KPZ and Airy limits of Hall-Littlewood random plane partitions

Evgeni Dimitrov
MIT
February 27, 2016

Overview

Physical system/ combinatorial object

Plane partitions π.

Probabilistic model

$\mathbb{P}_{H L}^{r, t}(\pi) \propto r^{|\pi|} A_{\pi}(t)$ - introduced by [Vuletić '09].

Algebraic framework and observables
Macdonald difference operators [Borodin-Corwin '14] and [Borodin-Corwin-Gorin-Shakirov '14]. Formulas for t-Laplace transform.

Asymptotic analysis
Saddle point method. GUE Tracy-Widom and KPZ fluctuations.

Contents

(1) Problem statement and results
(2) $\mathbb{P}_{H L}^{r, t}$ as a Hall-Littlewood process
(3) Observables of Hall-Littlewood measures

Plane partitions

$$
\begin{gathered}
\pi=\left(\pi_{i, j}\right), \quad i, j \in \mathbb{N}, \pi_{i, j} \geq \max \left(0, \pi_{i, j+1}, \pi_{i+1, j}\right),|\pi|=\sum_{i, j} \pi_{i, j}<\infty . \\
\lambda(t)=\lambda^{t}=\left(\pi_{i, i+t}\right) \text { for } i \geq \max (0,-t)(t \in \mathbb{Z}) . \text { Important quantity: } \lambda_{1}^{\prime}(t) . \\
\pi=\cdots \prec \lambda^{-2} \prec \lambda^{-1} \prec \lambda^{0} \succ \lambda^{1} \succ \lambda^{2} \succ \cdots, .
\end{gathered}
$$

5	4	4	3		3
4	3	3	3		1
3	2				
1					
1					

Connected components

5	5	4	3	3	3
4	4	3	3	3	3
4	3	3	3	3	3
3	3	3	2	2	1
3	3	3	2	2	
1	1	1			

Figure: A plane partition and its 3-d Young diagram. In this example the number of components $k(\pi)=7$.

Levels and border components

Levels: 1 ■ 3

Figure: Border components and their levels.

The polynomials $A_{\pi}(t)$

Levels: \square ■ \quad ■

For each connected component C define the sequence (n_{1}, n_{2}, \ldots), where n_{i} is the number of i-level border components of C.

$$
P_{C}(t):=\prod_{i \geq 1}\left(1-t^{i}\right)^{n_{i}} .
$$

Let $C_{1}, C_{2}, \ldots C_{k(\pi)}$ be the connected components of π.

$$
A_{\pi}(t):=\prod_{i=1}^{k(\pi)} P_{C_{i}}(t)
$$

For the example
$A_{\pi}(t)=(1-t)^{7}\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)$.

The measure $\mathbb{P}_{H L}^{r, t}$

Levels: $\square 1 \square 2 \square 3$
$r \in(0,1)$ and $t \in(-1,1)$
Define $\mathbb{P}_{H L}^{r, t}$ so that

$$
\mathbb{P}_{H L}^{r, t}(\pi) \propto r^{|\pi|} A_{\pi}(t) .
$$

$\mathbb{P}_{H L}^{r, t}$ first considered in [Vuletić '09].

$$
\sum_{\pi} r^{|\pi|} A_{\pi}(t)=\prod_{n=1}^{\infty}\left(\frac{1-t r^{n}}{1-r^{n}}\right)^{n}
$$

Setting $Z(r, t):=\prod_{n=1}^{\infty}\left(\frac{1-t r^{n}}{1-r^{n}}\right)^{n}$, we have

$$
\mathbb{P}_{H L}^{r, t}(\pi):=Z(r, t)^{-1} r^{|\pi|} A_{\pi}(t) .
$$

The measure $\mathbb{P}_{H L}^{r, t}$, when $t=0$ and $t=-1$

Levels: $\square 1 \square 2 \square 3$
$\mathbb{P}_{H L}^{r, t}(\pi)=Z(r, t)^{-1} r^{|\pi|} A_{\pi}(t)$.

