Coalescence of Geodesics in Last-Passage Percolation

Leandro P. R. Pimentel

Universidade Federal do Rio de Janeiro

arXiv:1307.7769 (to appear in The Ann. Prob.)

Last-passage time

Let $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^2$, with $\mathbf{x} \leq \mathbf{y}$, and denote $\Gamma(\mathbf{x}, \mathbf{y})$ the set of all up-right oriented paths from \mathbf{x} to \mathbf{y} . Consider a collection $\{ \mathcal{W}_{\mathbf{x}} : \mathbf{x} \in \mathbb{Z}^2 \}$ of i.i.d. $\operatorname{Exp}(1)$ random variables and define

$$L(\mathbf{x}, \mathbf{y}) := \max_{\gamma \in \Gamma(\mathbf{x}, \mathbf{y})} \sum_{\mathbf{z} \in \gamma} W_{\mathbf{z}}$$
.

Figure: An up-right path.

Figure: Another up-right path.

Figure: L(x, y) = 13, 9, L(x, z) = 8, 5.

Figure: $\{y : \mathbf{y} \ge \mathbf{x}, \ L(\mathbf{x}, \mathbf{y}) \le 6\}.$

Geodesics

There exists a.s. a unique $\gamma(\mathbf{x}, \mathbf{y}) \in \Gamma(\mathbf{x}, \mathbf{y})$ such that

$$\sum_{\mathbf{z} \in \gamma(\mathbf{x},\mathbf{y})} W_{\mathbf{z}} = \mathit{L}(\mathbf{x},\mathbf{y}) \,.$$

Geodesics

There exists a.s. a unique $\gamma(\mathbf{x}, \mathbf{y}) \in \Gamma(\mathbf{x}, \mathbf{y})$ such that

$$\sum_{\mathbf{z} \in \gamma(\mathbf{x}, \mathbf{y})} W_{\mathbf{z}} = L(\mathbf{x}, \mathbf{y}).$$

Backward Algorithm

If
$$\gamma(\mathbf{x}, \mathbf{y}) = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$$
, with $\mathbf{x}_n = \mathbf{y}$, then
$$\mathbf{x}_{j-1} = \arg\max\{L(\mathbf{x}_j - \mathbf{e}_1, \mathbf{x}_j), L(\mathbf{x}_j - \mathbf{e}_2, \mathbf{x}_j)\}.$$

Finite Geodesic

Figure: Backward Algorithm.

An up-right semi-infinite path $\gamma(\mathbf{x}_0) = (\mathbf{x}_0, \mathbf{x}_1, \cdots)$ is a geodesic

if
$$\gamma(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_{i+1}, \cdots, \mathbf{x}_j)$$
.

We say that it has direction $\mathbf{d} = (1, 1)$

if
$$\lim_{n\to\infty}\frac{\mathbf{x}_n}{|\mathbf{x}_n|}=\mathbf{d}$$
.

An up-right semi-infinite path $\gamma(\mathbf{x}_0) = (\mathbf{x}_0, \mathbf{x}_1, \cdots)$ is a geodesic

if
$$\gamma(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_{i+1}, \cdots, \mathbf{x}_j)$$
.

We say that it has direction $\mathbf{d} = (1, 1)$

if
$$\lim_{n\to\infty}\frac{\mathbf{x}_n}{|\mathbf{x}_n|}=\mathbf{d}$$
.

Existence and Coalescence

▶ a.s. \exists^1 semi-infinite geodesic $\gamma^{\uparrow}(\mathbf{x})$ with direction \mathbf{d} ;

An up-right semi-infinite path $\gamma(\mathbf{x}_0) = (\mathbf{x}_0, \mathbf{x}_1, \cdots)$ is a geodesic

if
$$\gamma(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_{i+1}, \cdots, \mathbf{x}_j)$$
.

We say that it has direction $\mathbf{d} = (1, 1)$

if
$$\lim_{n\to\infty}\frac{\mathbf{x}_n}{|\mathbf{x}_n|}=\mathbf{d}$$
.

