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quasi-hole heuristics

- following Laughlin (1983): d(t)
fundamental excitation over A

v=1/m fqH state associated to
insertion of a flux quantum @,

* the resulting quasi-hole carries an
electric charge equal to

- the excitations are anyonic: braiding
is represented by a phase factor

exp (in/m)



quasi-hole heuristics

* in multi-layer and spin-1/2 state, flux insertion "per layer’ or "per spin’
« example --

Halperin (m+1,m+1,m) spin-singlet state, filling v=2/2m+1),

‘PH(le,..,Z]TV,Zf,--,Z}V) =

1 1
[l -2 [t =) []eE -2
L, J

i<j i<j

has quasi-holes with quantum numbers
q=e/(2m+1), S=1/2



quasi-hole heuristics

* non-abelian quantum Hall states
generally characterised by pairing (or SERR IR
order-k clustering) L b B

* as in a superconductor, pairing
(clustering) of particles leads to a
reduction of the minimal allowed flux-

insertion, which is now @ /k

* this leads to further fractionalization of
quasi-holes

* the resulting quasi-holes are the ones
exhibiting non-abelian braid statistics



quasi-hole heuristics

for paired qH states with pfaffian factor the quasi-particle break-up
can take different forms:

- v=1/2 Moore-Read state:
g=e/2 splits into twice g=e/4
[charge fractionalisation]

« v=2/3 spin-singlet state [Ardonne et al, 2002]
[g=e/3, S=1/2] splits into [g=e/3, S=0], [q=0,5=1/2]
[spin-charge separation]

- pfaffian v=1 state for rotating spin-1 bosons [Reijnders et al, 2002]
[qg=1, S=1] splits into twice [q=1/2, S=1/2]

[spin fractionalisation]
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Read-Rezayi k-clustered states

- gqH states for spin-polarized electrons Read-Rezayl, 1999
- filling factor v=k/(kM+2)

« expected in 2nd LL [v=5/2,12/5 (7), ..]

 expected in rapidly rotating BEC [v=1/2, 1, 3/2, ..]

* k-clustering: M=0 (bosonic) state obtained as maximal density
zero energy eigenstate of hamiltonian

H=V E 62(Zi1 _Ziz)éz(ziz _Zi3) 62(Zik — <

I <.< Ipy

)

e

* quasi-holes:
- g= 1/(kM+2)
- counting, wavefunctions, braiding



double layer states

Many possibilities for non-abelian states in multi-layer samples.

Example --
double layer pfaffian state

lppf(zf’--’zzt/’zf"”zliv) -

Pf( : ) H(zt—z})m H(Zﬁ-—Z} )" H(ZT,-— z )"

4R i i< j i< j

Excitations include non-abelian excitons.

For m=2, n=1 this is a v=2/3 spin-singlet state exhibiting spin-charge
separation, with non-abelian spinon (spin ¥2 and zero charge) and
holon (charge e/3 and zero spin) excitations.

Ardonne-v. Lankvelt-Ludwig-S, 2002



spin-1/2 spin-singlet states

Ardonne-S 1999
* spin-singlet gH states for spin-1/2 electrons

- filling factor v=2k/(2kM+3)

* k-clustering: M=0 (bosonic) state obtained as maximal density
zero energy eigenstate of hamiltonian

H = V E 62(Zil _Ziz)(sz(ziz _Zi3> "'62(Zik _Zik+1)

I <.< Ipy

* quasi-holes:
- [ g= 1/(2kM+3), §=1/2 ] or [ q= 2/(2kM+3), S=0 ]
- counting, wavefunctions, braiding



spin-1/2 spin-singlet states: k=2

- paired states; filling factor v=4/3 [M=0], v=4/7 [M=1], elc.
- explicit [M=0, N,=2, N =2]
Ul vz = (e =5 W =)+ (e =) = 4)
- the pairing is governed by same hamiltonian as for Moore-Read

state; the AS state smoothly connects to the MR state upon varying
N,, N, from spin-singlet to fully polarized with (for M=0)

N; +2N,N, + N}
"/ =
N; +N\N, + N;

» the quasi-hole braiding is in the universality class of Fibonacci
anyons; hence the prospect of universal QC with a paired gH state!