- $t=0: A_{\pi}(t)=1$
- $t=-1: A_{\pi}(t)=0$ or $2^{k(\pi)}$

Case $t=0$. Typical size $\sim \frac{1}{1-r}=N(r)$.
(1) Schur process
[Okounkov-Reshetikhin '03].
(2) Limit shape as $r \rightarrow 1^{-}$ [Cerf-Kenyon '01].
(3) Fluctuations converge to the Airy process [Ferrari-Spohn '03].

Case $t=-1$ stidied by [Vuletić '07].
(1) Measure supported on strict plane partitions.
(2) Shifted Schur process.
(3) Limiting correlation kernel, strong evidence for limit shape.
(9) Edge fluctuations: unknown.

The measure $\mathbb{P}_{H L L}^{r, t}$, when $t \in(0,1)$

Levels: $\square 1 \square 2 \square 3$

$$
\mathbb{P}_{H L}^{r, t}(\pi)=Z(r, t)^{-1} r^{|\pi|} A_{\pi}(t) .
$$

Interested in the case $t \in(0,1)$. Consider two limiting regimes as $r \rightarrow 1^{-}$.

Case $t \in(0,1)$ - fixed, while $r \rightarrow 1^{-}$.
(1) Volume and hence limit shape should change.
(2) Limit of bottom slice behaves as if $t=0$.
(3) Fluctuations converge to Tracy-Widom.

Case $t, r \rightarrow 1^{-}$.
(1) Different limit is expected.
(2) Limit shape stays the same.
(3) Fluctuations converge to the Hopf-Cole solution of the KPZ.

Limit shape

Figure: $t=0$.
Figure: $t=0.2$.

Figure: $t=0.6$.

Convergence to Tracy-Widom

$$
N(r):=\frac{1}{1-r}, \alpha(\tau):=\left[\frac{4}{\cosh ^{2}(\tau / 4)}\right]^{-1 / 3} r \in(0,1) \text { and } \tau \in \mathbb{R} .
$$

Theorem

Consider the measure $\mathbb{P}_{H L}^{r, t}$ on plane partitions, with $t \in(0,1)$ fixed. Then for all $\tau \in \mathbb{R} /\{0\}$ and $x \in \mathbb{R}$ we have
$\lim _{r \rightarrow 1^{-}} \mathbb{P}_{H L}^{r, t}\left(\frac{\lambda_{1}^{\prime}(\lfloor\tau N(r)\rfloor)-2 N(r) \log \left(1+e^{-|\tau| / 2}\right)}{\alpha(\tau)^{-1} N(r)^{1 / 3}} \leq x\right)=F_{G U E}(x)$.
$F_{\text {GUE }}$ is the GUE Tracy-Widom distribution [Tracy-Widom '94].

Figure: $t=0.4$

Figure: $t=0.8$

Convergence to KPZ

$$
\begin{aligned}
& N(r):=\frac{1}{1-r}, \alpha(\tau):=\left[\frac{4}{\cosh ^{2}(\tau / 4)}\right]^{-1 / 3} r \in(0,1) \text { and } \tau \in \mathbb{R} \\
& \xi_{r}:=(-\log t)\left(\lambda_{1}^{\prime}(\lfloor\tau N(r)\rfloor)-2 N(r) \log \left(1+e^{-|\tau| / 2}\right)\right)-\log (1-t)
\end{aligned}
$$

Theorem

Suppose $\kappa>0, T=2 \kappa^{3} \alpha^{-3}$ are fixed and $\frac{-\log t}{(1-r)^{1 / 3}}=\kappa$. Then for all $\tau \in \mathbb{R} /\{0\}$ and $x \in \mathbb{R}$ we have

$$
\lim _{r \rightarrow 1^{-}} \mathbb{P}_{H L}^{r, t}\left(\xi_{r} \leq x\right)=\mathbb{P}(\mathcal{F}(T, 0)+T / 4!\leq x)
$$

$\mathcal{F}(T, X)$ is the Hopf-Cole solution to the Kardar-Parisi-Zhang equation with initial data $\log \mathcal{Z}_{0}(X)$ and $\mathcal{Z}_{0}(X)=\mathbf{1}_{\{X=0\}}$.

