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Overview

Physical system/ combinatorial object
Plane partitions .

Probabilistic model
PLt () o Tl A (t) - introduced by [Vuleti¢ '09].

Algebraic framework and observables

Macdonald difference operators [Borodin-Corwin '14] and
[Borodin-Corwin-Gorin-Shakirov '14]. Formulas for t-Laplace
transform.

Asymptotic analysis
Saddle point method. GUE Tracy-Widom and KPZ fluctuations.
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Problem statement and results

Plane partitions

m=(mij), i,j € N,mij > max(0, i1, miga ), [w| = D mij < oc.
iJ

A(t) = N = (miiz¢) for i > max(0,—t)(t € Z). Important quantity: \j(t).
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Problem statement and resu

Connected components
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Figure: A plane partition and its 3-d Young diagram. In this example the

number of components k(7) = 7.



Levels and border components

1

Levels:

nts and their levels.
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Problem statement and results

The polynomials A;(t)

Levels: 1 | B3

For each connected component C
define the sequence (ny, ny, ...),
where n; is the number of i-level
border components of C.

Pe(t) =1 —t)m.

i>1

Let Cq, Gy, Ck(ﬂ.) be the
connected components of 7.

For the example
Ar(t) = (1—-t)"(1—-t?)3(1—-¢3).



Problem statement and results

t
The measure P},

P};; first considered in [Vuleti¢ '09).
o /1 —trm\"

17l A _
Sonn- ()

n=1
a\ "N
Levels: 1 H2 N3 Setting Z(r,t) =[] (17”") , we

n=1

have

re(0,1)and t € (—1,1) : 1
! ’ r, P — 7'l'|

Define ]P’;_,z so that Pup(m) :=Z(r, ) r™AL(t).

Pt () oc rI™ Aq(2).



Problem statement and results

The measure P}/, when t =0 and t = —1

Case t = 0. Typical size ~ £~ = N(r).
@ Schur process
[Okounkov-Reshetikhin '03].
©Q Limit shapeasr — 1~
[Cerf-Kenyon '01].
© Fluctuations converge to the Airy
process [Ferrari-Spohn '03].

Case t = —1 stidied by [Vuleti¢ '07].
© Measure supported on strict plane
partitions.
@ Shifted Schur process.
o t=0 A(t) =1 () Limiting corrgIaFion kernel, strong
evidence for limit shape.

@ Edge fluctuations: unknown.



Problem statement and results

The measure P}, when t € (0, 1)

© Volume and hence limit shape
should change.

t=0.

© Fluctuations converge to
Tracy-Widom.

Case t,r -+ 17.
PLZ(W) = Z(r, t)*lr‘ﬂlAﬂ(t). @ Different limit is expected.

) @ Limit shape stays the same.
Interested in the case t € (0,1). P Y

Consider two limiting regimes as © Fluctuations converge to the

1 Hopf-Cole solution of the KPZ.

Case t € (0,1) - fixed, while r — 1.

@ Limit of bottom slice behaves as if
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Problem statement and results

Limit shape

Figure: t = 0. Figure: t = 0.2.

Figure: t = 0.4. Figure: t'=0.6.
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Problem statement and results

Convergence to Tracy-Widom

4 ~1/3
— €(0,1) and 7 € R.
cosh2(7/4)] re(0.1)andr

NG = 1 o) = |

Theorem

Consider the measure IP’;_,,Z on plane partitions, with t € (0,1)
fixed. Then for all 7 € R/{0} and x € R we have

(M(LTN(r)J) — 2N(r) log(1 + e7I1/2)

. r,t
|Im7 Py
r—1

a(T)"IN(r)1/3 = X) = Foue(x)

Fcue is the GUE Tracy-Widom distribution [Tracy-Widom '94].




Problem statement and results

Figure: t =0.4 Figure: t =0.8
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Problem statement and results

Convergence to KPZ

4 -1/3
S S €(0,1) and 7 € R.
cosh2(7/4)] re(0.1)andr

NG = 1 al) = |

1—r
& = (~log ) (Xi(LTN(r) ) — 2N(r) log(1 + &~ "/2)) ~log(1~ 1)

Theorem

Suppose k > 0, T = 2x3a~3 are fixed and (;J:)gl§3 = k. Then for
all T € R/{0} and x € R we have

lim Pt (& < x) =P(F(T,0)+ T/4! < x).

r—1-

F(T,X) is the Hopf-Cole solution to the Kardar-Parisi-Zhang
equation with initial data log Zo(X) and Zo(X) = 1{x—q}.




P;-{L[ as a Hall-Littlewood process

P}, : special case t = 0 (part 1)

Fix r € (0,1) and set t = 0. Then we have P} () oc rl7l.
Key observation: above can be realized as a Schur process
[Okounkov-Reshetikhin '03].

