Asymptotics in periodic TASEP with step and flat initial conditions

Zhipeng Liu

Courant Institute New York University

zhipeng@cims.nyu.edu

joint with Jinho Baik, University of Michigan

March 1, 2016

Overview

- Introduction
 - Periodic TASEP
 - Our results
- Formulas and ideas of the proof
 - Transition Probability
 - Distribution of the k-th particle
 - Fredholm determinant formula

Periodic TASEP

we consider the following periodic TASEP model on the configuration space

$$\mathfrak{X}_N(M) = \{(x_1, x_2 \cdots, x_N); x_i \in \mathbb{Z}, x_1 < x_2 < \cdots < x_N < x_1 + M\}.$$
 Each particle has an independent clock which will ring after an exponential waiting time with parameter 1. Once a clock rings, it will be reset. And the corresponding particle moves to the right by 1 if the resulting configuration is still in $\mathfrak{X}_N(M)$, otherwise it does not move.

Figure: Illustration of periodic TASEP

Macroscopic picture

Figure : Evolution of the density for step initial condition and ho=1/2

Let the ratio $N/M=\rho$ fixed. We are interested in the fluctuations of $x_j(t)$ for both step and flat initial conditions as $M,N,t\to\infty$, where $j=[\alpha N]$ for fixed $\alpha\in(0,1)$.

Intuition from LPP

W ₁₁	W ₁₂	W ₁₃	W ₁₄	W ₁₅	W ₁₆	W ₁₇	W ₁₈	W ₁₉
W ₂₁	W ₂₂	W ₂₃	W ₂₄	W ₂₅	W ₂₆	W ₂₇	W ₂₈	W 29
W ₃₁	W ₃₂	W 33	W 34	W 35	W 36	W 37	W 38	W 39
W 41	W ₄₂	W ₄₃	W ₄₄	W ₄₅	W 46	W ₄₇	W ₄₈	W ₄₉
			W_{11}	W_{12}	W_{13}	W_{14}	W_{15}	W ₁₆
			W 21	W 22	W 23	W 24	W 25	W 26
			W ₃₁	W ₃₂	W ₃₃	W ₃₄	W ₃₅	W ₃₆
			W_{41}	W ₄₂	W ₄₃	W_{44}	W_{45}	W_{46}
						W_{11}	W ₁₂	W ₁₃
						W ₂₁	W ₂₂	W ₂₃
						W ₃₁	W ₃₂	W ₃₃
						W ₄₁	W ₄₂	W 43

Figure: periodic LPP

Intuition from LPP

LPP with i.i.d. exponential entries

It is known that (Johansson, 1999)

$$H(L_1,L_2) \sim (\sqrt{L_1} + \sqrt{L_2})^2 + (\sqrt{L_1} + \sqrt{L_2})^{4/3} L_1^{-1/6} L_2^{-1/6} \chi_{TW}$$

where χ_{TW} is the GUE Tracy-Widom random variable. Moreover, the transversal exponent is 2/3(Johansson,

Baik-Deift-McLaughlin-Miller-Zhou). In fact the probability that the longest path stays in a band of width $L_1^{2/3+\epsilon}$ is $1-\exp(-cL_1^{2\epsilon})$ (Basu-Sidoravicius-Sly).

LPP with block-periodic exponential entries

$$H^{(P)}(L_1, L_2) \sim (\sqrt{L_1} + \sqrt{L_2})^2 + (\sqrt{L_1} + \sqrt{L_2})^{4/3} L_1^{-1/6} L_2^{-1/6} \chi_{TW}$$

if the period is of size $L_1^{2/3+\epsilon}$. Similar transversal result holds in this case. Therefore $H^{(P)}(L_1,L_2)\sim H(L_1,L_2)$ when the period is of size $L_1^{2/3+\epsilon}$.

