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Overview

Physical system/ combinatorial object

Plane partitions π.

Probabilistic model

Pr ,t
HL(π) ∝ r |π|Aπ(t) - introduced by [Vuletić ’09].

Algebraic framework and observables

Macdonald difference operators [Borodin-Corwin ’14] and
[Borodin-Corwin-Gorin-Shakirov ’14]. Formulas for t-Laplace
transform.

Asymptotic analysis

Saddle point method. GUE Tracy-Widom and KPZ fluctuations.
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Plane partitions

π = (πi,j), i , j ∈ N, πi,j ≥ max(0, πi,j+1, πi+1,j), |π| =
∑
i,j

πi,j <∞.

λ(t) = λt = (πi,i+t) for i ≥ max(0,−t) (t ∈ Z) . Important quantity: λ′1(t).

π = · · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · , .
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Connected components

Figure: A plane partition and its 3-d Young diagram. In this example the
number of components k(π) = 7.
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Levels and border components

Figure: Border components and their levels.
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The polynomials Aπ(t)

For each connected component C
define the sequence (n1, n2, ...),
where ni is the number of i-level
border components of C .

PC (t) :=
∏
i≥1

(1− t i )ni .

Let C1,C2, ...Ck(π) be the
connected components of π.

Aπ(t) :=

k(π)∏
i=1

PCi
(t).

For the example
Aπ(t) = (1− t)7(1− t2)3(1− t3).
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The measure Pr ,t
HL

r ∈ (0, 1) and t ∈ (−1, 1)
Define Pr ,t

HL so that

Pr ,t
HL(π) ∝ r |π|Aπ(t).

Pr ,t
HL first considered in [Vuletić ’09].

∑
π

r |π|Aπ(t) =
∞∏
n=1

(
1− trn

1− rn

)n

.

Setting Z (r , t) :=
∏∞

n=1

(
1−trn
1−rn

)n
, we

have

Pr ,t
HL(π) := Z (r , t)−1r |π|Aπ(t).
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The measure Pr ,t
HL, when t = 0 and t = −1

Pr ,t
HL(π) = Z (r , t)−1r |π|Aπ(t).

t = 0: Aπ(t) = 1

t = −1: Aπ(t) = 0 or 2k(π)

Case t = 0. Typical size ∼ 1
1−r = N(r).

1 Schur process
[Okounkov-Reshetikhin ’03].

2 Limit shape as r → 1−

[Cerf-Kenyon ’01].

3 Fluctuations converge to the Airy
process [Ferrari-Spohn ’03].

Case t = −1 stidied by [Vuletić ’07].

1 Measure supported on strict plane
partitions.

2 Shifted Schur process.

3 Limiting correlation kernel, strong
evidence for limit shape.

4 Edge fluctuations: unknown.
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The measure Pr ,t
HL, when t ∈ (0, 1)

Pr ,t
HL(π) = Z (r , t)−1r |π|Aπ(t).

Interested in the case t ∈ (0, 1).
Consider two limiting regimes as
r → 1−.

Case t ∈ (0, 1) - fixed, while r → 1−.
1 Volume and hence limit shape

should change.

2 Limit of bottom slice behaves as if
t = 0.

3 Fluctuations converge to
Tracy-Widom.

Case t, r → 1−.

1 Different limit is expected.

2 Limit shape stays the same.

3 Fluctuations converge to the
Hopf-Cole solution of the KPZ.
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Limit shape

Figure: t = 0. Figure: t = 0.2.

Figure: t = 0.4. Figure: t = 0.6.
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Convergence to Tracy-Widom

N(r) :=
1

1− r
, α(τ) :=

[
4

cosh2(τ/4)

]−1/3

r ∈ (0, 1) and τ ∈ R.

Theorem

Consider the measure Pr ,t
HL on plane partitions, with t ∈ (0, 1)

fixed. Then for all τ ∈ R/{0} and x ∈ R we have

lim
r→1−

Pr ,t
HL

(
λ′1(bτN(r)c)− 2N(r) log(1 + e−|τ |/2)

α(τ)−1N(r)1/3
≤ x

)
= FGUE (x).

