrix
�̄↵� = Tr[⇢c†�c↵]. In the scattering setup the incoming
operators describe particles of an equilibrium reservoir
and the outgoing operators are linear functions of the
incoming ones, cf. Eq. (2). Hence, all averages can be
calculated via Wick’s theorem and the single-particle cor-
relations described by � fully determine all expectation
values.
Our derivation exploits the maximum entropy prin-

ciple that yields the most general density matrix given
certain single-particle correlations [33]. (We obtain the
same result following the approach of Ref. [34].) The La-
grangian for maximizing the von-Neumann entropy un-
der the constraints Tr⇢ = 1 and �̄↵� = Tr[⇢c†�c↵] reads

L = �Tr [⇢ ln ⇢] +
X

↵�

�↵�

⇣

Tr
h

⇢c†�c↵

i

� �̄↵�

⌘

� � (Tr⇢� 1) , (10)
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I. CALCULATION OF THE OUTGOING DISTRIBUTION MATRIX IN THE GRADIENT EXPANSION

In the following we derive the adiabatic expansion for the outgoing distribution matrix Eq. (4) of the main text.
With the expression of the outgoing operators b in terms of the incoming ones a via exact scattering matrix of the
time-dependent problem S, Eq. (2) of the main text, we obtain

hb†� (✏2) b↵ (✏
1

)i =
X
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.

We use that the incoming scattering states are uncorrelated equilibrium channels
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)fi(✏1) (1)
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with f̃�(✏3, ✏4) ⌘ 2⇡�(✏
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). The Wigner transform of a convolution
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takes the form of a Moyal product of Wigner transforms

G (✏, t) = C (", t) ⇤D (", t) (4)

where C (", t) ⇤D (", t) = C (", t) exp
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D (", t). Hence, we get
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Expanding the exponential gives the di↵erent orders of velocity, which is called the gradient expansion. The Wigner
transform of the incoming distribution in channel � f̃�(✏3, ✏4) = 2⇡�(✏

3

� ✏
4

) f�(✏3) is just the Fermi function of the
associated reservoir f̃�(✏, t) = f�(✏). The Wigner transform of the full scattering matrix

S(✏, t) =
Z

d✏̃

2⇡
e�i✏̃tS(✏+ ✏̃

2
, ✏� ✏̃

2
) (7)

can be written as an expansion in powers of velocity (assuming Ẍ = 0)[1, 2]

S(✏, t) = St(✏) + ẊAt(✏) + Ẋ2Bt(✏) , (8)

3

where Tr denotes the many-particle trace over all pos-
sible occupations and � as well as the �’s are Lagrange
multipliers. It is convenient to diagonalize the Hermitian
matrix �̄ and introduce a rotated basis, namely

�̄ = U⇤U † and c↵ =
X

c

U↵cdc , (11)

where U is a unitary matrix and ⇤↵� = ⇤↵�↵� is diag-
onal containing the real eigenvalues of �̄. In the rotated
basis the Lagrangian L allows us to maximize the von-
Neumann entropy with the given constraints. This yields
the density matrix

⇢ =
Y

↵

(1� ⇤↵)

✓

⇤↵

1� ⇤↵

◆n̂↵

, (12)

where n̂↵ is the occupation of mode ↵ in the rotated
basis. We calculate the entropy S of this density matrix
by summing over all possible occupations in the rotated
basis,

S =
X

↵

�[⇤↵] = tr (�[⇤]) , (13)

where the sum over the diagonal elements of ⇤ is in-
cluded through the single-particle trace tr. Finally, ro-
tating back to the original basis, ⇤ = U†�̄U , we find the
entropy in terms of the distribution matrix �̄,

S = tr
�

�[�̄]
�

. (14)

For a slowly changing scattering potential, we associate
the entropy with the time-dependent distribution matrix
�↵�(t, ✏) of the scattering states in Eq. (4), for which the
single-particle trace represents an integral over energy
and a trace trc over channel and lead indices.

By combing in- and outgoing entropy currents we write
the total entropy current into the leads as

IS
tot

(t) =

Z 1

�1

d✏

2⇡
trc

�

�[�out(t, ✏)]� �[�in(✏)]
 

. (15)

In the case of a static scatterer between two biased reser-
voirs at zero temperature, the entropy current can be
used to quantify the entanglement of outgoing electron-
hole pairs created in a tunneling event. Indeed, we ver-
ify that an immediate generalization of Eq. (15) repro-
duces the quantum mutual information between outgoing
scattering channels on the left and right as obtained in
Ref. [24] (see [35] for details).