« experimental access to spin-singlet states: hydrostatic pressure
and tilted field [Kang et al. 1997, Cho et al. 1998]



qH states for rotating (spin-1) bosons

Reijnders-v. Lankvelt-Read-S, 2002

- if gH states for rotating bosons can be achieved, then spin-1
bosons are an interesting and viable option

* two independent channels (5=0,2) in contact interactions give non-
trivial parameter g=g.,/9,

* spin interactions can be ferromagnetic [g<0, 8°Rb] or
antiferromagnetic [g>0, 2°Na]

- gH states compete with various lattices of spin-textures (below)

- qH states include spin-1 version of RR series [SU(4),] and a series
[SO(5),] exhibiting spin fractionalisation
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quasi-holes: the issues

Quasi-holes generated by inserting excess flux in qH ground
states come with an “internal register’ associated to fusion
channel assignments. Issues

- counting the dimensionality of "internal register’ associated
with given number of quasi-holes

- explicit wavefunctions, setting the amplitudes of various
fusion channel states as a function of the positions of the quasi-
holes

- braiding properties: enabling operations on the internal
register by weaving braids of quasi-hole positions



quasi-holes: the strategies

- direct analysis: (numerically) determining zero-energy
eigenstates for excess flux, and braiding e.g. with a
Berry phase approach
[Read-Rezayi, Tserkovnyak-Simon, ...]

- ‘coordinate CFT’: concrete evaluation of quasi-hole
wavefunctions, leading to braiding properties and
beyond [Nayak-Wilczek, Ardonne-S]

- "algebraic CFT’: relying on quantum group structure
associated to RCFT, for example to match fusion
and braiding properties
[Slingerland-Bais,...]
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qH wavefunctions from CFT

ground state wave function

IPGS (Zl’ "’ZN) = <we(zl) '”we(ZN )lpbackground (ZOO )>

CFT

electron (boson) x
condensate operator neutralizing
background charge

qguasi-hole excitations : fixed by

P (MY (z,) = (2 - W)imeger[qbz(w) + ]
excited state wave function:

W (W) W32y Zgnees) = { Dy W) B W) o (2D (2,) .. )

CFT



parafermions and vertex operators

Generic form of electron and quasi-hole operators

Y., = I/JPF X V.O.(spin) x V.O.(charge)

q/)qh =0 X V.O.(spin) X V.O.(charge)
Parafermionic fields taken from CFT of the form

PF(G,k) = ék /[U Q)™ 9] Gepner, 1987
Vertex Operators for spin and charge have the form

V.O.(charge) = exp(ia ¢, ) , V.O.(spin) =exp(ia, @, )



CFT: deformations of (chiral) WZW

The parafermion theory PF(G, k), together with the vertex operators
for spin and charge (depending on the Laughlin exponent M), build
up a deformation of the chiral WZW model WZW(G, k)

CFT data: Gk, v

G,=SU(2), for the RR series and G,=SU(3), for the non-abelian
spin-singlet states.

The properties of the SU(2), and SU(3), parafermions
guarantee that the PF correlators give wave functions
that satisfy the order-k clustering property.
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quasi-hole counting

Agreement between the direct’ and parafermion’ approaches for
the counting problem in spherical geometry

- direct approach:
numerical evaluation of zero energy eigenstates of
clustering hamiltonian in presence of excess flux,
meaning a fixed number of quasi-holes

- parafermion approach:
analytic counting formulas based on parafermion
combinatorics and on a physical picture relating
parafermions to broken clusters in the condensate

[Read-Rezayi, Rezayi-Gurarie, Ardonne-Read-Rezayi-S, Ardonne]



direct approach

k=2 spin-singlet state:
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parafermion approach

Analytical expression for general N,, N, , n,, n, :

(k)
o E n,l\ nJ/ (NT —Fl)/k+n,|\ (N\|/ —F2)/k+nJ/
o )

K, 'y n
NT +N¢ =N
ny+n, =n

[with explicit expressions for the symbols { }¥ ...]

Ardonne-Read-Rezayi-S 2000, Ardonne 2001
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quasi-hole wavefunctions

Ardonne-S, in preparation

We determined explicit wavefunctions for the excitations with 4
quasi-holes (of various kinds) over the k=3 Read-Rezayi state and
the k=2 non-abelian spin-singlet state, generalizing results of
Nayak and Wilczek, 1996, for the MR state. From these, braiding
properties follow by inspection.

Here we present the case of 4 spin-less quasi-holes ¢, , of charge
2/3, over the paired spin-singlet state. For M>0 these are the
lowest dimension quasi-holes, and thereby the most natural
agents in a QC protocol.



quasi-hole wavefunctions

The qH-CFT correspondence gives

R [
Wi (Wi W 32) 52550000205 Lgrpees) =

(03903 (w,) ., DY ), (@D, (D) .

CFT

1/2

x[quzl({zjaZi"})] 1_[(Z,T - wj)l/2 H(Zf _ Wj)l/zl_[(wi - Wj)m

i,j i,] i<j



quasi-hole wavefunctions

Going into the correlator

(0300)03(9) ., (DY (D) -, (2, (28) . )

CFT

SU(3), parafermion algebra vy, (7)Y, (w) = (z - w)'ll + ...,
P @QPs(w) = (z=w) T+
Y@Ya(w) = (z=w)
and the spin-field OPE, with two independent fusion channels

-1/5

05(2)03(W) = (z=w) T+ (z=w)" " Ps(w) + ...