Let (X, i) = (AX, %) be sequences of partitions. Define their
weight as

W()\, ,u) = H S)\k/uk—l(Xk)S/\k/Hk(yk).

keZ

Sx/u are skew Schur polynomials in one variable, which satisfy
S)\/N(X) = 1,\>HXW7|“| (00 = 1) .
Assuming x;,y; € [0,1) and N(X; Y) =3, , W(A, ) € (0,00),

we have that Px y (A, 1) = :./I‘Eg?% defines a probability measure.

Remark: Above is a special case of Macdonald processes.
Recall: m=--- <A 2 <A 1< A0 N1 N2 ..




P} as a Hall-Littlewood process
HL P

P}, : special case t = 0 (part 2)

w
—_

A B A s

A2 2z Ak o e Qi 32

= ro W |
(%3

Idea is to pick x, yx suitably so that the projection of the law
Px.y on AX matches the measure of , i.e. oc rl™l.

Xg=r "2y —0ifn< 1y, =r""2 x, =0if 0 < n.

One can easily check that the above construction satisfies
o u" = \"for n<0and pu" = A"t for n >0,

0 <A< ATI <N = AL - A2 A= [t >> 1,
Y IP)X,Y()\) X r2k|/\k‘ = r‘ﬂ",
Important: Px’y(Ak = \) « Sx(a,ar,ar?,---)S\(a, ar,ar?,---),

where a = r(1FIkD)/2. .
6 /27



]P’

P;-{L[ as a Hall-Littlewood process

: general case t € (0,1) (part 1)

Fix t € (0,1). Replace Schur with Hall-Littlewood polynomials:
W(A, 1) H P}\k/uk 1(xk; )QM/“ k(Y t).
keZ
Specialize variables in the same way as before. Changes:

S/\/M(X) = 1)‘>-,U«X‘)\|_|m — 1)\>MX‘>\I_|M|w)\/M(t) — P)\/M(X; t)

SA/u(y) = 1)\>uyw_w - 1/\>uy|>\‘_lul¢>\/u(t) = Q)\/u(y; t)'
®x/u(t) and 1y, (t) are explicit (but technical) integer
polynomials in t.

¢>\/;L(t) = H(l - tmi(/\)) and w)\/u(t) = H(l - tmj(ﬂ))'

icl jed
if A > u otherwise both expressions equal 0. m;(\) = [{\; =i},
I—{IGN Aiy1 = Hipg and Ab> it and J={j €N X >
Wip1 and Ap = pj}.



]P’

P}, as a Hall-Littlewood process
: general case t € (0,1) (part 2)

As before the projection of the measure on ) is supported on
0 - < ATZ A0 AL N2
o \' =g for all |t| >> 1.

The obtained measure: Px y..() o< Br(t)r!™l.
What is remarkable is that B (t) = A;(t) [Vuleti¢ '09].
An important byproduct:

IP’;’,Z(/\’( = \) « Py(a,ar,ar?,--- ; t)Qx(a,ar,ar?, - - ; t),

where a(k) = riHlkl/2,
Strategy is to study the measure

P(}\) X P)\(Xl, cee XN t)Q)\(yl, L YNG t) then specialize Xi, Yi

and send N — oo.

27



Observables of Hall-Littlewood measures

General philosophy

We have the Cauchy identity
AT tx;y;
doPX)Y)=nx;v)= ][ —=.

AeY =1

© Find an operator D, diagonalized by the Hall-Littlewood
polynomials Py(X). l.e. DPx(X) = d\Px(X).
@ Apply it k times to both sides of the Cauchy identity to get

D dEPA(X)QA(Y) = DFN(X; V).
A

© Divide both sides by IN(X; Y) and get

D*N(X; Y)

Ex,vldy] = TG YY)

19/2
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Observables of Hall-Littlewood measures

Hall-Littlewood difference operator

Fix N € N and consider the space of functions in N variables.

Definition

X —X

1. N j
For t € R set Dy :=> i 4 Hj;é,- x,-—x,-l To,x;, where
(Tox F)(x1,.yxn) = F(x1, ooy Xi—1, 0, Xit1, - X))

Key fact [Macdonald '95]:
D,]VP)\(Xl, c XN ) = (PﬁZAI) Py(x1, -y Xpn; t).
Remark: This operator is a special case of the Macdonald

difference operators.

. 1
Set Dy = [%] Then we have

'DNP)\(Xl, cees XN t) = t_le/\(Xl, ceey XN t).