$\mathbb{P}_{H L}^{r, t}:$ special case $t=0($ part 1$)$

Fix $r \in(0,1)$ and set $t=0$. Then we have $\mathbb{P}_{H L}^{r, t}(\pi) \propto r^{|\pi|}$. Key observation: above can be realized as a Schur process [Okounkov-Reshetikhin '03].
Let $(\lambda, \mu)=\left(\lambda^{k}, \mu^{k}\right)$ be sequences of partitions. Define their weight as

$$
\mathcal{W}(\lambda, \mu):=\prod_{k \in \mathbb{Z}} S_{\lambda^{k} / \mu^{k-1}}\left(x_{k}\right) S_{\lambda^{k} / \mu^{k}}\left(y_{k}\right) .
$$

$S_{\lambda / \mu}$ are skew Schur polynomials in one variable, which satisfy $S_{\lambda / \mu}(x)=\mathbf{1}_{\lambda \succ \mu} x^{|\lambda|-|\mu|}\left(0^{0}=1\right)$.
Assuming $x_{i}, y_{i} \in[0,1)$ and $\Pi(X ; Y)=\sum_{\lambda, \mu} \mathcal{W}(\lambda, \mu) \in(0, \infty)$, we have that $\mathbb{P}_{X, Y}(\lambda, \mu)=\frac{\mathcal{W}(\lambda, \mu)}{\Pi(X ; Y)}$ defines a probability measure. Remark: Above is a special case of Macdonald processes.
Recall: $\pi=\cdots \prec \lambda^{-2} \prec \lambda^{-1} \prec \lambda^{0} \succ \lambda^{1} \succ \lambda^{2} \succ \cdots$,

$\mathbb{P}_{H L}^{r, t}$: special case $t=0$ (part 2)

Idea is to pick x_{k}, y_{k} suitably so that the projection of the law $\mathbb{P}_{X, Y}$ on λ^{k} matches the measure of π, i.e. $\propto r^{|\pi|}$.

$$
x_{n}=r^{-n-1 / 2}, y_{n}=0 \text { if } n \leq-1 ; y_{n}=r^{n+1 / 2}, x_{n}=0 \text { if } 0 \leq n
$$

One can easily check that the above construction satisfies

- $\mu^{n}=\lambda^{n}$ for $n<0$ and $\mu^{n}=\lambda^{n+1}$ for $n \geq 0$,
- $\cdots \prec \lambda^{-2} \prec \lambda^{-1} \prec \lambda^{0} \succ \lambda^{1} \succ \lambda^{2} \succ \cdots, \lambda^{t}=\varnothing|t| \gg 1$,
- $\mathbb{P}_{X, Y}(\lambda) \propto r^{\sum_{k}\left|\lambda^{k}\right|}=r^{|\pi|}$,

Important: $\mathbb{P}_{X, Y}\left(\lambda^{k}=\lambda\right) \propto S_{\lambda}\left(a, a r, a r^{2}, \cdots\right) S_{\lambda}\left(a, a r, a r^{2}, \cdots\right)$, where $a=r^{(1+|k|) / 2}$.

