Entanglement on the dot

J.E. Avron
Department of Physics, Technion, Haifa 32000, Israel

March 21, 2006

Abstract

An overview of quant-ph/0512048 describing how to entangle light from biexciton decay. This is a step towards entangled photons ondemand.

Credits

Experiments: N. Akopian and D. Gershoni
Theory: Netanel Lindner and Yosi
Modelling: Netanel, Yoav Berlatzy, Elon Poem
Samples: P. Petrof and B. Gerardot.

Outline

- Down-conversion and on demand
- DQ: Exciton vs positronium, Biexciton cascade
- The incriminating witness
- Witness elimination
- Quantum tomography
- Peres partial transpose
- Misentangld by Nature
- Entangled by witness elimination
- Separable states, negative probabilities

1 On-Demand

1.1 Downconversion

$$
\begin{aligned}
|\Psi\rangle & =|0\rangle \otimes|0\rangle \\
& +\varepsilon(|0\rangle \otimes|H\rangle+\text { other junk }) \\
& +\varepsilon^{2} \underbrace{(|H\rangle \otimes|V\rangle+|V\rangle \otimes|H\rangle)}_{\text {Bell }} \\
& +\varepsilon^{2}(|H V\rangle \otimes|0\rangle+\text { other junk })
\end{aligned}
$$

Need to post select
Entangled state not available for further use
Good enough for criptography
Not good enough for Shor
Need: Event ready

2 Quantum dots, Excitons, biexcitons

Postironum vs exciton
Neutral vs charged

Integer spin: non degenerate
Spin 1/2: Kramer degenerate
Benson: Use which path ambiguity to entangle
Which one?

3 The witnesses

$$
|\psi\rangle=\alpha|H H\rangle \otimes \underbrace{\left|p_{H}\right\rangle}_{\text {photon wave packet }} \otimes\left|d_{H}\right\rangle+\beta|V V\rangle \otimes\left|p_{V}\right\rangle \otimes \underbrace{\left|d_{V}\right\rangle}_{\text {final state of dot }}
$$

$$
\begin{gathered}
\rho_{\text {polarization }}=\operatorname{Tr}_{p, d}|\psi\rangle\langle\psi|=\left(\begin{array}{cccc}
|\alpha|^{2} & 0 & 0 & \gamma \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\bar{\gamma} & 0 & 0 & |\beta|^{2}
\end{array}\right) \\
\gamma=\alpha \bar{\beta}\left\langle p_{H} \mid p_{V}\right\rangle\left\langle d_{H} \mid d_{V}\right\rangle
\end{gathered}
$$

$\gamma=0$ the photon/dot are faithful witness to decay path
Non-degenerate: Color is a witness
Kramer degenerate: Spin is a witness

4 Witness elimination

Suppose $\left\langle p_{H} \mid p_{V}\right\rangle=0$ can one nevertheless entangle?

Suppose $\left|d_{H}\right\rangle=\left|d_{V}\right\rangle$. Choose

$$
\begin{gathered}
\alpha P\left|p_{H}\right\rangle=\beta P\left|p_{V}\right\rangle \\
|\psi\rangle \rightarrow P|\psi\rangle=\underbrace{(|H H\rangle+|V V\rangle)}_{\text {Bell state }} \otimes P\left|p_{H}\right\rangle \otimes|d\rangle
\end{gathered}
$$

5 Quantum tomography

2 qubits

$$
\begin{gathered}
\rho=\sum_{i j=0}^{4} a_{i j} \sigma_{i} \otimes \sigma_{j} \\
\sigma=\left\{1, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \\
\rho=\rho^{*} \quad \Longrightarrow \quad a_{i j} \in \mathbb{R} \\
\rho=\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right)
\end{gathered}
$$

$A=\left(a_{0 j}+a_{3 j}\right) \sigma_{j}, \quad B=\left(a_{1 j}+i a_{2 j}\right) \sigma_{j}, \quad C=\left(a_{0 j}-a_{3 j}\right) \sigma_{j}$
ρ can be determined by 16 measurements

$$
a_{i j}=\frac{1}{4} \operatorname{Tr}\left(\rho \sigma_{i} \otimes \sigma_{j}\right)
$$

Kwiat

6 Partial (=Peres) Transpose

$$
\rho^{P}=\left(\begin{array}{ll}
A & B^{*} \\
B & C
\end{array}\right)
$$

P: Preserves reality, does not preserve positivity Ex:
$\rho=\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right) \geq 0, \quad \rho^{P}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=$ indefinite,

Peres criterion: If $\rho \geq 0$ and ρ^{P} is indefinite then ρ is entangled.

Horodecki: For 2 qubits: Iff.

7 Misentangled by Nature

Exercise: The Toshiba group in Cambridge, England, led by Andrew Shields, carried the quantum tomography of biexciton decay for a collection of quantum dots. Their data, taken from their Nature article, are reproduced below. For some of the dots the authors claim there is evidence for entanglement. Can you find which one?

Solution: None.

8 Entangled by witness elimination

An Exercise:

The group of Dudi Gershoni at the Technion carried out the quantum to mography on the biexciton decay of a quantum dot (Berakha). Their data, taken from their upcoming PRL, are reproduced below. Find the data that shows entanglement.

Solution: b is entangled.

9 Separable states, Negative probabilities

Product state

$$
\rho=\rho^{a} \otimes \rho^{b}
$$

Measurement by Ali and Baba independent

$$
\operatorname{Prob}(i, j)=\operatorname{Tr}\left(E_{i} \otimes E_{j} \rho\right)=\operatorname{Tr}\left(E_{i} \rho^{a}\right) \operatorname{Tr}\left(E_{j} \rho^{b}\right)=\operatorname{Prob}(i) \operatorname{Prob}(j)
$$

Exercise Bell is defined by

$$
\text { Bell }=A \otimes\left(A^{\prime}+B^{\prime}\right)+B \otimes\left(A^{\prime}-B^{\prime}\right), \quad A=\sigma \cdot a
$$

with a, b unit vectors. Show that a product state satisfies the Bell inequality

$$
-2 \leq \operatorname{Tr}(\rho \text { Bell }) \leq 2
$$

Hint: $a-b$ and $a+b$ make a right triangle whose hypothenuse is 2 .
Separable states: Convex combinations of product states

$$
\rho=\sum p_{j} \rho_{j}^{a} \otimes \rho_{j}^{b}, \quad p_{j} \geq 0, \quad \sum p_{j}=1
$$

Exercise (Peres): If ρ is separable then $\rho^{P} \geq 0$.

10 Negative probabilities:

Entangled states can be interpreted as separable with negative probabilities, e.g. the Bell state

$$
\frac{1}{4}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\underbrace{\rho_{x}+\rho_{y}}-\rho_{z}
$$

too much correlations
where

$$
\rho_{x}=\frac{1}{2}\left(P_{x} \otimes P_{x}+P_{-x} \otimes P_{-x}\right)
$$

and

$$
P_{n}=\frac{1+n \cdot \sigma}{2}
$$

Exercise: What would you get if you permute the minus?

