The Atlas model, in and out of equilibrium

Amir Dembo, Stanford University Jointly with Tsai (in equilibrium) and
with Cabezas, Sarantsev, Sidoravicius (out of equilibrium)

Markov processes \& Brownian motions

$\underline{X}(t)=\left(X_{i}(t), i \geq 0\right)$ is $\mathbb{R}^{\mathbb{N}}$-valued stochastic process.
Markov process: for $t \geq s \geq 0$ and suitable $f(\cdot) \in \mathcal{S}$:
$\mathbb{E}\left[f(\underline{X}(t)) \mid \mathcal{F}_{s}^{\mathbf{x}}\right]=\int p_{t-s}(\underline{X}(s), \mathrm{d} \underline{y}) f(\underline{y})=:\left(p_{t-s} f\right)(\underline{X}(s))$.
$\left\{p_{u}(\cdot, \cdot)\right\}$ transition probabilities semi-group:
(a) $p_{u}(\underline{x}, \cdot)$ probability measure on $\mathbb{R}^{\mathbb{N}}$, per u, \underline{x}.
(b) $p_{u}(\cdot, A)$ Borel function, per $u, A \subset \mathbb{R}^{\mathbb{N}}$ Borel.
(c) Semi-group: $p_{u+v}(\underline{x}, A)=\int p_{u}(\underline{x}, \mathrm{~d} \underline{y}) p_{v}(\underline{y}, A)$, for $u, v \geq 0$.

Brownian Motion: $t \mapsto W_{i}(t)$ continuous, Markov process $p_{t}(x, A)=\int_{A} p_{t}(x-y) \mathrm{d} y$, heat kernel $p_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}($ here $\mathbb{N}=1)$. $u(t, x)=\left(p_{t} f\right)(x)$ solves HE: $u_{t}=\frac{1}{2} u_{x x}$.
Brownian scaling: $W_{i}^{b}(t)=b W_{i}\left(t / b^{2}\right) \stackrel{(d)}{=} W_{i}(t)$ for any $b>0$.
$\left(W_{i}(t), t \geq 0\right), i \geq 0$ independent BM -s \Leftrightarrow product measures.
If $f(\underline{x})=\prod_{i} g_{i}\left(x_{i}\right)$ then $\left(p_{t} f\right)(\underline{x})=\prod_{i}\left(p_{t} g_{i}\right)\left(x_{i}\right)$.

Poisson process, Martingales \& Ito's lemma

$Z_{k} \sim \operatorname{Exp}(\lambda) \quad \Longleftrightarrow \quad \mathbf{P}\left(Z_{k} \geq z\right)=e^{-\lambda z}, z \geq 0, \lambda>0$. Independent Exponentials $\underline{Z}^{(\lambda)}:=\left(Z_{k}, k \geq 1\right) \sim \rho_{\lambda}=\bigotimes_{k=1}^{\infty} \operatorname{Exp}(\lambda)$.
Poisson process has points at $\underline{Y}=\left(Y_{k}, k \geq 1\right)$:
$\left(Y_{k}, k \geq 1\right) \sim \operatorname{PPP}_{+}(\lambda) \Leftrightarrow Y_{1}=0, Y_{k+1}=Y_{k}+Z_{k}, \quad k \geq 1$
Continuous \mathbb{R}-valued $t \mapsto M(t)$ is $L^{2}-\mathrm{MG}$
$\Longleftrightarrow \quad \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}^{\mathrm{M}}\right]=M_{s} \quad \& \quad \mathbb{E}\left[M_{t}^{2}\right]<\infty \quad \forall t \geq s \geq 0$.
$\Longrightarrow M_{t}^{2}-[M]_{t} \quad$ is MG (for quadratic variation $[M]_{t}$), by Doob-Meyer.
For $f \in C_{b}^{1,2}(\mathbb{R})$ let $\mathcal{L} f=f_{t}+\frac{1}{2} f_{x x}$.
Ito's lemma: $M_{t}^{f}:=f(t, W(t))-f(0, W(0))-\int_{0}^{t}(\mathcal{L} f)(s, W(s)) \mathrm{ds}$ is $L^{2}-\mathrm{MG}$ $\left[M^{f}\right]_{t}=\int_{0}^{t} f_{x}^{2}(s, W(s)) \mathrm{d} s$.