$\mathbb{P}_{H L}^{r, t}:$ general case $t \in(0,1)$ (part 1)

Fix $t \in(0,1)$. Replace Schur with Hall-Littlewood polynomials:

$$
\mathcal{W}(\lambda, \mu):=\prod_{k \in \mathbb{Z}} P_{\lambda^{k} / \mu^{k-1}}\left(x_{k} ; t\right) Q_{\lambda^{k} / \mu^{k}}\left(y_{k} ; t\right) .
$$

Specialize variables in the same way as before. Changes:

$$
\begin{aligned}
& S_{\lambda / \mu}(x)=\mathbf{1}_{\lambda \succ \mu} x^{|\lambda|-|\mu|} \rightarrow \mathbf{1}_{\lambda \succ \mu} x^{|\lambda|-|\mu|} \psi_{\lambda / \mu}(t)=P_{\lambda / \mu}(x ; t) . \\
& S_{\lambda / \mu}(y)=\mathbf{1}_{\lambda \succ \mu} y^{|\lambda|-|\mu|} \rightarrow \mathbf{1}_{\lambda \succ \mu} y^{|\lambda|-|\mu|} \phi_{\lambda / \mu}(t)=Q_{\lambda / \mu}(y ; t) .
\end{aligned}
$$

$\phi_{\lambda / \mu}(t)$ and $\psi_{\lambda / \mu}(t)$ are explicit (but technical) integer polynomials in t.

$$
\phi_{\lambda / \mu}(t)=\prod_{i \in I}\left(1-t^{m_{i}(\lambda)}\right) \quad \text { and } \quad \psi_{\lambda / \mu}(t)=\prod_{j \in J}\left(1-t^{m_{j}(\mu)}\right) .
$$

if $\lambda \succ \mu$ otherwise both expressions equal $0 . m_{i}(\lambda)=\left|\left\{\lambda_{j}=i\right\}\right|$, $I=\left\{i \in \mathbb{N}: \lambda_{i+1}^{\prime}=\mu_{i+1}^{\prime}\right.$ and $\left.\lambda_{i}^{\prime}>\mu_{i}^{\prime}\right\}$ and $J=\left\{j \in \mathbb{N}: \lambda_{j+1}^{\prime}>\right.$ μ_{j+1}^{\prime} and $\left.\lambda_{j}^{\prime}=\mu_{j}^{\prime}\right\}$.

$\mathbb{P}_{H L}^{r, t}:$ general case $t \in(0,1)$ (part 2)

As before the projection of the measure on λ is supported on

$$
\text { - } \cdots \prec \lambda^{-2} \prec \lambda^{-1} \prec \lambda^{0} \succ \lambda^{1} \succ \lambda^{2} \succ \cdots \text {. }
$$

- $\lambda^{t}=\varnothing$ for all $|t| \gg 1$.

The obtained measure: $\mathbb{P}_{X, Y ; t}(\pi) \propto B_{\pi}(t) r^{|\pi|}$.
What is remarkable is that $B_{\pi}(t)=A_{\pi}(t)$ [Vuletić '09].
An important byproduct:

$$
\mathbb{P}_{H L}^{r, t}\left(\lambda^{k}=\lambda\right) \propto P_{\lambda}\left(a, a r, a r^{2}, \cdots ; t\right) Q_{\lambda}\left(a, a r, a r^{2}, \cdots ; t\right),
$$

where $a(k)=r^{1+|k| / 2}$.
Strategy is to study the measure $\mathbb{P}(\lambda) \propto P_{\lambda}\left(x_{1}, \cdots, x_{N} ; t\right) Q_{\lambda}\left(y_{1}, \cdots, y_{N} ; t\right)$ then specialize x_{i}, y_{i} and send $N \rightarrow \infty$.