Step initial condition: when $t < N^{3/2}$

Figure : Main contribution from one single corner

Figure : Main contribution from two corners

Theorem (J. Baik, Z. Liu)

$$\begin{split} &\lim_{N \to \infty} \mathbb{P}\left(x_{[\alpha N]}(\tau N) \ge \mu_{j} N - x \tau^{1/6} N^{2/3}\right) \\ &= \begin{cases} F_{GUE}(\gamma_{j-1} x) F_{GUE}(\gamma_{j} x), & \tau = \tau_{j}, \\ F_{GUE}(\gamma_{j} x), & \tau_{j} < \tau < \tau_{j+1}. \end{cases} \end{split}$$

$$\tau_{j} = \frac{(\sqrt{j-\alpha} + \sqrt{j+1-\alpha})^{2}}{4\rho^{2}}$$

$$\mu_{j} = \tau - 2\sqrt{(j+1-\alpha)\tau} + j\rho^{-1},$$

$$\gamma_{j} = (j+1-\alpha)^{1/6}(\sqrt{\tau} - \sqrt{j+1-\alpha})^{-2/3}.$$

Step initial condition: when $t < N^{3/2}$

Figure: The two paths are asymptotically independent

This result is valid until $t = O(N^{3/2-\epsilon})$. $t = N^{3/2}$ is the so-called relaxation scale, which was first predicted by Gwa and Spohn (1992).

Step initial condition: when $t = N^{3/2}$

Theorem (J. Baik, Z. Liu)

Suppose $\rho \in (0,1)$, $\gamma \in \mathbb{R}$ and $\tau > 0$ are all fixed. We have

$$\mathbb{P}\left(\frac{x_{k_N}(t_N) - x_{k_N}(0) - (1 - \rho)t_N + (\rho^{-1} - 1)(N - k_N)}{\sqrt{2}\rho(1 - \rho)^{-1/2}N^{1/2}} \ge -x\right) \\ \to F(x; \tau, \gamma)$$

where $1 \le k_N \le N$, and

$$t_N = rac{1}{
ho^2} N \left(\left[rac{ au}{\sqrt{1-
ho}} N^{1/2}
ight] + \gamma
ight) - rac{1}{
ho^2} k_N.$$

Remark: Recently Prolhac obtained a similar result $\rho = \frac{1}{2}$.

The function $F(x; \tau, \gamma)$ is a periodic in γ . The explicit formula is given by

$$F(x;\tau,\gamma):=\oint_{|\mathfrak{s}|=r}e^{A(\mathfrak{s},\tau,x)}\det(1+\mathcal{K})|_{l^2(\mathfrak{R}_{\mathfrak{s},L})}\frac{d\mathfrak{s}}{2\pi i\mathfrak{s}},$$

where r is a constant in (0,1), \mathfrak{H} is a function independent of γ and τ , and $A(\mathfrak{s},\tau,x)=\mathfrak{H}(\mathfrak{s})-2c\tau\mathrm{Li}_{5/2}(\mathfrak{s})-cx\mathrm{Li}_{3/2}(\mathfrak{s}).$

 $\det(1+\mathcal{K})$ is the Fredholm determinant acting on $l^2(\mathfrak{R}_{s,L})$ with kernel $\mathcal{K}(\xi_1,\xi_2)$

$$\sum_{\eta \in \mathfrak{R}_{\mathsf{s},R}} \frac{e^{\phi\left(-\frac{2\sqrt{2}\tau}{3},\gamma,\frac{\mathsf{x}}{2};\xi_1\right) + \phi\left(-\frac{2\sqrt{2}\tau}{3},\gamma,\frac{\mathsf{x}}{2};\xi_2\right) - 2\phi\left(-\frac{2\sqrt{2}\tau}{3},\gamma,\frac{\mathsf{x}}{2};\eta\right)}}{4\sqrt{\xi_1\xi_2}\eta(\xi_1-\eta)(\xi_2-\eta)}$$

where

$$\mathfrak{R}_{\mathfrak{s},L} := \{ \xi; e^{-\xi^2} = \mathfrak{s}, \Re \xi < 0 \}, \quad \mathfrak{R}_{\mathfrak{s},R} := \{ \xi; e^{-\xi^2} = \mathfrak{s}, \Re \xi > 0 \},$$

$$\phi(d_3, d_2, d_1; \xi) := \begin{cases} \mathfrak{h}_R(\mathfrak{s}, \xi) + \frac{1}{2} (d_3 \xi^3 + d_2 \xi^2 + d_1 \xi), & \xi \in \mathfrak{R}_{\mathfrak{s},L}, \\ -\mathfrak{h}_L(\mathfrak{s}, \xi) + \frac{1}{2} (d_3 \xi^3 + d_2 \xi^2 + d_1 \xi), & \xi \in \mathfrak{R}_{\mathfrak{s},R}, \end{cases}$$

$$\mathfrak{h}_L(\mathfrak{s}, \xi) := -2 \int_{-i\infty}^{i\infty} \frac{\log(-\eta + \xi)\eta}{\mathfrak{s}^{-1}e^{-\eta^2} - 1} \frac{d\eta}{2\pi i},$$

$$\mathfrak{h}_R(\mathfrak{s}, \xi) := 2 \int_{-i\infty}^{i\infty} \frac{\log(\eta - \xi)\eta}{\mathfrak{s}^{-1}e^{-\eta^2} - 1} \frac{d\eta}{2\pi i}.$$

