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Periodic TASEP

we consider the following periodic TASEP model on the
configuration space
XN(M) = {(x1, x2 · · · , xN); xi ∈ Z, x1 < x2 < · · · < xN < x1 + M}.
Each particle has an independent clock which will ring after an
exponential waiting time with parameter 1. Once a clock rings, it
will be reset. And the corresponding particle moves to the right by
1 if the resulting configuration is still in XN(M), otherwise it does
not move.

M

Figure : Illustration of periodic TASEP
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Macroscopic picture

Figure : Evolution of the density for step initial condition and ρ = 1/2
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Let the ratio N/M = ρ fixed. We are interested in the fluctuations
of xj(t) for both step and flat initial conditions as M,N, t →∞,
where j = [αN] for fixed α ∈ (0, 1).
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Intuition from LPP
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Figure : periodic LPP
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Intuition from LPP

Figure : cylinder LPP
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LPP with i.i.d. exponential entries

It is known that (Johansson, 1999)

H(L1, L2) ∼ (
√
L1 +

√
L2)2 + (

√
L1 +

√
L2)4/3L

−1/6
1 L

−1/6
2 χTW

where χTW is the GUE Tracy-Widom random variable. Moreover,
the transversal exponent is 2/3(Johansson,
Baik-Deift-McLaughlin-Miller-Zhou). In fact the probability that

the longest path stays in a band of width L
2/3+ε
1 is 1− exp(−cL2ε

1 )
(Basu-Sidoravicius-Sly).

L1

L2

l1

l2
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LPP with block-periodic exponential entries

H(P)(L1, L2) ∼ (
√

L1 +
√
L2)2 + (

√
L1 +

√
L2)4/3L

−1/6
1 L

−1/6
2 χTW

if the period is of size L
2/3+ε
1 . Similar transversal result holds in

this case. Therefore H(P)(L1, L2) ∼ H(L1, L2) when the period is

of size L
2/3+ε
1 .
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Step initial condition: when t < N3/2

Figure : Main contribution
from one single corner

Figure : Main contribution
from two corners
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Theorem (J. Baik, Z. Liu)

lim
N→∞

P
(
x[αN](τN) ≥ µjN − xτ1/6N2/3

)
=

{
FGUE (γj−1x)FGUE (γjx), τ = τj ,

FGUE (γjx), τj < τ < τj+1.

τj =
(
√
j − α +

√
j + 1− α)2

4ρ2

µj = τ − 2
√

(j + 1− α)τ + jρ−1,

γj = (j + 1− α)1/6(
√
τ −

√
j + 1− α)−2/3.
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Step initial condition: when t < N3/2

Ω Ω'

A
k-1

A
k

B
0

Figure : The two paths are asymptotically independent

This result is valid until t = O(N3/2−ε). t = N3/2 is the so-called
relaxation scale, which was first predicted by Gwa and Spohn
(1992).
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Step initial condition: when t = N3/2

Theorem (J. Baik, Z. Liu)

Suppose ρ ∈ (0, 1), γ ∈ R and τ > 0 are all fixed. We have

P
(
xkN (tN)− xkN (0)− (1− ρ)tN + (ρ−1 − 1)(N − kN)√

2ρ(1− ρ)−1/2N1/2
≥ −x

)
→ F (x ; τ, γ)

where 1 ≤ kN ≤ N, and

tN =
1

ρ2
N

([
τ√

1− ρ
N1/2

]
+ γ

)
− 1

ρ2
kN .

Remark: Recently Prolhac obtained a similar result ρ = 1
2 .
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The function F (x ; τ, γ) is a periodic in γ. The explicit formula is
given by

F (x ; τ, γ) :=

∮
|s|=r

eA(s,τ,x) det(1 +K)|l2(Rs,L)
ds

2πis
,

where r is a constant in (0, 1), H is a function independent of γ
and τ , and A(s, τ, x) = H(s)− 2cτLi5/2(s)− cxLi3/2(s).
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det(1 +K) is the Fredholm determinant acting on l2(Rs,L) with
kernel K(ξ1, ξ2)

∑
η∈Rs,R

e
φ
(
− 2
√

2τ
3
,γ, x

2
;ξ1

)
+φ

(
− 2
√

2τ
3
,γ, x

2
;ξ2

)
−2φ

(
− 2
√

2τ
3
,γ, x

2
;η
)

4
√
ξ1ξ2η(ξ1 − η)(ξ2 − η)

,

where

Rs,L := {ξ; e−ξ
2

= s,<ξ < 0}, Rs,R := {ξ; e−ξ
2

= s,<ξ > 0},

φ(d3, d2, d1; ξ) :=

{
hR(s, ξ) + 1

2 (d3ξ
3 + d2ξ

2 + d1ξ), ξ ∈ Rs,L,

−hL(s, ξ) + 1
2 (d3ξ

3 + d2ξ
2 + d1ξ), ξ ∈ Rs,R ,

hL(s, ξ) := −2

∫ i∞

−i∞

log(−η + ξ)η

s−1e−η2 − 1

dη

2πi
,

hR(s, ξ) := 2

∫ i∞

−i∞

log(η − ξ)η

s−1e−η2 − 1

dη

2πi
.
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Figure : The nodes set Rs,L and Rs,R
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Remarks on F (τ, γ; x)

Periodicity on γ: F (τ, γ; x) = F (τ, γ + 1; x).