FGUE is the GUE Tracy-Widom distribution [Tracy-Widom ’94].
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Figure: t = 0.4 Figure: t = 0.8
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Convergence to KPZ

N(r) :=
1

1− r
, α(τ) :=

[
4

cosh2(τ/4)

]−1/3

r ∈ (0, 1) and τ ∈ R.

ξr := (− log t)
(
λ′1(bτN(r)c)− 2N(r) log(1 + e−|τ |/2)

)
− log(1− t)

Theorem

Suppose κ > 0, T = 2κ3α−3 are fixed and − log t
(1−r)1/3 = κ. Then for

all τ ∈ R/{0} and x ∈ R we have

lim
r→1−

Pr ,t
HL (ξr ≤ x) = P (F(T , 0) + T/4! ≤ x) .

F(T ,X ) is the Hopf-Cole solution to the Kardar-Parisi-Zhang
equation with initial data logZ0(X ) and Z0(X ) = 1{X=0}.
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Pr ,t
HL : special case t = 0 (part 1)

Fix r ∈ (0, 1) and set t = 0. Then we have Pr ,t
HL(π) ∝ r |π|.

Key observation: above can be realized as a Schur process
[Okounkov-Reshetikhin ’03].
Let (λ, µ) = (λk , µk) be sequences of partitions. Define their
weight as

W(λ, µ) :=
∏
k∈Z

Sλk/µk−1(xk)Sλk/µk (yk).

Sλ/µ are skew Schur polynomials in one variable, which satisfy

Sλ/µ(x) = 1λ�µx
|λ|−|µ| (00 = 1) .

Assuming xi , yi ∈ [0, 1) and Π(X ;Y ) =
∑

λ,µW(λ, µ) ∈ (0,∞),

we have that PX ,Y (λ, µ) = W(λ,µ)
Π(X ;Y ) defines a probability measure.

Remark: Above is a special case of Macdonald processes.
Recall: π = · · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · , .
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Pr ,t
HL : special case t = 0 (part 2)

Idea is to pick xk , yk suitably so that the projection of the law
PX ,Y on λk matches the measure of π, i.e. ∝ r |π|.

xn = r−n−1/2, yn = 0 if n ≤ −1; yn = rn+1/2, xn = 0 if 0 ≤ n.

One can easily check that the above construction satisfies

µn = λn for n < 0 and µn = λn+1 for n ≥ 0,
· · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · , λt = ∅ |t| >> 1,

PX ,Y (λ) ∝ r
∑

k |λk | = r |π|,

Important: PX ,Y (λk = λ) ∝ Sλ(a, ar , ar2, · · · )Sλ(a, ar , ar2, · · · ),
where a = r (1+|k|)/2.
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Pr ,t
HL: general case t ∈ (0, 1) (part 1)

Fix t ∈ (0, 1). Replace Schur with Hall-Littlewood polynomials:

W(λ, µ) :=
∏
k∈Z

Pλk/µk−1(xk ; t)Qλk/µk (yk ; t).

Specialize variables in the same way as before. Changes:

Sλ/µ(x) = 1λ�µx
|λ|−|µ| → 1λ�µx

|λ|−|µ|ψλ/µ(t) = Pλ/µ(x ; t).

Sλ/µ(y) = 1λ�µy
|λ|−|µ| → 1λ�µy

|λ|−|µ|φλ/µ(t) = Qλ/µ(y ; t).

φλ/µ(t) and ψλ/µ(t) are explicit (but technical) integer
polynomials in t.

φλ/µ(t) =
∏
i∈I

(1− tmi (λ)) and ψλ/µ(t) =
∏
j∈J

(1− tmj (µ)).

if λ � µ otherwise both expressions equal 0. mi (λ) = |{λj = i}|,
I = {i ∈ N : λ′i+1 = µ′i+1 and λ′i > µ′i} and J = {j ∈ N : λ′j+1 >
µ′j+1 and λ′j = µ′j}.
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Pr ,t
HL: general case t ∈ (0, 1) (part 2)

As before the projection of the measure on λ is supported on

· · · ≺ λ−2 ≺ λ−1 ≺ λ0 � λ1 � λ2 � · · · .
λt = ∅ for all |t| >> 1.