Existence and Coalescence

- ▶ a.s. \exists^1 semi-infinite geodesic $\gamma^{\uparrow}(\mathbf{x})$ with direction **d**;
- ▶ a.s. \exists **c** \in \mathbb{Z}^2 (random) such that

$$\gamma^{\uparrow}(\mathbf{x}) = \gamma(\mathbf{x}, \mathbf{c}) + + \gamma^{\uparrow}(\mathbf{c}) \quad \text{and} \quad \gamma^{\uparrow}(\mathbf{y}) = \gamma(\mathbf{y}, \mathbf{c}) + + \gamma^{\uparrow}(\mathbf{c}) \,.$$

(Ferrari, P. '05, Coupier '11.)

Figure: Directional Geodesic.

Figure: Coalescence.

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

▶ Does $T_m \sim m^{\zeta}$?

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- ▶ Does $T_m \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- ▶ Does $T_m \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution? Universality?

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- ▶ Does $T_m \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution? Universality?

Conjectures

▶ $\zeta = 3/2$.

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = (m, 0)$, and denote T_m the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- ▶ Does $T_m \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution? Universality?

Conjectures

- ▶ $\zeta = 3/2$.
- ▶ $\exists \lim_{m\to\infty} \frac{T_m}{\tau_1 m^{3/2}} \stackrel{\textit{dist.}}{=} T$, for some $\tau_1 > 0$.

The Airy Process

Fluctuations of last-passage times are described by the Airy₂ process $(A(v), v \in \mathbb{R})$. Denote

$$\mathbf{n} := (n, n) \text{ and } [v]_n := (2^{5/3}vn^{2/3}, 0),$$

and define

$$A_n(v) := \frac{L(\mathbf{0}, \mathbf{n} + [v]_n) - \left(4n + 2^{8/3}vn^{2/3}\right)}{2^{4/3}n^{1/3}} + v^2.$$

Then

$$\lim_{n\to\infty} A_n(u) \stackrel{\text{dist.}}{=} A(v)$$

(Johansson '00, Corwin, Ferrari, Péché '10).

The Airy Sheet

It is conjectured that this convergence can be extend to a two dimensional setting: let

$$A_n(u,v) := \frac{L([u]_n, \mathbf{n} + [v]_n) - \left(4n + 2^{8/3}(v - u)n^{2/3}\right)}{2^{4/3}n^{1/3}} + (v - u)^2.$$

Then (Corwin, Quastel, Remenik '15)

$$(?) \exists \lim_{n \to \infty} A_n(u, v) \stackrel{\text{dist.}}{=} A(u, v),$$

where $(A(u, v), u, v \in \mathbb{R})$ is called the Airy Sheet.

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet). Let B denote and independent standard two-sided Brownian Motion and define $U: \mathbb{R} \mapsto \mathbb{R}$ as

$$U(v) := rg \max_{u \in \mathbb{R}} \left\{ \sqrt{2} B(u) + A(u,v) - (v-u)^2
ight\} \,.$$

Consider the associate counting measure U(s) := #U((0, s]).

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet). Let B denote and independent standard two-sided Brownian Motion and define $U: \mathbb{R} \mapsto \mathbb{R}$ as

$$U(v) := rg \max_{u \in \mathbb{R}} \left\{ \sqrt{2} B(u) + A(u,v) - (v-u)^2
ight\} \,.$$

Consider the associate counting measure $\mathcal{U}(s) := \#U((0, s])$. Then (for r > 0)

$$\exists \lim_{m\to\infty} \mathbb{P}\left(\frac{T_m}{2^{-5/2}m^{3/2}} \le r\right) = \mathbb{P}\left(\mathcal{U}(r^{-2/3}) = 0\right).$$

More on the Point Process \mathcal{U}

Power Law

Consider the distribution function

$$\mathbb{F}(r) := \left\{ \begin{array}{ll} 0, & \text{if } r \leq 0; \\ \mathbb{P}\left(\mathcal{U}(r^{-2/3}) = 0\right) & \text{if } r > 0. \end{array} \right.$$