Entropy current induced by a dynamic scatterer.�The
entropy and heat currents generated by a slowly changing
scattering potential V [X(t)] are obtained by expanding
the scattering matrix and the outgoing distribution ma-
trix about the frozen configuration in powers of the ve-
locity Ẋ [26–29]. Up to first order, the Wigner transform
of the scattering matrix can be expressed in terms of the

frozen scattering matrix S and its first order correction
A, S(✏, t) = S+ẊA. This expansion is well motivated in
the regime where X(t) changes on a characteristic time
scale much longer than the electronic dwell time in the
scattering region. Accordingly, we write �out as

�out ' Î f + �out(1) + �out(2) , (16)

where Î is a unit matrix in channel and lead space and
the superscript stands for the order in Ẋ. (We omit time
and energy labels for better readability.) Similarly, we
expand �[�out(✏)] up to second order about the uncorre-
lated equilibrium

�[�out] ' Î� [f ] + Î
d� [f ]

df

⇣

�out(1) + �out(2)

⌘

+
1

2
Î
d2� [f ]

df2

⇣

�out(1)

⌘

2

. (17)

Note that the second order contribution proportional to
d2� [f ] /df2 = (T@✏f)

�1 is always negative due to the
concavity of �.
By inserting the above expression in Eq. (15) we obtain
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2⇡
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⇢

✏� µ
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⇣
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+
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2T@✏f

⇣
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⌘

2

�

, (18)

where we have used that �in = Î f(✏). By the same token,
Eqs. (6) and (16) give

IQ
tot

=

Z 1

�1

d✏

2⇡
(✏� µ) trc

n

�out(1) + �out(2)

o

. (19)

These expressions nicely elucidate the connection be-
tween heat and entropy currents, and the departure from
dQ = TdS beyond the quasistatic limit. At first order
in Ẋ, corresponding to the quasistatic regime, the en-
tropy current is entirely given by the heat current over

temperature I
S(1)

tot

= I
Q(1)

tot

/T , i.e., the proposed form of
the entropy current correctly connects to the quasistatic
equilibrium. In contrast, at second order an additional
negative correction appears

I
S(2)

tot

=
I
Q(2)

tot

T
+

Z 1

�1

d✏

2⇡

1

2T@✏f
trc

⇢

⇣

�out(1)

⌘

2

�

. (20)

Since trc{(�out(1))2} contains all o↵-diagonal elements of
�out(1), it encodes the correlations created by the dy-
namic scatterer. These correlations determine by how
much the entropy current in the leads is smaller than the
corresponding heat current over temperature. This net
inflow of entropy into the scattering region reflects the
local dissipation-induced increase of entropy.
We calculate � explicitly within the gradient expansion

[26–28]. Assuming that f↵(✏) = f(✏), one writes �out(1)

in terms of the frozen scattering matrix S,

�out(1) (✏, t) = iẊ@✏f S@XS† . (21)
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Inserting �out(1) into the entropy current Eq. (20), we
obtain the entropy current up to second order

IS
tot

=
IQ
tot

T
� Ẇ (2)

T
. (22)

with

Ẇ (2) = �Ẋ2

2

Z 1

�1

d✏

2⇡
@✏f(✏)trc

�

@XS†@XS
�

� 0 . (23)

Remarkably, Ẇ (2) = �Ẋ2 is exactly the dissipated power
that the external agent pumps into the system as a result
of the time-dependent system Hamiltonian. Ẇ (2) was de-
rived in Refs. [26–28] in terms of the friction coe�cient �
of the back-action force that needs to be overcome by the
external agent. Thus, from our outside perspective, dis-
sipation leads to an inflow of entropy into the scattering
region in addition to the heat-current contribution.

We are now ready to discuss the inside-outside dual-
ity of entropy evolution: We utilize the acquired knowl-
edge about the entropy current (outside perspective) to
draw conclusions about the evolution of the entropy s
of the strongly coupled subsystem located in the scat-
tering region (inside perspective). The direct calculation
of the thermodynamic functions of such a subsystem has
proven problematic in the past due to di�culties in tak-
ing proper account of the coupling Hamiltonian and the
presence of strong hybridization [6–8, 30]. These prob-
lems are naturally avoided within the Landauer-Büttiker
formalism. Since this formalism considers fully coherent
unitary dynamics in both the leads and the scattering re-
gion, the von-Neumann entropy associated with the scat-
tering states is conserved in a scattering event. Hence, an
additional inflow of entropy is reflected in an increased
entropy s stored in the scattering region. As a result, the
entropy is source-free

ds

dt
+ IS

tot

= 0 . (24)

We can use this continuity equation and Eq. (22) to infer
the evolution of s. Invoking energy and particle conser-
vation, we identify Q̇ = �IQ

tot

as the heat leaving the
scattering region from the inside perspective. Thus, the
entropy evolution can be expressed in terms of the ther-
modynamic functions of the (strongly) coupled subsys-
tem as

ds

dt
=

Q̇

T
+

Ẇ (2)

T
. (25)

Therefore, dissipation leads to a local increase of entropy,
which is provided by the scattered electrons. This con-
stitutes the inside-outside duality of entropy evolution.