Comparison with FGUE

FGUE (x) = det (1 +K)|L2(ΣL) (1)

with

K(ξ1, ξ2) :=

∫
ΣR

e

(
− ξ

3
1
6

+
xξ1

2

)
+

(
− ξ

3
2
6

+
xξ2

2

)
−2

(
− η

3

6
+ xη

2

)
(ξ1 − η)(ξ2 − η)

dη

2πi
(2)

where ΣL is a contour from e−2π/3∞ to e2π/3∞ and
ΣR = −ΣL.

The parameter γ only appears in the Fredholm determinant.
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Where the periodicity comes from

1

1-
2

1-

Figure : Illustration of the periodicity

γ is the parameter containing the information of the location
between two periods.
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Flat initial condition

Similar result holds for the periodic TASEP model with flat initial
condition yj = j∆ and M = N∆.

P
(
xkN (tN)− xkN (0)− (1− ρ)tN√

2ρ(1− ρ)−1/2N1/2
≥ −x

)
→ F (x ; τ)

where tN = 1
ρ2
√

1−ρN
3/2, and F (x ; τ) has similar structure with

F (x ; τ, γ). The explicit formula is given by∫
|s|=r

exp

(
1

2
H(s)− 2cτLi5/2(s)− cxLi3/2(s)− 1

2
hR(s, 0)

)
det

(
1 + K̃

)∣∣
l2(Rs,L)

ds

2πis
,

K̃(ξ, η) :=
ehR(s,ξ)+hL(s,−η)− 2

√
2

3
τξ3+xξ− 2

√
2

3
τη3+xη

−2ξ(ξ + η)
. (3)
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Transition probability for periodic TASEP

Theorem [J. Baik, Z. Liu]

Denote PY (X ; t) the transition probability. Then for any
X ,Y ∈ Xn(M), we have

PY (X ; t) =

∮
|s|=r

det

 1

M

∑
z∈Rs

z j−i+1(z + 1)−xi+yj+i−jetz

z + ρ

N

i ,j=1

ds

2πis
,

where Rs is the set of all roots of zN(z + 1)M−N = sM , and r > 0
is a small constant.
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We followed the idea of Tracy-Widom on the formula of ASEP. We
consider a system of equations of u(X ; t) where
(X ; t) = (x1, · · · , xN ; t) ∈ ZN × R≥0.

Master Equations :
d

dt
u(X ; t) =

N∑
i=1

(u(Xi ; t)− u(X ; t))

where Xi := (x1, · · · , xi−1, xi − 1, xi+1, · · · , xN).

Boundary Conditions 1 : u(Xi ; t) = u(X ; t) if xi = xi−1 + 1

Boundary Conditions 2 : u(X1; t) = u(X ; t) if xN = x1 + M − 1.

Initial Condition : u(X ; 0) = δY (X ), for all X ∈ XN(M).
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Without the second boundary condition, it gives the transition
probability for TASEP on the integer lattice:

det

[∮
|ξ|=ε

(1− ξ)j−iξxi−yj et(ξ−1−1) dξ

2πiξ

]N
i ,j=1

.

The extra boundary condition gives rise to the discreteness of the
sum. The solution is constructive.
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Distribution of the k-th particle

Suppose xj(t = 0) = j − N is the initial configuration of the
periodic TASEP. For any 1 ≤ k ≤ N we have the following one
point distribution of the k-th particle

P (xk ≥ a; t) = (−1)(k−1)(N+1)

∮
|s|=r

det

 1

M

∑
z∈Rs

z j−i+1−k(z + 1)−N−a+k+1etz

z + ρ

N

i ,j=1

ds

2πis1−(k−1)M
.
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Some typical ways to analyze the asymptotics of a discrete
Toeplitz determinant:

Discrete orthogonal polynomials, developed by
Baik-Kriecherbauer-McLaughlin-Miller.

Continuous orthogonal polynomials, by an identity which
relates the discrete Toeplitz determinant to its continuous
counterpart.
The difficulties for this Toeplitz determinant are: the weight is
complex-values, and the nodes are on a curve which is neither
R nor S = {z ; |z | = 1}.
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Fredholm determinant representation

Let Rs,L,Rs,R be the left and right parts of the roots set Rs .
Define hs,L(z) =

∏
zj∈Rs,L

(z − zj) and hs,R(z) =
∏

zj∈Rs,R
(z − zj).

If Y = (−N + 1,−N + 2, · · · , 0), then

P (xk ≥ a; t) =

∫
|s|=r

ZN(s) det (1 + KL)
ds

2πis1−(k−1)M
,

where det(1 + KL) is the Fredholm determinant on l2(Rs,L)

KL(z ,w) =
√

f (z)f (w)
∑

v∈Rs,R

f (v)−1

M2(z − v)(w − v)
,

f (z) :=


hs,R(z)2z−N−k+2(z + 1)−a−N+k+1etz

z + γ−1
, z ∈ Rs,L,

h′s,R(z)2z−N−k+2(z + 1)−a−N+k+1etz

M2(z + γ−1)
, z ∈ Rs,R .
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ZN(s) is a constant given by

ZN(s) = (−1)(k−1)(N+1)
∏

z∈Rs,R

h′s,R(z)z−N−k+2(z + 1)−a−N+k+1etz

M(z + ρ)
.

It turns out that when t = O(N3/2), the leading term of ZN(s) is

s(k−1)M exp (A(s, τ, x))

and the leading term of the Fredholm determinant is det(1 +K)
under proper scaling.
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Thank you!
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