The obtained measure: PX ,Y ;t(π) ∝ Bπ(t)r |π|.
What is remarkable is that Bπ(t) = Aπ(t) [Vuletić ’09].
An important byproduct:

Pr ,t
HL(λk = λ) ∝ Pλ(a, ar , ar2, · · · ; t)Qλ(a, ar , ar2, · · · ; t),

where a(k) = r1+|k|/2.
Strategy is to study the measure
P(λ) ∝ Pλ(x1, · · · , xN ; t)Qλ(y1, · · · , yN ; t) then specialize xi , yi
and send N →∞.
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General philosophy

We have the Cauchy identity

∑
λ∈Y

Pλ(X )Qλ(Y ) = Π(X ;Y ) =
N∏

i ,j=1

1− txiyj
1− xiyj

.

1 Find an operator D, diagonalized by the Hall-Littlewood
polynomials Pλ(X ). I.e. DPλ(X ) = dλPλ(X ).

2 Apply it k times to both sides of the Cauchy identity to get∑
λ

dk
λPλ(X )Qλ(Y ) = DkΠ(X ;Y ).

3 Divide both sides by Π(X ;Y ) and get

EX ,Y [dk
λ ] =

DkΠ(X ;Y )

Π(X ;Y )
.
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Hall-Littlewood difference operator

Fix N ∈ N and consider the space of functions in N variables.

Definition

For t ∈ R set D1
N :=

∑N
i=1

∏
j 6=i

txi−xj
xi−xj T0,xi , where

(T0,xiF )(x1, ..., xN) = F (x1, ..., xi−1, 0, xi+1, ..., xN).

Key fact [Macdonald ’95]:

D1
NPλ(x1, ..., xN ; t) =

(
1−tN−λ

′
1

1−t

)
Pλ(x1, ..., xN ; t).

Remark: This operator is a special case of the Macdonald
difference operators.

Set DN :=
[

(t−1)D1
N+1

tN

]
. Then we have

DNPλ(x1, ..., xN ; t) = t−λ
′
1Pλ(x1, ..., xN ; t).
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Observables (part 1)

EX ,Y [dk
λ ] =

Dk
NΠ(X ;Y )

Π(X ;Y )
, dλ = t−λ

′
1 , Π(X ;Y ) =

N∏
i ,j=1

1− txiyj
1− xiyj

.

Proposition

Let xi , yi ∈ (0, 1) and yi < ε <<k 1 for all i . Then we have

EX ,Y

[
t−kλ

′
1

]
= 1

(2πι)k

∫
C0,1
· · ·
∫
C0,k

∏
1≤a<b≤k

za−zb
za−zbt−1

k∏
i=1

[
N∏
j=1

(zi−xj t−1)(1−ziyj )
(zi−xj )(1−tziyj )

]
dzi
zi
,

where C0,a are positively oriented contours encircling x1, ..., xN and 0 and
contained in a circle of radius ε−1 around 0. In addition, C0,a contains
t−1C0,b for a < b.

Strategy: show by induction on k that Dk
NΠ(X ;Y ) =

1
(2πι)k

∫
C0,1
· · ·
∫
C0,k

∏
1≤a<b≤k

za−zb
za−zbt−1 Π(X ;Y )

k∏
i=1

[
N∏
j=1

(zi−xj t−1)(1−ziyj )
(zi−xj )(1−tziyj )

]
dzi
zi
.
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Proof (sketch): similar to [Borodin-Corwin ’14]

Write RHS as 1
(2πι)k

∫
C0,1
· · ·
∫
C0,k

∏
1≤a<b≤k

za−zb
za−zbt−1Fk(z1, ..., zk).

1 As function of zk poles at: tzi for i < k ; t−1y−1
i ; xi and 0.

2 Only poles at xi and 0 are contained in C0,k and sum of
residues equals

∏
1≤a<b≤k−1

za−zb
za−zbt−1DNFk−1(z1, ..., zk−1).

