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Where in the world is St. Louis?

Experimental research with superconducting qubits. 
Quantum Measurement: Zeno effects, quantum trajectories 
State smoothing and post-selection: weak values, retrodiction, 
optimal routes 
Metrology: frequency metrology, Axion dark matter search 
Quantum Thermodynamics: heat, work, entropy, heat engines 
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Sort “swift” and “slow”?
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???
Demon uses weak 
measurements…



Maxwell’s demon at the level of single quanta

• Cold atoms  
• Molecular ratchet 
• Colloidal particles 
• Single electrons 
• Photons
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PNAS, 114, 7561 (2017)
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Dynamics does not include coherences or the demon 
destroys coherence with measurement.

PRL 117, 240502 (2016)



A quantum Maxwell’s demon

one particle in a box



A quantum Maxwell’s demon

one particle in a box

Two lowest energy levels Pseudo spin-1/2
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Information and Measurement in quantum 
mechanics

More generally…
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12….

𝝆00

Time evolution of a quantum state  = “quantum trajectory”

Quantum Maxwell’s Demon:

time

Track quantum trajectories and do something with that 
information.



• Classical demon:  
✓ Evolution of populations - definite states 
✓ Measurement without disturbance 

• Quantum demon:  
✓ Measurement with disturbance 
✓ Role of coherence and entanglement 
✓ Information can be lost

A quantum Maxwell’s demon



TPM: Two projective measurement.



TPM: Two projective measurement.

TPM: gives the distribution of total energy change 
from transition probabilities

prepare evolve measure
n=0

n=1

m=0

m=1

Time 0 𝝉
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Quantum Maxwell’s demon protocol
Initial quantum system 
in thermal equilibrium

Demon makes Q. 
measurements on 

system

Demon extracts work 
from Q. System

n=0

n=1

m=0

m=1
Projective measurements  
to characterize work distribution

• Superconducting qubit
• Quantum trajectories



 Our spin half system: a “transmon” circuit

ECEJ

EJ>>EC

UCSB/Google Yale ETH Zurich
+ many other groups



ωc
ωp

Parametric amplifier

Atom Cavity

Atom

Cavity Parametric 
amplifier

(qubit)

 Dispersive measurement interaction
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Atom Cavity

P
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State dependent cavity shift

H = -𝝌a†aσz

Input coherent state State dependent phase shift
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Partial and projective measurements
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Weak measurement

Projective measurement

POVM:
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Single quantum 
trajectory based on 
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Unitary rotation
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Stochastic master equation
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Oscillatory trajectories 
acquire a coherence from 
drive.
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The demon experiment

Step 1: initial thermal state
Step 2: first projective measurement (TPM)

Step 3: demon tracks state
Step 4: demon extracts work

Step 5: second projective measurement (TPM)
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Includes: 
・work due to coherent drive 
・quantum heat due to continuous 
measurement 
・work due to feedback rotation 
・quantum work due to final 
projective measurement.

Feedback extracts work 
compared to no feedback
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Demon’s information saves 2nd Law
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Information dynamics along a single trajectory

K. Funo, Y. Watanabe, and M. Ueda, (2013).

・depends on z, z’ probabilities
・depends individual trajectories

Information exchange

Classical mutual information 
is always positive
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P(bottom card = 2♣)  = 1

Look at the top card 
P(bottom card = 2♣)  = 1

Classical case (stacked deck):

Someone else looks at a card… 
(it doesn’t matter)



Information gain and lossInformation gain and loss

Bottom card =  
(1/√52) (2♣+ 3♣+ 4♣+…)

Quantum case (stacked deck):

Someone else looks at the card… 

It changes the bottom card!



Information dynamics along a single trajectory

K. Funo, Y. Watanabe, and M. Ueda, (2013).

・depends on z, z’ probabilities
・depends individual trajectories

Information exchange



Information gain and loss

K. Funo, Y. Watanabe, and M. Ueda, (2013).

Vary the initial purity 
(effective temperature)

Good agreement with 
simulation for η=0.4



Summary

Information dynamics along a single 
quantum trajectories

Gain to loss transition

Generalized quantum 
fluctuation theorem in the weak 
measurement regime.


