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Markov processes & Brownian motions

X (t) = (Xi (t), i ≥ 0) is RN-valued stochastic process.

Markov process: for t ≥ s ≥ 0 and suitable f (·) ∈ S:

E[f (X (t))|FX
s ] =

∫
pt−s(X (s), dy)f (y) =: (pt−s f )(X (s)) .

{pu(·, ·)} transition probabilities semi-group:

(a) pu(x , ·) probability measure on RN, per u, x .
(b) pu(·,A) Borel function, per u, A ⊂ RN Borel.
(c) Semi-group: pu+v (x ,A) =

∫
pu(x , dy)pv (y ,A), for u, v ≥ 0.

Brownian Motion: t 7→Wi (t) continuous, Markov process

pt(x ,A) =
∫
A
pt(x − y)dy , heat kernel pt(x) = 1√

2πt
e−

x2

2t (here N = 1).

u(t, x) = (pt f )(x) solves he: ut = 1
2
uxx .

Brownian scaling: W b
i (t) = bWi (t/b

2)
(d)
= Wi (t) for any b > 0.

(Wi (t), t ≥ 0), i ≥ 0 independent BM-s ⇔ product measures.

If f (x) =
∏

i gi (xi ) then (pt f )(x) =
∏

i (ptgi )(xi ).



Poisson process, Martingales & Ito’s lemma

Zk ∼ Exp(λ) ⇐⇒ P(Zk ≥ z) = e−λz , z ≥ 0, λ > 0.

Independent Exponentials Z (λ) := (Zk , k ≥ 1) ∼ ρλ =
∞⊗
k=1

Exp(λ).

Poisson process has points at Y = (Yk , k ≥ 1):
(Yk , k ≥ 1) ∼ ppp+(λ) ⇔ Y1 = 0, Yk+1 = Yk + Zk , k ≥ 1

Continuous R-valued t 7→ M(t) is L2-mg

⇐⇒ E[Mt |FM
s ] = Ms & E[M2

t ] <∞ ∀t ≥ s ≥ 0.

=⇒ M2
t − [M]t is mg (for quadratic variation [M]t), by Doob-Meyer.

For f ∈ C 1,2
b (R) let Lf = ft + 1

2
fxx .

Ito’s lemma: M f
t := f (t,W (t))− f (0,W (0))−

∫ t

0
(Lf )(s,W (s))ds is L2-mg

[M f ]t =
∫ t

0
f 2
x (s,W (s))ds.



Interacting particles: ssep; Hydrodynamics

Interacting particles: Markov process R(t) with interaction.

ssep: R(t) ∈ {0, 1}Z.

Jumps: ∆k(i) ∈ {−1,+1} i.i.d. P(∆k(i) = +1) = 1
2

independent of i.i.d. ppp+(1) ’clock’ processes {τk(i)} for i ∈ Z.

Order {τk(i)}, i ∈ Z and k ≥ 2.
Sequentially, if Ri (τk(i)) = 1 and Ri+∆k (i)(τk(i)) = 0 exchange these values.
Otherwise, do nothing (exclusion).

Hydrodynamics: b
∑x/b

i=0 Ri (t/b
2)→ Q?(t, x) as b → 0

Q? non-random solves some pde (for suitable R(0)).



atlas∞(λ) model

Xi (t) = Xi (0) + Wi (t) +

∫ t

0
1{Xi (s)=X(0)(s)} ds , i ≥ 0 .

(Wi (t), t ≥ 0), i ≥ 0 independent BM-s.

X (0) = (Xi (0), i ≥ 0) ∼ ppp+(λ), λ ∈ (0,∞) ,

⇐⇒ Z (0) = Z (λ) ∼ ρλ =
∞⊗
k=1

Exp(λ) .

X(0)(t) = mini{Xi (t)} left-most particle.