General philosophy

We have the Cauchy identity

$$
\sum_{\lambda \in \mathbb{Y}} P_{\lambda}(X) Q_{\lambda}(Y)=\Pi(X ; Y)=\prod_{i, j=1}^{N} \frac{1-t x_{i} y_{j}}{1-x_{i} y_{j}}
$$

(1) Find an operator D, diagonalized by the Hall-Littlewood polynomials $P_{\lambda}(X)$. I.e. $D P_{\lambda}(X)=d_{\lambda} P_{\lambda}(X)$.
(2) Apply it k times to both sides of the Cauchy identity to get

$$
\sum_{\lambda} d_{\lambda}^{k} P_{\lambda}(X) Q_{\lambda}(Y)=D^{k} \Pi(X ; Y)
$$

(3) Divide both sides by $\Pi(X ; Y)$ and get

$$
\mathbb{E}_{X, Y}\left[d_{\lambda}^{k}\right]=\frac{D^{k} \Pi(X ; Y)}{\Pi(X ; Y)}
$$

Hall-Littlewood difference operator

Fix $N \in \mathbb{N}$ and consider the space of functions in N variables.

Definition

For $t \in \mathbb{R}$ set $D_{N}^{1}:=\sum_{i=1}^{N} \prod_{j \neq i} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} T_{0, x_{i}}$, where
$\left(T_{0, x_{i}} F\right)\left(x_{1}, \ldots, x_{N}\right)=F\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{N}\right)$.
Key fact [Macdonald '95]:
$D_{N}^{1} P_{\lambda}\left(x_{1}, \ldots, x_{N} ; t\right)=\left(\frac{1-t^{N-\lambda_{1}^{\prime}}}{1-t}\right) P_{\lambda}\left(x_{1}, \ldots, x_{N} ; t\right)$.
Remark: This operator is a special case of the Macdonald difference operators.
Set $\mathcal{D}_{N}:=\left[\frac{(t-1) D_{N}^{1}+1}{t^{N}}\right]$. Then we have

$$
\mathcal{D}_{N} P_{\lambda}\left(x_{1}, \ldots, x_{N} ; t\right)=t^{-\lambda_{1}^{\prime}} P_{\lambda}\left(x_{1}, \ldots, x_{N} ; t\right)
$$

Observables (part 1)

$$
\mathbb{E}_{X, Y}\left[d_{\lambda}^{k}\right]=\frac{\mathcal{D}_{N}^{k} \Pi(X ; Y)}{\Pi(X ; Y)}, d_{\lambda}=t^{-\lambda_{1}^{\prime}}, \Pi(X ; Y)=\prod_{i, j=1}^{N} \frac{1-t x_{i} y_{j}}{1-x_{i} y_{j}}
$$

Proposition

Let $x_{i}, y_{i} \in(0,1)$ and $y_{i}<\epsilon \ll_{k} 1$ for all i. Then we have
$\mathbb{E}_{X, Y}\left[t^{-k \lambda_{1}^{\prime}}\right]=\frac{1}{(2 \pi i)^{k}} \int_{C_{0,1}} \cdots \int_{C_{0, k}} \prod_{1 \leq a<b \leq k} \frac{z_{3}-z_{b}}{z_{3}-z_{b} t^{-1}} \prod_{i=1}^{k}\left[\prod_{j=1}^{N} \frac{\left(z_{i}-x_{i} t^{-1}\right)\left(1-z_{i} y_{j}\right)}{\left(z_{i}-x_{j}\right)\left(1-t z_{i}\right)}\right] \frac{d z_{i}}{z_{i}}$,
where $C_{0, a}$ are positively oriented contours encircling x_{1}, \ldots, x_{N} and 0 and contained in a circle of radius ϵ^{-1} around 0 . In addition, $C_{0, a}$ contains $t^{-1} C_{0, b}$ for $a<b$.

