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Last-Passage Percolation Model

Last-passage time
Let x,y ∈ Z2, with x ≤ y, and denote Γ(x,y) the set of all
up-right oriented paths from x to y. Consider a collection
{Wx : x ∈ Z2} of i.i.d. Exp(1) random variables and define

L(x,y) := max
γ∈Γ(x,y)

∑
z∈γ

Wz .
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Figure: An up-right path.
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Last-Passage Percolation Model
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Figure: L(x,y) = 13,9, L(x, z) = 8,5.
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Last-Passage Percolation Model

Geodesics
There exists a.s. a unique γ(x,y) ∈ Γ(x,y) such that∑

z∈γ(x,y)

Wz = L(x,y) .

Backward Algorithm
If γ(x,y) = (x1, · · · ,xn), with xn = y, then

xj−1 = arg max{L(xj − e1,xj),L(xj − e2,xj)} .
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Finite Geodesic
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Figure: Backward Algorithm.



Existence and Coalescence of Geodesics

An up-right semi-infinite path γ(x0) = (x0,x1, · · · ) is a geodesic

if γ(xi ,xj) = (xi+1, · · · ,xj) .

We say that it has direction d = (1,1)

if lim
n→∞

xn

|xn|
= d .

Existence and Coalescence
I a.s. ∃1 semi-infinite geodesic γ↑(x) with direction d;
I a.s. ∃ c ∈ Z2 (random) such that

γ↑(x) = γ(x,c) ++ γ↑(c) and γ↑(y) = γ(y,c) ++ γ↑(c) .

(Ferrari, P. ’05, Coupier ’11.)
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Existence and Coalescence of Geodesics
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Scaling Coalescence Times

Let c(x,y) denote the first coalescence point (following the
up-right orientation). Take x = 0, y = (m,0), and denote Tm the
second coordinate of c(x,y).

Questions

I Does Tm ∼ mζ ?
I Does it have a non trivial limit ? Power law behaviour?
I What is the limit distribution ? Universality ?

Conjectures

I ζ = 3/2.

I ∃ limm→∞
Tm

τ1m3/2
dist .
= T , for some τ1 > 0 .
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Scaling Coalescence Times

The Airy Process
Fluctuations of last-passage times are described by the Airy2
process (A(v) , v ∈ R). Denote

n := (n,n) and [v ]n := (25/3vn2/3,0) ,

and define

An(v) :=
L(0,n + [v ]n)−

(
4n + 28/3vn2/3)

24/3n1/3 + v2 .

Then
lim

n→∞
An(u)

dist .
= A(v)

(Johansson ’00, Corwin, Ferrari, Péché ’10).



Scaling Coalescence Times

The Airy Sheet
It is conjectured that this convergence can be extend to a two
dimensional setting: let

An(u, v) :=
L([u]n,n + [v ]n)−

(
4n + 28/3(v − u)n2/3)

24/3n1/3 +(v−u)2 .

Then (Corwin, Quastel, Remenik ’15)

(?) ∃ lim
n→∞

An(u, v)
dist .
= A(u, v) ,

where (A(u, v) , u, v ∈ R) is called the Airy Sheet.



Scaling Coalescence Times

Variational formula (partial result)
Suppose there exists a unique Airy Sheet (and is a nice sheet).
Let B denote and independent standard two-sided Brownian
Motion and define U : R 7→ R as

U(v) := arg max
u∈R

{√
2B(u) + A(u, v)− (v − u)2

}
.

Consider the associate counting measure U(s) := #U ((0, s]).

Then (for r > 0)

∃ lim
m→∞

P
(

Tm

2−5/2m3/2 ≤ r
)

= P
(
U(r−2/3) = 0

)
.
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More on the Point Process U

Power Law
Consider the distribution function

F(r) :=

{
0 , if r ≤ 0 ;

P
(
U(r−2/3) = 0

)
if r > 0 .

Then we have the power law behaviour

∃ lim
r→∞

r2/3(1− F(r)) = EU(1) .

Geodesic Forest
F also appears when one studies the height of a tree in the
geodesic forest model.
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LPP Geodesic Forest
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Burges Equation with Random Forcing

Figure: Bakhtin and Goel (authors).