Ranked process Y and spacings process Z :

Zk(t) := Yk+1(t)− Yk(t) := X(k)(t)− X(k−1)(t) , k ≥ 1

(Yk(·) and Zk(·) are k-th ranked particle and k-th spacing, resp.).
[Ichiba-Karatzas-Shkolnikov 13, Pal-Pitman 08] ∃ unique, rankable weak sol. X .



Reflected Brownian Motion

rbm representation for Z (t) based on

Yk(t)− Yk(0) = t1{k=1} + Bk(t) + Lk−1(t)− Lk(t)

(B(t)) independent bm-s

L0(t) = 0 , Lk(t) local time at {Zk(s) = 0}, k ≥ 1 (collisions).



atlas∞(2) an equilibrium case

[Pal-Pitman 08] λ = 2⇒ Spacings equilibrium (Z (t)
(d)
= Z (0)).

(utilizing [Williams 87] work on rbm-s on polyhedra).

[Conj. 2]: Unique invariant measure (Open).

[Conj. 3]: (resolved in [D-Tsai 15]).

t−1/4X(0)(t)
(d)→ N(0, c) , t →∞ , some c ∈ (0,∞) .

(tagged particle of Harris system [Harris 65, Dürr-Goldstein-Lebowitz 85], and

of ssep [Arratia 83, Rost-Vares 85, Landim-Volchan 00, De Masi-Ferrari 02]).

By spacing equilibrium, [D-Tsai 15] resolve [Conj. 3, PP08] by showing that

asymptotic fluctuation at scale b−1/2 follows ashe with Neumann bc at 0.

Question: Out of equilibrium? Expects

X(0)(s)→ ±∞ , according to sgn(2− λ) .



Hydrodynamics for atlas∞(λ): Setting

Asymptotics b ↓ 0 of point processes on R+ × R

Qb(t, ·) := b
∞∑
i=0

δt,Xb
i (t) , X b

i (t) = bXi (t/b
2), i ≥ 0 .

Qb(t, ·) ∈ M∗(R) = {all Borel µ ≥ 0 with µ((−∞, r ]) finite ∀r},

C∗ := {f ∈ Cb(R) eventually zero}-topology, metrizable by d∗.

Qb(·, ·) ∈ C = {all continuous t 7→ µ(t, ·) : R+ → (M∗(R), d∗)},

with topology of uniform convergence on compacts in R+.



Hydrodynamics for atlas∞(λ): Result

Theorem (CDSS 15)

For atlas∞(λ) as b → 0 we have Qb(·, ·)→ Q∗(·, ·) in C.

The Q∗-density with respect to Lebesgue

u∗(t, x) :=
[
c1 + c2Φ(x/

√
t)
]
1{x>y∗(t)} , y∗(t) := κ

√
t , ∀t > 0

Φ(·) cdf of N(0,1) and

c1 :=
2− λΦ(κ)

1− Φ(κ)
, c2 :=

λ− 2

1− Φ(κ)
.

sgn(κ) = sgn(2− λ) for κ unique such that

κ(1− Φ(κ))

Φ′(κ)
= 1− λ

2
.

Left-most particle X b
(0)(t)→ y∗(t) as b → 0 (uniformly on compacts).



Stefan problem for atlas∞(λ)

y∗(t) = inf{x : u∗(t, x) > 0} differentiable and u∗(t, x) unique,
uniformly bounded and uniformly positive on x > y(t), solution
of 1-sided Stefan problem:

ut(t, x) =
1

2
uxx(t, x) , ∀x > y(t) . HE

lim
t↓0

u(t, x) = λ1x>0 , ∀x 6= 0 . IC

u(t, y(t)+) := lim
x↓y(t)

u(t, x) = 2 , ∀t > 0 . EQ-LBV

u(t, y(t)+)
dy

dt
(t) +

1

2
ux(t, y(t)+) = 0 , ∀t > 0 . FLX-BD



The flux condition: consequences

dy

dt
= −1

4
ux(t, y(t)+) , ∀t > 0 . FLX-BD

λ− 2 > 0 =⇒ κ < 0 (expanding),

λ− 2 < 0 =⇒ κ > 0 (contracting).