Integrated over a full cyclic transformation of X, the
entropy current needs to vanish, as it derives from a
source-free thermodynamic state function, see Eq. (24).

Averaged over a cycle, Eq. (22) thus implies that all extra
energy pumped into the scattering region Ẇ (2) eventu-
ally has to be released as heat into the leads

I
Q(2)

tot

= Ẇ (2) . (26)

Application to the resonant level model.�To empha-
size the advantage of the outside approach over calcu-
lating the thermodynamic functions of a subsystem di-
rectly, we connect here to the thermodynamics of the
resonant level model derived earlier from an inside per-

spective. This model consists of a single localized elec-
tronic level HD = "d(t)d†d, which can be changed in
time by an external agent. It is coupled to a free elec-
tron metal HB =

P

k ✏kc
†
kck via a coupling Hamiltonian

HV =
P

k

�

Vkd
†ck + h.c.

�

and was intensively studied in
the past [6, 8], with di�culties in Ref. [30] pointed out
and overcome in Ref. [7].
The inside approach demands a splitting of the cou-

pling HamiltonianHV between e↵ective system and bath,
which strongly limits its applicability to the resonant
level model in the wide band limit of energy-independent
hybridization [7, 8]. In contrast, the here developed out-
side approach yields the strong coupling thermodynamics
for arbitrary non-interacting electron systems and fur-
thermore reproduces the results for the resonant level.
Deriving the distribution matrix � for this model explic-
itly, we show order by order that both the heat current
IQ in Eq. (19) and the entropy current IS

tot

in Eq. (18)
exactly reproduce the absorbed heat Q̇ = �IQ

tot

and en-
tropy change ṡ = �IS

tot

from the inside perspective [7]
(see Supplemental Material). Thereby we also explicitly
confirm the inside-outside duality of entropy evolution:
The dissipated power Ẇ (2) was shown to lead to a lo-
cal increase of entropy for the resonant level in Ref. [7],
and we demonstrate here that this is reflected in an ad-
ditional inflow of entropy IS

tot

carried by the scattering
states, leaving the entropy source-free, Eq. (24).

Conclusion.�We developed a Landauer-Büttiker ap-
proach to entropy evolution in strongly coupled fermionic
systems, which considers fully coherent quantum dy-
namics in combination with coupling to macroscopic
equilibrium baths. This formalism naturally avoids the
system-bath distinction and is applicable to arbitrary
non-interacting electron systems. We showed that the en-
tropy current generated by a dynamic scatterer depends
on the correlations between di↵erent scattering channels,
which are generated in the scattering event. At qua-
sistatic order, the entropy current is just the heat current
over temperature, while at next order the dissipation in-
duced by the finite velocity transformation yields a net
inflow of entropy into the scattering region. This inflow
reflects the dissipation-induced local increase of entropy
constituting the inside-outside duality of entropy evolu-
tion.
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Inserting �out(1) into the entropy current Eq. (20), we
obtain the entropy current up to second order
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Remarkably, Ẇ (2) = �Ẋ2 is exactly the dissipated power
that the external agent pumps into the system as a result
of the time-dependent system Hamiltonian. Ẇ (2) was de-
rived in Refs. [26–28] in terms of the friction coe�cient �
of the back-action force that needs to be overcome by the
external agent. Thus, from our outside perspective, dis-
sipation leads to an inflow of entropy into the scattering
region in addition to the heat-current contribution.