Then we have the power law behaviour

$$\exists \lim_{r \to \infty} r^{2/3} (1 - \mathbb{F}(r)) = \mathbb{E} \mathcal{U}(1).$$

More on the Point Process \mathcal{U}

Power Law

Consider the distribution function

$$\mathbb{F}(r) := \left\{ egin{array}{ll} 0 \ , & ext{if} \ r \leq 0 \ ; \ \mathbb{P}\left(\mathcal{U}(r^{-2/3}) = 0
ight) & ext{if} \ r > 0 \ . \end{array}
ight.$$

Then we have the power law behaviour

$$\exists \lim_{r\to\infty} r^{2/3}(1-\mathbb{F}(r)) = \mathbb{E}\mathcal{U}(1).$$

Geodesic Forest

 ${\mathbb F}$ also appears when one studies the height of a tree in the geodesic forest model.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

Burges Equation with Random Forcing

Figure: Bakhtin and Goel (authors).

Scaling Geodesic Forests

Let h_z denote the height of the tree at z. For random walk type (no drift) of substrate, then we should have that

$$H_m:=\max_{z=1,\cdots,m}h_z\,,$$

under $m^{3/2}$ rescaling, converges to $\mathbb{F}(r)$.

Scaling Geodesic Forests

Let h_z denote the height of the tree at z. For random walk type (no drift) of substrate, then we should have that

$$H_m:=\max_{z=1,\cdots,m}h_z\,,$$

under $m^{3/2}$ rescaling, converges to $\mathbb{F}(r)$.

► For flat type of substrate, one expects a similar result but the limit point process will be with respect to the Airy sheet minus a drifting parabola (Lopez, P. '15).

For $n \ge 1$ and $x \in \mathbb{Z}$, let

$$L_M(x, n) := \max_{z < x} \{M(z) + L_z(x, n)\},$$

where
$$L_z(x, n) := L((z, 1), (x, n)) + W_{(z, 1)}$$
 and

$$\label{eq:matrix} \textit{M}(\textit{z}) := \left\{ \begin{array}{ll} 0\,, & \text{if } \textit{z} = 0\,; \\ \sum_{k=1}^{\textit{z}} \mathrm{Exp}_k(1/2)\,, & \text{if } \textit{z} > 0\,; \\ -\sum_{k=\textit{z}}^{-1} \mathrm{Exp}_k(1/2)\,, & \text{if } ,\textit{z} < 0\,, \end{array} \right.$$

For $n \ge 1$ and $x \in \mathbb{Z}$, let

$$L_M(x,n) := \max_{z \le x} \left\{ M(z) + L_z(x,n) \right\} ,$$

where $L_z(x, n) := L((z, 1), (x, n)) + W_{(z, 1)}$ and

$$\label{eq:matrix} \textit{M}(\textit{z}) := \left\{ \begin{array}{ll} 0\,, & \text{if } \textit{z} = 0\,; \\ \sum_{k=1}^{\textit{z}} \mathrm{Exp}_k(1/2)\,, & \text{if } \textit{z} > 0\,; \\ -\sum_{k=\textit{z}}^{-1} \mathrm{Exp}_k(1/2)\,, & \text{if } ,\textit{z} < 0\,, \end{array} \right.$$

LPP-invariance

For all $n \ge 1$

$$L_M(y,n) - L_M(x,n) \stackrel{dist.}{=} M(y) - M(x)$$
.

Figure: Signed Exp(1/2) boundary.

Figure: Signed Exp(1/2) boundary.

For fixed $n \ge 1$ define the exit-point process $(Z_n(x), x \in \mathbb{Z})$ as

$$Z_n(x) \stackrel{a.s.}{:=} arg \max_{z \le x} \{M(z) + L_z(x, n)\}, \text{ for } x \in \mathbb{Z}$$

For fixed $n \ge 1$ define the exit-point process $(Z_n(x), x \in \mathbb{Z})$ as

$$Z_n(x) \stackrel{a.s.}{:=} arg \max_{z \le x} \{M(z) + L_z(x, n)\}, \text{ for } x \in \mathbb{Z}$$

Let

$$\zeta_n(z) := \mathbb{1} \left\{ z = Z_n(x) \text{ for some } x \in \mathbb{Z} \right\},$$

and define the counting measure

$$\mathcal{Z}_n(m) := \sum_{z \in (0,m]} \zeta_n(z)$$
.