20 /27



Observables of Hall-Littlewood measures

Observables (part 1)

DEN(X; Y) L b1ty
ST g — N X Y) = [
nex;y) ( ) e 1 — Xxy;

Ex,y[dy] =

Proposition

Let x;,y; € (0,1) and y; < e <<k 1 for all i. Then we have

kK [N o
—kX - i —Xj 1-zy) | dz
E [t Ml]:# = Gyt N(=zy) | dz
X,Y @roF fq),1 fcw 1§al;[b§k Pt I];[1 jl;[l it | 2
where Gy , are positively oriented contours encircling xi, ..., xy and 0 and
contained in a circle of radius e~ around 0. In addition, Gy , contains
t1Cyp fora < b.

Strategy: show by induction on k that DfM(X; Y) =

k N
- 52 : Z—X—lzy) 9z
(2me)k fCO,l fCoyk lgagbgk z,ajzbt’b*1 H(X' Y) il;[]. 11;11 IZ - )(1— fZ:ylj)J ‘| Zi/ :




Observables of Hall-Littlewood measures

Proof (sketch): similar to [Borodin-Corwin '14]

. 1 Z,
Write RHS as W fCO,l s .fCO,k lgagbgk Za—zpt— le(217 seey k)'

@ As function of z, poles at: tz; for i < k; t‘ly,-_l; x; and 0.

@ Only poles at x; and 0 are contained in Cp x and sum of

residues equals I zazjz_bzt"_lDNFk,l(zl, ey Zk—1)-
1<a<b<k-1

@ In particular, we get DRM(X;Y) =

1 Za—2p D
oI fC fC B [] 2 DnFr-1(z1; -, Zk-1)-
(2m) 01 Okt cachak—1 %

@ By linearity of Dy can switch order of Dy and integrals and
reduce to base case k = 1.

© Base case is (again) an application of the Residue Theorem.

N
N
N
~



Observables of Hall-Littlewood measures

Residue-book-keeping formula

@ Idea: combine above formulas with different k in some
generating series (similarly to >, E[X¥]u*/k! = E[exp(uX)]).

@ Problem: contours are distinct and become too large.
Allowable y’s depend on k.

Following result is proved in [Borodin-Bufetov-Corwin '15 (also
appeared earlier in [Borodin-Corwin '14]).

N
: (2 =5t ") (1= 2y;) ldz; _
(27”)k /COJ /Co Zy — th z, — zpt—1 H H . v z; -

(@~ ) )

k1<a<b<k i=1]j=1
=) (1-t71) )
(-D)kt™ 7 k! / / det [ } X
© ; (271—[‘),()\ m1|m2 Cox JCox wit™ A —Wiliji=1
[T G(w)G(wjt™) - Gw;t' ™V )dwy - - - dwy(y.
In the above formula G(w) = H,N:1 W;fi_l lljtyy’v‘:/ 23/27




Observables of Hall-Littlewood measures

Observables (part 2)

Proposition

Let x;,y; € (0,1) and Cy be the positively oriented circle of radius t—*
around the origin. Then we have

Ex,y {FMI} = (t71 = )Fhe! Yok (2m1)fm oo Jo  Ja
I ) N

Lox(wn) Lyi(wt)t [ 1 } ;
JHI ,H 1—x;(wjt)= 1N le;ll il;ll 1—yi(w;t) = wit= i —w; ij=1 il;ll T
1-t)(1—t 1-t
where k! = %

Advantages: contours are all the same, formula holds for all y; not just
very small. Sum both sides of above proposition as generating series with
coefficients u*/k.!.



Observables of Hall-Littlewood measures

Combining observables

Proposition

Let x;,y; € (0,1). Then for u ¢ R* one has that

1
(1 — t)ut=; t)oo

EX,Y |: :| = det(l —+ K;V)LZ(CO)'

The contour Cy is the positively oriented circle of radius t, centered at
0, and the operator KN is defined in terms of its integral kernel

1/2+w00

KN(wiw') = 5= [ dsT(=s)I(1+s)(—u(t™! - 1)°gw . (t°),
1/2—100

where we choose the principa/ branch of the logarithm and

H (1—x( Wt “HA—y(wt)t)
wt—s—w’

gm,XW’(ts) = (=% Wt —T5)(1—y;(wt))




Observables of Hall-Littlewood measures

A word on asymptotics

@ Above work gives Fredholm determinant formulas for the
t-Laplace transforms of certain random variables.

@ If t € (0,1) is fixed and we let r — 17 the t-Laplace
transform converges to an indicator function.

O If r,t — 17 the t-Laplace transform converges to the usual
Laplace transform.

@ Can find explicit expressions for the limiting Fredholm
determinants and match them with existing formulas for Fgye
and the Hopf-Cole solution to the KPZ with narrow wedge
initial data.

26 /27



Observables of Hall-Littlewood measures

Thank you!

Figure: t =0.4
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