Interacting particles: SSEP; Hydrodynamics

Interacting particles: Markov process $\underline{R}(t)$ with interaction.
SSEP: $\underline{R}(t) \in\{0,1\}^{\mathbb{Z}}$.
Jumps: $\Delta_{k}(i) \in\{-1,+1\}$ i.i.d. $\mathbf{P}\left(\Delta_{k}(i)=+1\right)=\frac{1}{2}$
independent of i.i.d. PPP $_{+}(1)$ 'clock' processes $\left\{\tau_{k}(i)\right\}$ for $i \in \mathbb{Z}$.
Order $\left\{\tau_{k}(i)\right\}, i \in \mathbb{Z}$ and $k \geq 2$.
Sequentially, if $R_{i}\left(\tau_{k}(i)\right)=1$ and $R_{i+\Delta_{k}(i)}\left(\tau_{k}(i)\right)=0$ exchange these values. Otherwise, do nothing (exclusion).

Hydrodynamics: $b \sum_{i=0}^{x / b} R_{i}\left(t / b^{2}\right) \rightarrow Q_{\star}(t, x)$ as $b \rightarrow 0$
Q_{\star} non-random solves some PDE (for suitable $\underline{R}(0)$).

$$
X_{i}(t)=X_{i}(0)+W_{i}(t)+\int_{0}^{t} \mathbf{1}_{\left\{X_{i}(s)=X_{(0)}(s)\right\}} \mathrm{d} s, \quad i \geq 0
$$

$\left(W_{i}(t), t \geq 0\right), i \geq 0$ independent BM-s.

$$
\begin{aligned}
& \underline{X}(0)=\left(X_{i}(0), i \geq 0\right) \sim \operatorname{PPP}_{+}(\lambda), \quad \lambda \in(0, \infty) \\
& \Longleftrightarrow \underline{Z}(0)=\underline{Z}^{(\lambda)} \sim \rho_{\lambda}=\bigotimes_{k=1}^{\infty} \operatorname{Exp}(\lambda) .
\end{aligned}
$$

$X_{(0)}(t)=\min _{i}\left\{X_{i}(t)\right\} \quad$ left-most particle.
Ranked process \underline{Y} and spacings process \underline{Z} :

$$
Z_{k}(t):=Y_{k+1}(t)-Y_{k}(t):=X_{(k)}(t)-X_{(k-1)}(t), \quad k \geq 1
$$

($Y_{k}(\cdot)$ and $Z_{k}(\cdot)$ are k-th ranked particle and k-th spacing, resp.). [Ichiba-Karatzas-Shkolnikov 13, Pal-Pitman 08] \exists unique, rankable weak sol. \underline{X}.

Reflected Brownian Motion

RBM representation for $\underline{Z}(t)$ based on

$$
Y_{k}(t)-Y_{k}(0)=t \mathbf{1}_{\{k=1\}}+B_{k}(t)+L_{k-1}(t)-L_{k}(t)
$$

$(\underline{B}(t))$ independent BM-s
$L_{0}(t)=0, L_{k}(t)$ local time at $\left\{Z_{k}(s)=0\right\}, k \geq 1$ (collisions).

$\operatorname{ATLAS}_{\infty}(2)$ an equilibrium case

[Pal-Pitman 08] $\quad \lambda=2 \Rightarrow$ Spacings equilibrium $(\underline{Z}(t) \stackrel{(d)}{=} \underline{Z}(0))$. (utilizing [Williams 87] work on RBM-s on polyhedra).
[Conj. 2]: Unique invariant measure (Open).
[Conj. 3]: (resolved in [D-Tsai 15]).

$$
t^{-1 / 4} X_{(0)}(t) \xrightarrow{(d)} N(0, c), \quad t \rightarrow \infty, \quad \text { some } c \in(0, \infty) .
$$

(tagged particle of Harris system [Harris 65, Dürr-Goldstein-Lebowitz 85], and of SSEP [Arratia 83, Rost-Vares 85, Landim-Volchan 00, De Masi-Ferrari 02]). By spacing equilibrium, [D-Tsai 15] resolve [Conj. 3, PP08] by showing that asymptotic fluctuation at scale $b^{-1 / 2}$ follows ASHE with Neumann BC at 0 .

Question: Out of equilibrium? Expects

$$
X_{(0)}(s) \rightarrow \pm \infty, \quad \text { according to } \quad \operatorname{sgn}(2-\lambda)
$$

Asymptotics $b \downarrow 0$ of point processes on $\mathbb{R}_{+} \times \mathbb{R}$

$$
Q^{b}(t, \cdot):=b \sum_{i=0}^{\infty} \delta_{t, X_{i}^{b}(t)}, \quad X_{i}^{b}(t)=b X_{i}\left(t / b^{2}\right), \quad i \geq 0
$$

$Q^{b}(t, \cdot) \in M_{*}(\mathbb{R})=\{$ all Borel $\mu \geq 0$ with $\mu((-\infty, r])$ finite $\forall r\}$,
$\mathcal{C}_{*}:=\left\{f \in \mathcal{C}_{b}(\mathbb{R})\right.$ eventually zero $\}$-topology, metrizable by d_{*}.
$Q^{b}(\cdot, \cdot) \in \mathfrak{C}=\left\{\right.$ all continuous $\left.t \mapsto \mu(t, \cdot): \mathbb{R}_{+} \rightarrow\left(M_{*}(\mathbb{R}), d_{*}\right)\right\}$,
with topology of uniform convergence on compacts in \mathbb{R}_{+}.