3 In particular, we get Dk
NΠ(X ;Y ) =

1
(2πι)k−1

∫
C0,1
· · ·
∫
C0,k−1

∏
1≤a<b≤k−1

za−zb
za−zbt−1DNFk−1(z1, ..., zk−1).

4 By linearity of DN can switch order of DN and integrals and
reduce to base case k = 1.

5 Base case is (again) an application of the Residue Theorem.
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Residue-book-keeping formula

Idea: combine above formulas with different k in some
generating series (similarly to

∑
k E[X k ]uk/k! = E[exp(uX )]).

Problem: contours are distinct and become too large.
Allowable y ’s depend on k .

Following result is proved in [Borodin-Bufetov-Corwin ’15 (also
appeared earlier in [Borodin-Corwin ’14]).

1

(2πι)k

∫
C0,1

· · ·
∫
C0,k

∏
1≤a<b≤k

za − zb
za − zbt−1

k∏
i=1

 N∏
j=1

(zi − xj t
−1)(1− ziyj)

(zi − xj)(1− tziyj)

dzi
zi

=

(−1)kt
k(k−1)

2 kt−1 !
∑
λ`k

(1− t−1)k

(2πι)l(λ)

1

m1!m2!...

∫
C0,k

· · ·
∫
C0,k

det

[
1

wi t−λi − wj

]l(λ)

i,j=1

×

l(λ)∏
j=1

G (wj)G (wj t
−1) · · ·G (wj t

1−λj )dw1 · · · dwl(λ).

In the above formula G (w) =
∏N

j=1
w−xj t−1

w−xj
1−yjw
1−tyjw . 23 / 27
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Observables (part 2)

Proposition

Let xi , yi ∈ (0, 1) and C0 be the positively oriented circle of radius t−1

around the origin. Then we have

EX ,Y

[
t−kλ

′
1

]
= (t−1 − 1)kkt !

∑
λ`k

1
(2πι)l(λ)

1
m1(λ)!m2(λ)!···

∫
C0
· · ·
∫
C0

l(λ)∏
j=1

N∏
i=1

1−xi (wj t)−1

1−xi (wj t)−1tλj
×

l(λ)∏
j=1

N∏
i=1

1−yi (wj t)t−λj

1−yi (wj t) det
[

1
wi t−λi−wj

]l(λ)

i,j=1

`(λ)∏
i=1

dwi ,

where kt ! = (1−t)(1−t2)···(1−tk )
(1−t)k

.

Advantages: contours are all the same, formula holds for all yi not just
very small. Sum both sides of above proposition as generating series with
coefficients uk/kt !.
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Combining observables

Proposition

Let xi , yi ∈ (0, 1). Then for u 6∈ R+ one has that

EX ,Y

[
1

((1− t)ut−λ
′
1 ; t)∞

]
= det(I + KN

u )L2(C0).

The contour C0 is the positively oriented circle of radius t−1, centered at
0, and the operator KN

u is defined in terms of its integral kernel

KN
u (w ;w ′) = 1

2πι

1/2+ι∞∫
1/2−ι∞

dsΓ(−s)Γ(1 + s)(−u(t−1 − 1))sgN
w ,w ′(t

s),

where we choose the principal branch of the logarithm and

gN
w ,w ′(t

s) = 1
wt−s−w ′

N∏
j=1

(1−xj (wt)−1)(1−yj (wt)t−s )
(1−xj (wt)−1ts )(1−yj (wt)) .
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A word on asymptotics

1 Above work gives Fredholm determinant formulas for the
t-Laplace transforms of certain random variables.

2 If t ∈ (0, 1) is fixed and we let r → 1− the t-Laplace
transform converges to an indicator function.

3 If r , t → 1− the t-Laplace transform converges to the usual
Laplace transform.

4 Can find explicit expressions for the limiting Fredholm
determinants and match them with existing formulas for FGUE
and the Hopf-Cole solution to the KPZ with narrow wedge
initial data.
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Thank you!

Figure: t = 0.4

27 / 27


	Problem statement and results
	Pr,tHL as a Hall-Littlewood process
	Observables of Hall-Littlewood measures