Figure : The nodes set $\mathfrak{R}_{s,L}$ and $\mathfrak{R}_{s,R}$

Remarks on $F(\tau, \gamma; x)$

- Periodicity on γ : $F(\tau, \gamma; x) = F(\tau, \gamma + 1; x)$.
- Comparison with F_{GUE}

$$F_{GUE}(x) = \det (1 + \mathcal{K})|_{L^2(\Sigma_L)}$$
 (1)

with

$$\mathcal{K}(\xi_1, \xi_2) := \int_{\Sigma_R} \frac{e^{\left(-\frac{\xi_1^3}{6} + \frac{x\xi_1}{2}\right) + \left(-\frac{\xi_2^3}{6} + \frac{x\xi_2}{2}\right) - 2\left(-\frac{\eta^3}{6} + \frac{x\eta}{2}\right)}}{(\xi_1 - \eta)(\xi_2 - \eta)} \frac{d\eta}{2\pi i}$$
(2)

where Σ_L is a contour from $e^{-2\pi/3}\infty$ to $e^{2\pi/3}\infty$ and $\Sigma_R = -\Sigma_L$.

ullet The parameter γ only appears in the Fredholm determinant.

Where the periodicity comes from

Figure: Illustration of the periodicity

 γ is the parameter containing the information of the location between two periods.

Flat initial condition

Similar result holds for the periodic TASEP model with flat initial condition $y_j = j\Delta$ and $M = N\Delta$.

$$\mathbb{P}\left(\frac{x_{k_{N}}(t_{N})-x_{k_{N}}(0)-(1-\rho)t_{N}}{\sqrt{2}\rho(1-\rho)^{-1/2}N^{1/2}}\geq -x\right)\to F(x;\tau)$$

where $t_N = \frac{1}{\rho^2 \sqrt{1-\rho}} N^{3/2}$, and $F(x; \tau)$ has similar structure with $F(x; \tau, \gamma)$. The explicit formula is given by

$$\begin{split} \int_{|\mathfrak{s}|=\mathfrak{r}} \exp\left(\frac{1}{2}\mathfrak{H}(\mathfrak{s}) - 2c\tau \mathrm{Li}_{5/2}(\mathfrak{s}) - cx \mathrm{Li}_{3/2}(\mathfrak{s}) - \frac{1}{2}\mathfrak{h}_{R}(\mathfrak{s},0)\right) \\ \det\left(1 + \tilde{\mathcal{K}}\right)\big|_{\ell^{2}(\mathfrak{R}_{\mathfrak{s},L})} \frac{d\mathfrak{s}}{2\pi i\mathfrak{s}}, \end{split}$$

$$\tilde{\mathcal{K}}(\xi,\eta) := \frac{e^{\mathfrak{h}_{R}(\mathfrak{s},\xi) + \mathfrak{h}_{L}(\mathfrak{s},-\eta) - \frac{2\sqrt{2}}{3}\tau\xi^{3} + x\xi - \frac{2\sqrt{2}}{3}\tau\eta^{3} + x\eta}}{-2\xi(\xi+\eta)}.$$
 (3)

Transition probability for periodic TASEP

Theorem [J. Baik, Z. Liu]

Denote $P_Y(X;t)$ the transition probability. Then for any $X,Y\in\mathfrak{X}_n(M)$, we have

$$P_Y(X;t) = \oint_{|s|=r} \det \left[\frac{1}{M} \sum_{z \in R_s} \frac{z^{j-i+1} (z+1)^{-x_i+y_j+i-j} e^{tz}}{z+\rho} \right]_{i,j=1}^N \frac{ds}{2\pi i s},$$

where R_s is the set of all roots of $z^N(z+1)^{M-N}=s^M$, and r>0 is a small constant.