We are now ready to discuss the inside-outside dual-
ity of entropy evolution: We utilize the acquired knowl-
edge about the entropy current (outside perspective) to
draw conclusions about the evolution of the entropy s
of the strongly coupled subsystem located in the scat-
tering region (inside perspective). The direct calculation
of the thermodynamic functions of such a subsystem has
proven problematic in the past due to di�culties in tak-
ing proper account of the coupling Hamiltonian and the
presence of strong hybridization [6–8, 30]. These prob-
lems are naturally avoided within the Landauer-Büttiker
formalism. Since this formalism considers fully coherent
unitary dynamics in both the leads and the scattering re-
gion, the von-Neumann entropy associated with the scat-
tering states is conserved in a scattering event. Hence, an
additional inflow of entropy is reflected in an increased
entropy s stored in the scattering region. As a result, the
entropy is source-free

ds

dt
+ IS

tot

= 0 . (24)

We can use this continuity equation and Eq. (22) to infer
the evolution of s. Invoking energy and particle conser-
vation, we identify Q̇ = �IQ

tot

as the heat leaving the
scattering region from the inside perspective. Thus, the
entropy evolution can be expressed in terms of the ther-
modynamic functions of the (strongly) coupled subsys-
tem as

ds

dt
=

Q̇
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+
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Therefore, dissipation leads to a local increase of entropy,
which is provided by the scattered electrons. This con-
stitutes the inside-outside duality of entropy evolution.

Integrated over a full cyclic transformation of X, the
entropy current needs to vanish, as it derives from a
source-free thermodynamic state function, see Eq. (24).

Averaged over a cycle, Eq. (22) thus implies that all extra
energy pumped into the scattering region Ẇ (2) eventu-
ally has to be released as heat into the leads

I
Q(2)

tot

= Ẇ (2) . (26)

Application to the resonant level model.�To empha-
size the advantage of the outside approach over calcu-
lating the thermodynamic functions of a subsystem di-
rectly, we connect here to the thermodynamics of the
resonant level model derived earlier from an inside per-

spective. This model consists of a single localized elec-
tronic level HD = "d(t)d†d, which can be changed in
time by an external agent. It is coupled to a free elec-
tron metal HB =

P

k ✏kc
†
kck via a coupling Hamiltonian

HV =
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Vkd
†ck + h.c.
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and was intensively studied in
the past [6, 8], with di�culties in Ref. [30] pointed out
and overcome in Ref. [7].
The inside approach demands a splitting of the cou-

pling HamiltonianHV between e↵ective system and bath,
which strongly limits its applicability to the resonant
level model in the wide band limit of energy-independent
hybridization [7, 8]. In contrast, the here developed out-
side approach yields the strong coupling thermodynamics
for arbitrary non-interacting electron systems and fur-
thermore reproduces the results for the resonant level.
Deriving the distribution matrix � for this model explic-
itly, we show order by order that both the heat current
IQ in Eq. (19) and the entropy current IS

tot

in Eq. (18)
exactly reproduce the absorbed heat Q̇ = �IQ

tot

and en-
tropy change ṡ = �IS

tot

from the inside perspective [7]
(see Supplemental Material). Thereby we also explicitly
confirm the inside-outside duality of entropy evolution:
The dissipated power Ẇ (2) was shown to lead to a lo-
cal increase of entropy for the resonant level in Ref. [7],
and we demonstrate here that this is reflected in an ad-
ditional inflow of entropy IS

tot

carried by the scattering
states, leaving the entropy source-free, Eq. (24).

Conclusion.�We developed a Landauer-Büttiker ap-
proach to entropy evolution in strongly coupled fermionic
systems, which considers fully coherent quantum dy-
namics in combination with coupling to macroscopic
equilibrium baths. This formalism naturally avoids the
system-bath distinction and is applicable to arbitrary
non-interacting electron systems. We showed that the en-
tropy current generated by a dynamic scatterer depends
on the correlations between di↵erent scattering channels,
which are generated in the scattering event. At qua-
sistatic order, the entropy current is just the heat current
over temperature, while at next order the dissipation in-
duced by the finite velocity transformation yields a net
inflow of entropy into the scattering region. This inflow
reflects the dissipation-induced local increase of entropy
constituting the inside-outside duality of entropy evolu-
tion.
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Inserting �out(1) into the entropy current Eq. (20), we
obtain the entropy current up to second order
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=
IQ
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T
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T
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with
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Remarkably, Ẇ (2) = �Ẋ2 is exactly the dissipated power
that the external agent pumps into the system as a result
of the time-dependent system Hamiltonian. Ẇ (2) was de-
rived in Refs. [26–28] in terms of the friction coe�cient �
of the back-action force that needs to be overcome by the
external agent. Thus, from our outside perspective, dis-
sipation leads to an inflow of entropy into the scattering
region in addition to the heat-current contribution.