Figure: Backward algorithm for exit points.

Figure: $\mathcal{Z}_n(m) = 3$

Theorem

$$\mathbb{P}\left(T_m < n\right) = \mathbb{P}\left(\mathcal{Z}_n(m) = 0\right).$$

Theorem

$$\mathbb{P}\left(T_m < n\right) = \mathbb{P}\left(\mathcal{Z}_n(m) = 0\right).$$

Proof

Busemann field and LPP-Reversibility;

Theorem

$$\mathbb{P}\left(T_m < n\right) = \mathbb{P}\left(\mathcal{Z}_n(m) = 0\right).$$

Proof

- Busemann field and LPP-Reversibility;
- Self-duality of the geodesic tree;

Theorem

$$\mathbb{P}\left(T_{m} < n\right) = \mathbb{P}\left(\mathcal{Z}_{n}(m) = 0\right).$$

Proof

- Busemann field and LPP-Reversibility;
- Self-duality of the geodesic tree;
- Exit points are crossing points of directional geodesics.

Define the directional geodesic trees

$$\mathcal{L}^{\uparrow} := \left\{ \gamma^{\uparrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\} \ \text{ and } \ \mathcal{L}^{\downarrow} := \left\{ \gamma^{\downarrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\}$$

 $(\gamma^{\downarrow}(\mathbf{x}) \text{ follows direction } -\mathbf{d}), \text{ and let } \mathcal{L}^{\downarrow*} \text{ denote the dual of } \mathcal{L}^{\downarrow}.$

Define the directional geodesic trees

$$\mathcal{L}^{\uparrow} := \left\{ \gamma^{\uparrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\} \ \text{ and } \ \mathcal{L}^{\downarrow} := \left\{ \gamma^{\downarrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\}$$

 $(\gamma^{\downarrow}(\mathbf{x}) \text{ follows direction } -\mathbf{d}), \text{ and let } \mathcal{L}^{\downarrow*} \text{ denote the dual of } \mathcal{L}^{\downarrow}.$ Our first aim is to show that

$$\mathcal{L}^{\downarrow *} \overset{\textit{dist.}}{:=} \mathcal{L}^{\uparrow}$$
 .

Define the directional geodesic trees

$$\mathcal{L}^{\uparrow} := \left\{ \gamma^{\uparrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\} \ \text{ and } \ \mathcal{L}^{\downarrow} := \left\{ \gamma^{\downarrow}(\boldsymbol{x}) \, : \, \boldsymbol{x} \in \mathbb{Z}^2 \right\}$$

 $(\gamma^{\downarrow}(\mathbf{x}) \text{ follows direction } -\mathbf{d}), \text{ and let } \mathcal{L}^{\downarrow*} \text{ denote the dual of } \mathcal{L}^{\downarrow}.$ Our first aim is to show that

$$\mathcal{L}^{\downarrow *} \stackrel{\textit{dist.}}{:=} \mathcal{L}^{\uparrow}$$
 .

Consider the Busemann field

$$\mathcal{B}^{\downarrow} := \left\{ \mathcal{B}^{\downarrow}(\mathbf{x}) \, : \, \mathbf{x} \in \mathbb{Z}^2
ight\} \, , \; \; ext{where} \; \; \mathcal{B}^{\downarrow}(\mathbf{x}) := \mathcal{L}(\mathbf{c},\mathbf{x}) - \mathcal{L}(\mathbf{c},\mathbf{0}) \, .$$

Figure: Busemann Field and Directional Geodesics $(-\mathbf{d})$.

Figure: Busemann Field and Directional Geodesics $(-\mathbf{d})$.

Figure: Directional Geodesic Tree \mathcal{L}^{\downarrow} .