Scaling Geodesic Forests

I Let hz denote the height of the tree at z. For random walk
type (no drift) of substrate, then we should have that

Hm := max
z=1,··· ,m

hz ,

under m3/2 rescaling, converges to F(r).

I For flat type of substrate, one expects a similar result but
the limit point process will be with respect to the Airy sheet
minus a drifting parabola (Lopez, P. ’15).
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Last-Passage-Percolation with Boundary

For n ≥ 1 and x ∈ Z, let

LM(x ,n) := max
z≤x
{M(z) + Lz(x ,n)} ,

where Lz(x ,n) := L ((z,1), (x ,n)) + W(z,1) and

M(z) :=


0 , if z = 0 ;∑z

k=1 Expk (1/2) , if z > 0 ;

−
∑−1

k=z Expk (1/2) , if , z < 0 ,

LPP-invariance
For all n ≥ 1

LM(y ,n)− LM(x ,n)
dist .
= M(y)−M(x) .
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The Exit-Point Process

For fixed n ≥ 1 define the exit-point process (Zn(x) , x ∈ Z) as

Zn(x)
a.s.
:= arg max

z≤x
{M(z) + Lz(x ,n)} , for x ∈ Z

Let
ζn(z) := 1 {z = Zn(x) for some x ∈ Z} ,

and define the counting measure

Zn(m) :=
∑

z∈(0,m]

ζn(z) .
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The Exit-Point Process
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The Exit-Point Process
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Figure: Zn(m) = 3



Duality: Coalescence Times and Exit-Points

Theorem

P (Tm < n) = P (Zn(m) = 0) .

Proof
I Busemann field and LPP-Reversibility;
I Self-duality of the geodesic tree;
I Exit points are crossing points of directional geodesics.
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Proof of Duality

Define the directional geodesic trees

L↑ :=
{
γ↑(x) : x ∈ Z2

}
and L↓ :=

{
γ↓(x) : x ∈ Z2

}
(γ↓(x) folows direction −d), and let L↓∗ denote the dual of L↓.

Our first aim is to show that

L↓∗ dist .
:= L↑ .

Consider the Busemann field

B↓ :=
{

B↓(x) : x ∈ Z2
}
, where B↓(x) := L(c,x)− L(c,0) .
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Proof of Duality

Backward algorithm Ψ

For γ↓(x) = (xn)n≥0 then x0 = x and

xn+1 = arg max
{

B↓(xn − e1) , B↓(xn − e2)
}
,

and so L↓ can be seen as the set composed of down-left
oriented edges (x,ex) such that x ∈ Z2 and

ex =

{
x− e1 if B↓(x− e1) > B↓(x− e2) ,
x− e2 if B↓(x− e2) > B↓(x− e1) .

Thus
L↓ = Ψ(B↓) .



Proof of Duality

L↓∗ can be seen as the set composed of up-right oriented
edges (x∗,ex∗) such that

ex∗ =

{
x∗ + e1 if ex+d = (x + d)− e1 ,
x∗ + e2 if ex+d = (x + d)− e2 .

It can be rewritten as:

ex∗ =

{
x∗ + e1 if B↓∗(x∗ + e1) < B↓∗(x∗ + e2) ,
x∗ + e2 if B↓∗(x∗ + e2) < B↓∗(x∗ + e1) ,

where B↓∗(x∗) := B↓(x).



Proof of Duality

Let φ : x ∈ Z2 7→ φ(x) := (−x)∗ ∈ Z2∗ and set

B̃(x) := −B↓∗(φ(x)) .

Thus φ−1(L↓∗) can be represented as the set composed of
down-left oriented edges (x,ex) such that

ex =

{
x− e1 if B̃(x− e1) > B̃(x− e2) ,

x− e2 if B̃(x− e2) > B̃(x− e1) .

Or, equivalently,
φ−1(L↓∗) = Ψ(B̃) .



Proof of Duality

I The Busemann field is the stationary TASEP (p = 1/2)
conditioned to have a particle jumping from site 0 to site 1
at time zero (Cator, P. ’12). B(i , j) is the time the i th hole
and the j th particle interchange positions;

I B̃ represents the reversed process (where labels are
reflected) and B̃ dist .

= B.

I Hence φ−1(L↓∗) = Ψ(B̃)
dist .
= Ψ(B) = L↓;

I In particular, L↓∗ dist .
= L↑ ⇒ Tm(L↑) dist .