Hydrodynamics for $\operatorname{ATLAS}_{\infty}(\lambda)$: Result

Theorem (CDSS 15)

For $\operatorname{ATLAS}_{\infty}(\lambda)$ as $b \rightarrow 0$ we have $Q^{b}(\cdot, \cdot) \rightarrow Q_{*}(\cdot, \cdot)$ in \mathfrak{C}.
The Q_{*}-density with respect to Lebesgue
$u_{*}(t, x):=\left[c_{1}+c_{2} \Phi(x / \sqrt{t})\right] \mathbf{1}_{\left\{x>y_{*}(t)\right\}}, \quad y_{*}(t):=\kappa \sqrt{t}, \quad \forall t>0$
$\Phi(\cdot)$ CDF of $N(0,1)$ and

$$
c_{1}:=\frac{2-\lambda \Phi(\kappa)}{1-\Phi(\kappa)}, \quad c_{2}:=\frac{\lambda-2}{1-\Phi(\kappa)} .
$$

$\operatorname{sgn}(\kappa)=\operatorname{sgn}(2-\lambda)$ for κ unique such that

$$
\frac{\kappa(1-\Phi(\kappa))}{\Phi^{\prime}(\kappa)}=1-\frac{\lambda}{2} .
$$

Left-most particle $X_{(0)}^{b}(t) \rightarrow y_{*}(t)$ as $b \rightarrow 0$ (uniformly on compacts).
$y_{*}(t)=\inf \left\{x: u_{*}(t, x)>0\right\}$ differentiable and $u_{*}(t, x)$ unique, uniformly bounded and uniformly positive on $x>y(t)$, solution of 1 -sided Stefan problem:

$$
\begin{array}{cr}
u_{t}(t, x)=\frac{1}{2} u_{x x}(t, x), & \forall x>y(t) . \\
\lim _{t \downarrow 0} u(t, x)=\lambda \mathbf{1}_{x>0}, & \forall x \neq 0 . \quad \text { IC } \\
u\left(t, y(t)^{+}\right):=\lim _{x \downarrow y(t)} u(t, x)=2, & \forall t>0 .
\end{array} \quad \text { EQ-LBV } \quad \begin{aligned}
& u\left(t, y(t)^{+}\right) \frac{d y}{d t}(t)+\frac{1}{2} u_{x}\left(t, y(t)^{+}\right)=0, \quad \forall t>0 . \quad \text { FLX-BD }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d t}=-\frac{1}{4} u_{x}\left(t, y(t)^{+}\right), \forall t>0 . \quad \text { FLX-BD } \\
& \lambda-2>0 \quad \Longrightarrow \quad \kappa<0 \quad \text { (expanding), } \\
& \lambda-2<0 \quad \Longrightarrow \quad \kappa>0 \quad \text { (contracting). }
\end{aligned}
$$

Non-random rate of expansion/contraction

$$
\lim _{s \rightarrow \infty} \frac{Y_{1}(s)}{\sqrt{s}}=\kappa
$$

$u_{*}(1, \cdot)$ as limiting particle density profile:

$$
\lim _{s \rightarrow \infty} Q^{1 / \sqrt{s}}(1, x+[-\epsilon, \epsilon])=\int_{-\epsilon}^{\epsilon} u_{*}(1, x+r) d r, \quad \epsilon>0
$$

\# of particles at time $s \gg 1$ near $\sqrt{s} x$ has density $u_{*}(1, x)$.

Stochastic monotonicity and spacing at the edge

Definition

$$
\underline{\xi} \preceq \underline{\xi}^{\prime} \quad \Leftrightarrow \quad \mathbf{P}(\underline{\xi} \geq \underline{y}) \leq \mathbf{P}\left(\underline{\xi}^{\prime} \geq \underline{y}\right), \quad \forall \underline{y} \in \mathbb{R}^{\mathbb{N}}
$$

Theorem (CDSS 15)
$\underline{Z}(0)=\underline{Z}^{(\lambda)} \sim \rho_{\lambda}$.
$\lambda<2 \quad \Longrightarrow \quad \underline{Z}^{(2)} \preceq \underline{Z}(t) \preceq \underline{Z}(s) \preceq \underline{Z}^{(\lambda)}, \quad \forall t \geq s \geq 0$,
and $\underline{Z}(t) \rightarrow \underline{Z}^{(2)}$ (convergence of f.d.d.).

$$
\lambda>2 \quad \Longrightarrow \quad \underline{Z}^{(\lambda)} \preceq \underline{Z}(s) \preceq \underline{Z}(t) \preceq \underline{Z}^{(2)}, \quad \forall t \geq s \geq 0 .
$$

[Landim-Olla-Volchan 98] get same Stefan problem for effect of tagged asymmetric particle on (truely) doubly-infinite SSEP, by [Arratia 85] transform of spacings in -SEP to constant rate zero-range process.