Yy, + ...



quasi-hole wavefunctions

For the MR state, Nayak and Wilczek applied bosonization to
obtain the analogous correlator, giving a final expression of the

type

(01)
(W W, W3, W43205205000) =

T Aw h¥W s Qwiz b+ BT w h¥ L (wiz b

\

pre-factors depending on basis for two-fold degenerate internal
fusion channel (0,7) and on register; polynomial in w;, z;
quasi-hole locations w;



quasi-hole wavefunctions

To obtain a similar expression we proceed in a number of steps

Step1. In absence of quasi-holes, we have the following
expression for wavefunction [Cappelli et al, Ardonne et al]

W =% E‘Pszfl(zf,zﬁq)‘P§221(Zjvzi")

{Sl ’SZ}

with particles in disjoint subsets S,, S, each forming a Halperin
221 state

Y221, 1 (- !
‘P (Zl,--,ZN,ZI'auaZN‘):

[T =) [T =) T1( =)

i<j i<j iJ'



quasi-hole wavefunctions

Step 2. Basis for 4 quasi-hole state obtained by distributing the
quasiholes over de sets S,, S, ; two independent choices for this
are W,,,and ¥, ,, with

= 3 [TT6 e oo

IIJ13,24 = ..



quasi-hole wavefunctions

Step 3. Decompose wavefunction over ¥, ;, and ¥,; ,, and impose
consistency upon fusing some of the parafermions v, , with the o .

This requires detailed knowledge of short distance Operator
Products Expansions (OPE), and of 4-point functions in the SU(3),
WZW model [Knizhnik-Zamolodchikov, 1984]

Building blocks are hypergeometric functions

F® = x™"(1- x)msF(é,_?l,%,x)

R0 s R .2

FO = x"5(1- x)””F(%,%%,x)
R I e



quasi-hole wavefunctions

Final result.

(01

3333

(0)
A3333

(0)
B3333

(D
A3333

M
B3333

)

(0 1)

3333

({w }) [12 34]({W,-;Z,-,Zj.}) * B;:;; ({Wi})llj[13’24]({wi;zi’zf'})

| WiaWay |

| WiaWsy |

i 14/5  -2/15
| WioWa | X (1

i 14/5  -2/15
| WioWs | X (1

t 1 -

(W oWy Wa W52 3 Znseees Zs Ly

4/5(_1)8/5Cx—2/15(1

4/5(_1)8/5Cx—2/15(1

)=

)2/3F(0)( )

)2/3F(0)( )

)2/3 (1)( )

)2/3F(1)(x)
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quasi-hole braiding

The full parafermion theory has eight sectors

{I’ Y1, Y5, Y5, 015 0y5 O3, P}

with Fibonacci type fusion if we set

05{1’1/4’1/}271/)12} 15{(71’ O»; (73’10}

One thus expects Fibonacci braiding properties, suitable for
universal QC.



quasi-hole braiding

Evaluation of braiding by direct inspection of:

(0,1) ) T 14/5 _2/15 _ 2/3 15(0)
‘P3333(Wl,wz,w3,w4;Zf,zg,...,zﬁ,zg.,...) Ay =[wiws | 2T (1-x) FV(x)

(0.1)
- A3333 ({Wi})lp[lm‘l]({wi;zi’zf })

(0) B 14/5  _2/15 2/3 (0)
By =[wupwa ] "7 (1-x) K (%)

A§13)33 = :W12W34:4/5(—1)8/5CX_Z/ls (1 — x)2/3F2(1)(x)
(0,1)
* B3333 ({W"})qjﬂiﬂ]({wi’zi’zj'}) Bé?gg = :W12W34:4/5(—1)8/5Cx_2/15(1 — x)2/3F]<1>(x)

Example: w,<> w,.

this swaps ¥, ;, and ¥, ,, ; furthermore

F%1-x)=CF”(x)+ C'F"(x), etc.

4/5
C8=%(\/§—1)=r, C’/C =T = Ui =(-1)



quasi-hole braiding

Full set of braiding relations on the 4 quasi-hole wavefunctions at M=0

Uze?) _ (_1)4/5(\/‘% \_/j)

Uier = (_1)2/3((_24/5 (_1())—3/5

_ 8/15 T (—1)_3/5\/;
Uiy = (_1) ((—1)3/5\/; (_1)—1/51_ )

Similar relations are obtained for spin-full quasi-holes over the k=2
spin-singlet state and for quasi-holes over the k=3 RR state.

Ardonne-S, in preparation
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