Strategy: show by induction on k that $\mathcal{D}_{N}^{k} \Pi(X ; Y)=$

$$
\frac{1}{(2 \pi \iota)^{k}} \int_{C_{0,1}} \cdots \int_{C_{0, k}} \prod_{1 \leq a<b \leq k} \frac{z_{a}-z_{b}}{z_{a}-z_{b} t^{-1}} \Pi(X ; Y) \prod_{i=1}^{k}\left[\prod_{j=1}^{N} \frac{\left(z_{i}-x_{j} t^{-1}\right)\left(1-z_{i} y_{j}\right)}{\left(z_{i}-x_{j}\right)\left(1-t z_{i} y_{j}\right)}\right] \frac{d z_{i}}{z_{i}} .
$$

Proof (sketch): similar to [Borodin-Corwin '14]

Write RHS as $\frac{1}{(2 \pi \iota)^{k}} \int_{C_{0,1}} \cdots \int_{C_{0, k}} \prod_{1 \leq a<b \leq k} \frac{z_{a}-z_{b}}{z_{a}-z_{b} t^{-1}} F_{k}\left(z_{1}, \ldots, z_{k}\right)$.
(1) As function of z_{k} poles at: $t z_{i}$ for $i<k ; t^{-1} y_{i}^{-1} ; x_{i}$ and 0 .
(2) Only poles at x_{i} and 0 are contained in $C_{0, k}$ and sum of residues equals $\prod_{1 \leq a<b \leq k-1} \frac{z_{a}-z_{b}}{z_{a}-z_{b} t^{-1}} \mathcal{D}_{N} F_{k-1}\left(z_{1}, \ldots, z_{k-1}\right)$.
(3) In particular, we get $\mathcal{D}_{N}^{k} \Pi(X ; Y)=$
$\frac{1}{(2 \pi \iota)^{k-1}} \int_{C_{0,1}} \cdots \int_{C_{0, k-1}} \prod_{1 \leq a<b \leq k-1} \frac{z_{a}-z_{b}}{z_{a}-z_{b} t^{-1}} \mathcal{D}_{N} F_{k-1}\left(z_{1}, \ldots, z_{k-1}\right)$.
(4) By linearity of \mathcal{D}_{N} can switch order of \mathcal{D}_{N} and integrals and reduce to base case $k=1$.
(6) Base case is (again) an application of the Residue Theorem.

Residue-book-keeping formula

- Idea: combine above formulas with different k in some generating series (similarly to $\left.\sum_{k} \mathbb{E}\left[X^{k}\right] u^{k} / k!=\mathbb{E}[\exp (u X)]\right)$.
- Problem: contours are distinct and become too large.

Allowable y 's depend on k.
Following result is proved in [Borodin-Bufetov-Corwin '15 (also appeared earlier in [Borodin-Corwin '14]).

$$
\begin{aligned}
& \frac{1}{(2 \pi \iota)^{k}} \int_{C_{0,1}} \cdots \int_{C_{0, k}} \prod_{1 \leq a<b \leq k} \frac{z_{a}-z_{b}}{z_{a}-z_{b} t^{-1}} \prod_{i=1}^{k}\left[\prod_{j=1}^{N} \frac{\left(z_{i}-x_{j} t^{-1}\right)\left(1-z_{i} y_{j}\right)}{\left(z_{i}-x_{j}\right)\left(1-t z_{i} y_{j}\right)}\right] \frac{d z_{i}}{z_{i}}= \\
& (-1)^{k} t^{\frac{k(k-1)}{2}} k_{t^{-1}}!\sum_{\lambda \vdash k} \frac{\left(1-t^{-1}\right)^{k}}{(2 \pi \iota)^{\prime(\lambda)}} \frac{1}{m_{1}!m_{2}!\ldots} \int_{C_{0, k}} \cdots \int_{C_{0, k}} \operatorname{det}\left[\frac{1}{w_{i} t^{-\lambda_{i}}-w_{j}}\right]_{i, j=1}^{1(\lambda)} \times
\end{aligned}
$$

$I(\lambda)$
$\prod_{j=1} G\left(w_{j}\right) G\left(w_{j} t^{-1}\right) \cdots G\left(w_{j} t^{1-\lambda_{j}}\right) d w_{1} \cdots d w_{l(\lambda)}$.
In the above formula $G(w)=\prod_{j=1}^{N} \frac{w-x_{j} t^{-1}}{w-x_{j}} \frac{1-y_{j} w}{1-t y_{i} w}$.