Non-random rate of expansion/contraction

lim
s→∞

Y1(s)√
s

= κ .

u∗(1, ·) as limiting particle density profile:

lim
s→∞

Q1/
√
s(1, x + [−ε, ε]) =

∫ ε

−ε
u∗(1, x + r)dr , ε > 0 .

# of particles at time s � 1 near
√
sx has density u∗(1, x).



Stochastic monotonicity and spacing at the edge

Definition

ξ � ξ′ ⇔ P(ξ ≥ y) ≤ P(ξ′ ≥ y) , ∀y ∈ RN .

Theorem (CDSS 15)

Z (0) = Z (λ) ∼ ρλ.

λ < 2 =⇒ Z (2) � Z (t) � Z (s) � Z (λ) , ∀t ≥ s ≥ 0 ,

and Z (t)→ Z (2) (convergence of f.d.d.).

λ > 2 =⇒ Z (λ) � Z (s) � Z (t) � Z (2) , ∀t ≥ s ≥ 0 .



ssep versus Ito, PDE and the proof

[Landim-Olla-Volchan 98] get same Stefan problem for effect of tagged
asymmetric particle on (truely) doubly-infinite ssep, by [Arratia 85] transform
of spacings in -sep to constant rate zero-range process.

Here purely one-sided system. Stochastic monotonicity (rbm theory) plus ld
for i.i.d. BM-s and for ppp+(λ) give pre-compactness/regularity of {Qb, b > 0}
(C-limit-points Q0 as b → 0, with bounded Q0-density and X b

(0)(t)→ yQ0 (t)).

By Ito’s lemma (diminishing martingale term as b → 0), all limit points satisfy

same weak (distributional) form of our Stefan problem. A-priori regularity and

standard PDE tools [Ishii 81] give uniqueness of solution.



Space-time particle fluctuations at λ = 2: Setting

Asymptotics b ↓ 0 of re-scaled point processes on R+ × R

Q̂b(t, ·) :=
√

b/2
[ ∞∑

i=0

δXb
i (t) − (2/b)Leb(R+)

]
, X b

i (t) = bXi (t/b
2), i ≥ 0 .

Heat kernel pt(x) = Φ′t(x) for Φt(x) = Φ(x/
√
t)− 1.

Neumann kernel pN
t (y , x) = ∂yΨt(y , x) for

Ψt(y , x) := Φt(y − x) + Φt(y + x) .

B(·) Brownian motion, W(t, x) standard white noise are independent.

Ŵt(x) :=

∫ ∞
0

Ψt(y , x)dB(y) ,

M̂t(x) :=

∫ t

0

∫ ∞
0

pN
t−s(y , x)dW(y , s) .

C(R2
+;R)-valued Gaussian process Û0(t, x) = Ŵt(x) + M̂t(x), solves the ashe

(∂t −
1

2
∂xx)Û0(t, x) = Ẇ(t, x) , Û0(0, x) = B(x) .



Space-time particle fluctuations at λ = 2: Result

Equip D(R2
+) with uniform convergence on compacts and let

Ûb(t, x) :=
√
b/2
(

2X(bx/(2b)c)(t/b2)− bx/(2b)c
)
.

Theorem (D-Tsai 15)

For atlas∞(2) as b → 0,

Ûb(·, ·)⇒ Û0(·, ·) .

In particular, b−1/2X(0)(t/b2)⇒ (2/π)1/4V (t) a 1/4-fbm.

Ûb(t, x) ≈ F b,r (t, x) := 〈Q̂b(t, ·),Ψb1+r (·, x + br )〉 (some 0 < r < 1/2).

Ito’s lemma for F b,r (t, x):

martingale contribution goes to M̂t(x),

ic contribution goes in law to Ŵt(x),

he and choice of Ψ eliminate LF part.



Thank you!