Figure: \mathcal{L}^{\downarrow} (blue) and $\mathcal{L}^{\downarrow*}$ (red).

Backward algorithm Ψ

For
$$\gamma^{\downarrow}(\mathbf{x})=(\mathbf{x}_n)_{n\geq 0}$$
 then $\mathbf{x}_0=\mathbf{x}$ and

$$\boldsymbol{x}_{n+1} = \text{arg max} \left\{ \boldsymbol{B}^{\downarrow} (\boldsymbol{x}_n - \boldsymbol{e}_1) \, , \, \boldsymbol{B}^{\downarrow} (\boldsymbol{x}_n - \boldsymbol{e}_2) \right\} \, ,$$

and so \mathcal{L}^{\downarrow} can be seen as the set composed of down-left oriented edges $(\mathbf{x}, \mathbf{e_x})$ such that $\mathbf{x} \in \mathbb{Z}^2$ and

$$\mathbf{e}_{\mathbf{x}} = \left\{ \begin{array}{ll} \mathbf{x} - \mathbf{e}_1 & \text{if } B^{\downarrow}(\mathbf{x} - \mathbf{e}_1) > B^{\downarrow}(\mathbf{x} - \mathbf{e}_2), \\ \mathbf{x} - \mathbf{e}_2 & \text{if } B^{\downarrow}(\mathbf{x} - \mathbf{e}_2) > B^{\downarrow}(\mathbf{x} - \mathbf{e}_1). \end{array} \right.$$

Thus

$$\mathcal{L}^{\downarrow} = \Psi(\mathcal{B}^{\downarrow})$$
 .

 $\mathcal{L}^{\downarrow*}$ can be seen as the set composed of up-right oriented edges $(\mathbf{x}^*, \mathbf{e}_{\mathbf{x}^*})$ such that

$$\mathbf{e}_{\mathbf{x}^*} = \left\{ \begin{array}{ll} \mathbf{x}^* + \mathbf{e}_1 & \text{if } \mathbf{e}_{\mathbf{x} + \mathbf{d}} = (\mathbf{x} + \mathbf{d}) - \mathbf{e}_1 \,, \\ \mathbf{x}^* + \mathbf{e}_2 & \text{if } \mathbf{e}_{\mathbf{x} + \mathbf{d}} = (\mathbf{x} + \mathbf{d}) - \mathbf{e}_2 \,. \end{array} \right.$$

It can be rewritten as:

$$\mathbf{e}_{\mathbf{x}^*} = \left\{ \begin{array}{ll} \mathbf{x}^* + \mathbf{e}_1 & \text{if } B^{\downarrow*}(\mathbf{x}^* + \mathbf{e}_1) < B^{\downarrow*}(\mathbf{x}^* + \mathbf{e}_2), \\ \mathbf{x}^* + \mathbf{e}_2 & \text{if } B^{\downarrow*}(\mathbf{x}^* + \mathbf{e}_2) < B^{\downarrow*}(\mathbf{x}^* + \mathbf{e}_1), \end{array} \right.$$

where $B^{\downarrow*}(\mathbf{x}^*) := B^{\downarrow}(\mathbf{x})$.

Let
$$\phi: \mathbf{x} \in \mathbb{Z}^2 \mapsto \phi(\mathbf{x}) := (-\mathbf{x})^* \in \mathbb{Z}^{2*}$$
 and set $\tilde{B}(\mathbf{x}) := -B^{\downarrow *}(\phi(\mathbf{x}))$.