We followed the idea of Tracy-Widom on the formula of ASEP. We consider a system of equations of u(X;t) where

$$(X;t)=(x_1,\cdots,x_N;t)\in\mathbb{Z}^N\times\mathbb{R}_{\geq 0}.$$

Master Equations :
$$\frac{d}{dt}u(X;t) = \sum_{i=1}^{N} (u(X_i;t) - u(X;t))$$

where
$$X_i := (x_1, \dots, x_{i-1}, x_i - 1, x_{i+1}, \dots, x_N).$$

Boundary Conditions 1 :
$$u(X_i; t) = u(X; t)$$
 if $x_i = x_{i-1} + 1$

Boundary Conditions 2 :
$$u(X_1; t) = u(X; t)$$
 if $x_N = x_1 + M - 1$.

Initial Condition :
$$u(X; 0) = \delta_Y(X)$$
, for all $X \in \mathfrak{X}_N(M)$.

Without the second boundary condition, it gives the transition probability for TASEP on the integer lattice:

$$\det\left[\oint_{|\xi|=\epsilon} (1-\xi)^{j-i} \xi^{x_i-y_j} e^{t(\xi^{-1}-1)} \frac{d\xi}{2\pi i \xi}\right]_{i,j=1}^N.$$

The extra boundary condition gives rise to the discreteness of the sum. The solution is constructive.

Distribution of the *k*-th particle

Suppose $x_j(t=0)=j-N$ is the initial configuration of the periodic TASEP. For any $1 \le k \le N$ we have the following one point distribution of the k-th particle

$$P(x_k \ge a; t) = (-1)^{(k-1)(N+1)}$$

$$\oint_{|s|=r} \det \left[\frac{1}{M} \sum_{z \in R_s} \frac{z^{j-i+1-k} (z+1)^{-N-a+k+1} e^{tz}}{z+\rho} \right]_{i,j=1}^{N} \frac{ds}{2\pi i s^{1-(k-1)M}}.$$

Some typical ways to analyze the asymptotics of a discrete Toeplitz determinant:

- Discrete orthogonal polynomials, developed by Baik-Kriecherbauer-McLaughlin-Miller.
- Continuous orthogonal polynomials, by an identity which relates the discrete Toeplitz determinant to its continuous counterpart.

The difficulties for this Toeplitz determinant are: the weight is complex-values, and the nodes are on a curve which is neither \mathbb{R} nor $S = \{z; |z| = 1\}$.

Fredholm determinant representation

Let $R_{s,L}, R_{s,R}$ be the left and right parts of the roots set R_s . Define $h_{s,L}(z) = \prod_{z_j \in R_{s,L}} (z-z_j)$ and $h_{s,R}(z) = \prod_{z_j \in R_{s,R}} (z-z_j)$. If $Y = (-N+1, -N+2, \cdots, 0)$, then

$$P(x_k \ge a; t) = \int_{|s|=r} Z_N(s) \det(1 + K_L) \frac{ds}{2\pi i s^{1-(k-1)M}},$$

where $det(1 + K_L)$ is the Fredholm determinant on $I^2(R_{s,L})$

$$K_L(z, w) = \sqrt{f(z)f(w)} \sum_{v \in R_{s,R}} \frac{f(v)^{-1}}{M^2(z-v)(w-v)},$$

$$f(z) := \begin{cases} \frac{h_{s,R}(z)^2 z^{-N-k+2} (z+1)^{-a-N+k+1} e^{tz}}{z+\gamma^{-1}}, & z \in R_{s,L}, \\ \frac{h_{s,R}'(z)^2 z^{-N-k+2} (z+1)^{-a-N+k+1} e^{tz}}{M^2 (z+\gamma^{-1})}, & z \in R_{s,R}. \end{cases}$$

 $Z_N(s)$ is a constant given by

$$Z_N(s) = (-1)^{(k-1)(N+1)} \prod_{z \in R_{s,R}} \frac{h'_{s,R}(z) z^{-N-k+2} (z+1)^{-a-N+k+1} e^{tz}}{M(z+\rho)}$$

It turns out that when $t = O(N^{3/2})$, the leading term of $Z_N(s)$ is

$$s^{(k-1)M} \exp(A(\mathfrak{s}, \tau, x))$$

and the leading term of the Fredholm determinant is $\det(1+\mathcal{K})$ under proper scaling.

Transition Probability
Distribution of the k-th particle
Fredholm determinant formula

Thank you!