We are now ready to discuss the inside-outside dual-
ity of entropy evolution: We utilize the acquired knowl-
edge about the entropy current (outside perspective) to
draw conclusions about the evolution of the entropy s
of the strongly coupled subsystem located in the scat-
tering region (inside perspective). The direct calculation
of the thermodynamic functions of such a subsystem has
proven problematic in the past due to di�culties in tak-
ing proper account of the coupling Hamiltonian and the
presence of strong hybridization [6–8, 30]. These prob-
lems are naturally avoided within the Landauer-Büttiker
formalism. Since this formalism considers fully coherent
unitary dynamics in both the leads and the scattering re-
gion, the von-Neumann entropy associated with the scat-
tering states is conserved in a scattering event. Hence, an
additional inflow of entropy is reflected in an increased
entropy s stored in the scattering region. As a result, the
entropy is source-free
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= 0 . (24)

We can use this continuity equation and Eq. (22) to infer
the evolution of s. Invoking energy and particle conser-
vation, we identify Q̇ = �IQ

tot

as the heat leaving the
scattering region from the inside perspective. Thus, the
entropy evolution can be expressed in terms of the ther-
modynamic functions of the (strongly) coupled subsys-
tem as
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Therefore, dissipation leads to a local increase of entropy,
which is provided by the scattered electrons. This con-
stitutes the inside-outside duality of entropy evolution.

Integrated over a full cyclic transformation of X, the
entropy current needs to vanish, as it derives from a
source-free thermodynamic state function, see Eq. (24).

Averaged over a cycle, Eq. (22) thus implies that all extra
energy pumped into the scattering region Ẇ (2) eventu-
ally has to be released as heat into the leads
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= Ẇ (2) . (26)

Application to the resonant level model.�To empha-
size the advantage of the outside approach over calcu-
lating the thermodynamic functions of a subsystem di-
rectly, we connect here to the thermodynamics of the
resonant level model derived earlier from an inside per-

spective. This model consists of a single localized elec-
tronic level HD = "d(t)d†d, which can be changed in
time by an external agent. It is coupled to a free elec-
tron metal HB =

P

k ✏kc
†
kck via a coupling Hamiltonian

HV =
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Vkd
†ck + h.c.
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and was intensively studied in
the past [6, 8], with di�culties in Ref. [30] pointed out
and overcome in Ref. [7].
The inside approach demands a splitting of the cou-

pling HamiltonianHV between e↵ective system and bath,
which strongly limits its applicability to the resonant
level model in the wide band limit of energy-independent
hybridization [7, 8]. In contrast, the here developed out-
side approach yields the strong coupling thermodynamics
for arbitrary non-interacting electron systems and fur-
thermore reproduces the results for the resonant level.
Deriving the distribution matrix � for this model explic-
itly, we show order by order that both the heat current
IQ in Eq. (19) and the entropy current IS

tot

in Eq. (18)
exactly reproduce the absorbed heat Q̇ = �IQ

tot

and en-
tropy change ṡ = �IS

tot

from the inside perspective [7]
(see Supplemental Material). Thereby we also explicitly
confirm the inside-outside duality of entropy evolution:
The dissipated power Ẇ (2) was shown to lead to a lo-
cal increase of entropy for the resonant level in Ref. [7],
and we demonstrate here that this is reflected in an ad-
ditional inflow of entropy IS

tot

carried by the scattering
states, leaving the entropy source-free, Eq. (24).

Conclusion.�We developed a Landauer-Büttiker ap-
proach to entropy evolution in strongly coupled fermionic
systems, which considers fully coherent quantum dy-
namics in combination with coupling to macroscopic
equilibrium baths. This formalism naturally avoids the
system-bath distinction and is applicable to arbitrary
non-interacting electron systems. We showed that the en-
tropy current generated by a dynamic scatterer depends
on the correlations between di↵erent scattering channels,
which are generated in the scattering event. At qua-
sistatic order, the entropy current is just the heat current
over temperature, while at next order the dissipation in-
duced by the finite velocity transformation yields a net
inflow of entropy into the scattering region. This inflow
reflects the dissipation-induced local increase of entropy
constituting the inside-outside duality of entropy evolu-
tion.
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tot

from the inside perspective [7]
(see Supplemental Material). Thereby we also explicitly
confirm the inside-outside duality of entropy evolution:
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Conclusions

1. Landauer-Büttiker-like approach avoids partition problem and  
    allows one to treat strongly coupled systems 

2. The inside-outside duality recovers the expressions for  
    entropy production obtained from standard thermoelectrics 

3. The approach reproduces the expressions for single a lead 
    in the wide band limit 

4. The theory is consistent with the laws of thermodynamics  
    and the quasi-static limit