= Tm(L↓∗).
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Proof of Duality

Fix n ≥ 0 and for x ∈ Z denote Z ↓n (x) the first point in γ↓((x ,n)),
following the down-left orientation, that intersects transversally
the horizontal axis Z× {0} (crossing point).

Define

Z↓n(m) :=
∑

z∈(0,m]

ζ↓n(z) , for m ≥ 0 ,

where

ζ↓n(z) =

{
1 if z = Z ↓n (x) for some x ∈ Z ,
0 otherwise .
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Proof of Duality

L↓ and its dual L↓∗ satisfy

{Tm(L↓∗) < n} = {Z↓n(m) = 0} .

Since (Cator, P. ’12),

B dist .
= LM ⇒ Z↓n

dist .
= Zn .

Therefore

P (Tm < n) = P
(

Tm(L↓∗) < n
)

= P
(
Z↓n(m) = 0

)
= P (Zn(m) = 0) .
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Scaling the Exit-Point Process

Theorem
Zn is translation invariant and ergodic. Furthermore, there
exists ε0 > 0 such that

lim inf
n→∞

n2/3pn > ε0 ,

where pn := P (ζn(0) = 1).

Proof
I (Balázs, Cator, Seppälaı̈nen ’06)

lim sup
n→∞

P
(
|Zn(n)| ≥ rn2/3

)
≤ c0r−3 , ∀ r > r0 .

I mpn ≥ P (Zn(m) ≥ 1) ≥ P (|Zn(n)| < m/2) .
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lim sup
n→∞

P
(
|Zn(n)| ≥ rn2/3

)
≤ c0r−3 , ∀ r > r0 .

I mpn ≥ P (Zn(m) ≥ 1) ≥ P (|Zn(n)| < m/2) .



Scaling the Exit-Point Process

Theorem
Zn is translation invariant and ergodic. Furthermore, there
exists ε0 > 0 such that

lim inf
n→∞

n2/3pn > ε0 ,

where pn := P (ζn(0) = 1).

Proof
I (Balázs, Cator, Seppälaı̈nen ’06)
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Power Law Behaviour

Corollary
There exists ε0 > 0 such that

lim inf
n→∞

n2/3P (Tm ≥ n) > ε0 , ∀ m ≥ 1 .

(In particular, ETm =∞.)

Proof

n2/3P (Tm ≥ n) = n2/3P (Zn(m) ≥ 1) ≥ n2/3pn .
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Scaling the Exit Point

Let
U := arg max{

√
2B(u) + A(u)− u2} ,

where B is a standard two sided Brownian motion process and
A is an independent Airy2 processs.

Theorem

lim
n→∞

Zn(n)

25/3n2/3
dist .
= U .
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Scaling Coalescence Times

Denote

G(r) := lim inf
m→∞

P
(

Tm

2−5/2m3/2 > r
)

and F(s) := P (U ≤ s) .

Theorem (Lower Bounds)

I G(r) ≥ F(r−2/3)− F(0);

I lim infr→0+ G(r) = 1;

I lim infr→∞ r2/3G(r) ≥ lim infδ→0+
F(δ)−F(0)

δ .
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Scaling Coalescence Times

Theorem (Upper bonds)
If

lim sup
n→∞

n2/3pn <∞

then
I lim supn→∞ n2/3P (Tm ≥ n) <∞;

I lim supr→∞ r2/3G(r) <∞
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Conjectural Picture

Let

Un(v) :=
Zn(n + 25/3n2/3v)

25/3n2/3 .

We expect that
∃ lim

n→∞
Un(v)

dist .
= U(v) ,

and hence

∃ lim
r→∞

r2/3G(r) = lim
δ→0+

δ−1P (U(δ) ≥ 1) = EU(1) ,

and

∃ lim
n→∞

EZn

(
b25/3n2/3c

)
= 25/3 lim

n→∞
n2/3pn = EU(1) .



Conjectural Picture

What is missing?

I Uniqueness of the Airy Sheet (and distributional
description);

I Local absolutely continuous with respect to some nice
process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times
Duality would then imply that

∃ lim
m→∞

P
(

Tm

2−5/2m3/2 ≤ r
)

= P
(
U(r−2/3) = 0

)
.

Thank you for your attention.
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