Observables (part 2)

Proposition

Let $x_{i}, y_{i} \in(0,1)$ and C_{0} be the positively oriented circle of radius t^{-1} around the origin. Then we have

$$
\begin{aligned}
& \mathbb{E}_{X, Y}\left[t^{-k \lambda_{1}^{\prime}}\right]=\left(t^{-1}-1\right)^{k} k_{t}!\sum_{\lambda \vdash k} \frac{1}{(2 \pi \iota)^{\prime(\lambda)}} \frac{1}{m_{1}(\lambda)!m_{2}(\lambda)!\cdots} \int_{C_{0}} \cdots \int_{C_{0}} \\
& \prod_{j=1}^{I(\lambda)} \prod_{i=1}^{N} \frac{1-x_{i}\left(w_{j} t\right)^{-1}}{1-x_{i}\left(w_{j} t\right)^{-1} t^{\lambda_{j}}} \times \prod_{j=1}^{I(\lambda)} \prod_{i=1}^{N} \frac{1-y_{i}\left(w_{j} t\right) t^{-\lambda_{j}}}{1-y_{i}\left(w_{j} t\right)} \operatorname{det}\left[\frac{1}{w_{i} t^{-\lambda_{i}-w_{j}}}\right]_{i, j=1}^{\prime(\lambda)} \prod_{i=1}^{\ell(\lambda)} d w_{i}
\end{aligned}
$$

$$
\text { where } k_{t}!=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{k}\right)}{(1-t)^{k}} .
$$

Advantages: contours are all the same, formula holds for all y_{i} not just very small. Sum both sides of above proposition as generating series with coefficients u^{k} / k_{t} !.

Combining observables

Proposition

Let $x_{i}, y_{i} \in(0,1)$. Then for $u \notin \mathbb{R}^{+}$one has that

$$
\mathbb{E}_{X, Y}\left[\frac{1}{\left((1-t) u t^{\left.-\lambda_{1}^{\prime} ; t\right)_{\infty}}\right.}\right]=\operatorname{det}\left(I+K_{u}^{N}\right)_{L^{2}\left(C_{0}\right)}
$$

The contour C_{0} is the positively oriented circle of radius t^{-1}, centered at 0 , and the operator K_{u}^{N} is defined in terms of its integral kernel

$$
1 / 2+\iota \infty
$$

$K_{u}^{N}\left(w ; w^{\prime}\right)=\frac{1}{2 \pi \iota} \int_{1 / 2-\iota \infty} d s \Gamma(-s) \Gamma(1+s)\left(-u\left(t^{-1}-1\right)\right)^{s} g_{w, w^{\prime}}^{N}\left(t^{s}\right)$,

$$
1 / 2-\iota \infty
$$

where we choose the principal branch of the logarithm and
$g_{w, w^{\prime}}^{N}\left(t^{s}\right)=\frac{1}{w t^{-s}-w^{\prime}} \prod_{j=1}^{N} \frac{\left(1-x_{j}(w t)^{-1}\right)\left(1-y_{j}(w t) t^{-s}\right)}{\left(1-x_{j}(w t)^{-1} t^{s}\right)\left(1-y_{j}(w t)\right)}$.

A word on asymptotics

(1) Above work gives Fredholm determinant formulas for the t-Laplace transforms of certain random variables.
(2) If $t \in(0,1)$ is fixed and we let $r \rightarrow 1^{-}$the t-Laplace transform converges to an indicator function.
(3) If $r, t \rightarrow 1^{-}$the t-Laplace transform converges to the usual Laplace transform.
(1) Can find explicit expressions for the limiting Fredholm determinants and match them with existing formulas for $F_{\text {GUE }}$ and the Hopf-Cole solution to the KPZ with narrow wedge initial data.

Thank you!

Figure: $t=0.4$