Here purely one-sided system. Stochastic monotonicity (rbm theory) plus LD for i.i.d. BM-s and for $\operatorname{PPP}_{+}(\lambda)$ give pre-compactness/regularity of $\left\{Q^{b}, b>0\right\}$ (\mathfrak{C}-limit-points Q^{0} as $b \rightarrow 0$, with bounded Q^{0}-density and $X_{(0)}^{b}(t) \rightarrow y_{Q^{0}}(t)$).

By Ito's lemma (diminishing martingale term as $b \rightarrow 0$), all limit points satisfy same weak (distributional) form of our Stefan problem. A-priori regularity and standard PDE tools [lshii 81] give uniqueness of solution.

Asymptotics $b \downarrow 0$ of re-scaled point processes on $\mathbb{R}_{+} \times \mathbb{R}$
$\widehat{Q}^{b}(t, \cdot):=\sqrt{b / 2}\left[\sum_{i=0}^{\infty} \delta_{X_{i}^{b}(t)}-(2 / b) \operatorname{Leb}\left(\mathbb{R}_{+}\right)\right], \quad X_{i}^{b}(t)=b X_{i}\left(t / b^{2}\right), \quad i \geq 0$.
Heat kernel

$$
p_{t}(x)=\Phi_{t}^{\prime}(x) \quad \text { for } \quad \Phi_{t}(x)=\Phi(x / \sqrt{t})-1
$$

Neumann kernel $p_{t}^{N}(y, x)=\partial_{y} \Psi_{t}(y, x)$ for

$$
\Psi_{t}(y, x):=\Phi_{t}(y-x)+\Phi_{t}(y+x) .
$$

$B(\cdot)$ Brownian motion, $\mathcal{W}(t, x)$ standard white noise are independent.

$$
\begin{aligned}
\widehat{W}_{t}(x) & :=\int_{0}^{\infty} \Psi_{t}(y, x) \mathrm{d} B(y) \\
\widehat{M}_{t}(x) & :=\int_{0}^{t} \int_{0}^{\infty} p_{t-s}^{N}(y, x) \mathrm{d} \mathcal{W}(y, s) .
\end{aligned}
$$

$C\left(\mathbb{R}_{+}^{2} ; \mathbb{R}\right)$-valued Gaussian process $\widehat{U}^{0}(t, x)=\widehat{W}_{t}(x)+\widehat{M}_{t}(x)$, solves the ASHE

$$
\left(\partial_{t}-\frac{1}{2} \partial_{x x}\right) \widehat{U}^{0}(t, x)=\dot{\mathcal{W}}(t, x), \quad \widehat{U}^{0}(0, x)=B(x)
$$

Equip $D\left(\mathbb{R}_{+}^{2}\right)$ with uniform convergence on compacts and let

$$
\widehat{U}^{b}(t, x):=\sqrt{b / 2}\left(2 X_{(\lfloor x /(2 b)\rfloor)}\left(t / b^{2}\right)-\lfloor x /(2 b)\rfloor\right) .
$$

Theorem (D-Tsai 15)

For $\operatorname{ATLAS}_{\infty}(2)$ as $b \rightarrow 0$,

$$
\widehat{U}^{b}(\cdot, \cdot) \Rightarrow \widehat{U}^{0}(\cdot, \cdot)
$$

In particular, $\quad b^{-1 / 2} X_{(0)}\left(t / b^{2}\right) \Rightarrow(2 / \pi)^{1 / 4} V(t)$ a $1 / 4-$ FBM.
$\widehat{U}^{b}(t, x) \approx F^{b, r}(t, x):=\left\langle\widehat{Q}^{b}(t, \cdot), \Psi_{b^{1+} r}\left(\cdot, x+b^{r}\right)\right\rangle($ some $0<r<1 / 2)$.
Ito's lemma for $F^{b, r}(t, x)$:
martingale contribution goes to $\widehat{M}_{t}(x)$,
IC contribution goes in law to $\widehat{W}_{t}(x)$,
HE and choice of Ψ eliminate $\mathcal{L} F$ part.

Thank you!