Thus $\phi^{-1}(\mathcal{L}^{\downarrow*})$ can be represented as the set composed of down-left oriented edges $(\mathbf{x},\mathbf{e_x})$ such that

$$\mathbf{e}_{\mathbf{x}} = \left\{ \begin{array}{ll} \mathbf{x} - \mathbf{e}_1 & \text{if } \tilde{B}(\mathbf{x} - \mathbf{e}_1) > \tilde{B}(\mathbf{x} - \mathbf{e}_2) \,, \\ \mathbf{x} - \mathbf{e}_2 & \text{if } \tilde{B}(\mathbf{x} - \mathbf{e}_2) > \tilde{B}(\mathbf{x} - \mathbf{e}_1) \,. \end{array} \right.$$

Or, equivalently,

$$\phi^{-1}(\mathcal{L}^{\downarrow *}) = \Psi(\tilde{B}).$$

▶ The Busemann field is the stationary TASEP (p = 1/2) conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). B(i,j) is the time the ith hole and the jth particle interchange positions;

- ▶ The Busemann field is the stationary TASEP (p = 1/2) conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). B(i,j) is the time the ith hole and the jth particle interchange positions;
- ▶ \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{dist.}{=} B$.

- ▶ The Busemann field is the stationary TASEP (p = 1/2) conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). B(i,j) is the time the ith hole and the jth particle interchange positions;
- ▶ \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{dist.}{=} B$.
- ► Hence $\phi^{-1}(\mathcal{L}^{\downarrow *}) = \Psi(\tilde{B}) \stackrel{\textit{dist.}}{=} \Psi(B) = \mathcal{L}^{\downarrow};$

- ▶ The Busemann field is the stationary TASEP (p = 1/2) conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). B(i,j) is the time the ith hole and the jth particle interchange positions;
- ▶ \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{dist.}{=} B$.
- ► Hence $\phi^{-1}(\mathcal{L}^{\downarrow *}) = \Psi(\tilde{B}) \stackrel{\textit{dist.}}{=} \Psi(B) = \mathcal{L}^{\downarrow};$
- ▶ In particular, $\mathcal{L}^{\downarrow *} \stackrel{\textit{dist.}}{=} \mathcal{L}^{\uparrow} \Rightarrow T_m(\mathcal{L}^{\uparrow}) \stackrel{\textit{dist.}}{=} T_m(\mathcal{L}^{\downarrow *}).$

Fix $n \ge 0$ and for $x \in \mathbb{Z}$ denote $Z_n^{\downarrow}(x)$ the first point in $\gamma^{\downarrow}((x, n))$, following the down-left orientation, that intersects transversally the horizontal axis $\mathbb{Z} \times \{0\}$ (crossing point).

Fix $n \ge 0$ and for $x \in \mathbb{Z}$ denote $Z_n^{\downarrow}(x)$ the first point in $\gamma^{\downarrow}((x,n))$, following the down-left orientation, that intersects transversally the horizontal axis $\mathbb{Z} \times \{0\}$ (crossing point). Define

$$\mathcal{Z}_n^{\downarrow}(m) := \sum_{z \in (0,m]} \zeta_n^{\downarrow}(z) \,, \ \ \text{for} \ m \geq 0 \,,$$

where

$$\zeta_n^{\downarrow}(z) = \left\{ egin{array}{ll} 1 & ext{if } z = Z_n^{\downarrow}(x) ext{ for some } x \in \mathbb{Z} \,, \\ 0 & ext{otherwise} \,. \end{array}
ight.$$

 \mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow*}$ satisfy

$$\{T_m(\mathcal{L}^{\downarrow *}) < n\} = \{\mathcal{Z}_n^{\downarrow}(m) = 0\}.$$

 \mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow*}$ satisfy

$$\{T_m(\mathcal{L}^{\downarrow *}) < n\} = \{\mathcal{Z}_n^{\downarrow}(m) = 0\}.$$

Since (Cator, P. '12),

$$B \stackrel{\text{dist.}}{=} L_M \Rightarrow \mathcal{Z}_n^{\downarrow} \stackrel{\text{dist.}}{=} \mathcal{Z}_n$$
.

 \mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow*}$ satisfy

$$\{T_m(\mathcal{L}^{\downarrow *}) < n\} = \{\mathcal{Z}_n^{\downarrow}(m) = 0\}.$$

Since (Cator, P. '12),

$$B \stackrel{\text{dist.}}{=} L_M \Rightarrow \mathcal{Z}_n^{\downarrow} \stackrel{\text{dist.}}{=} \mathcal{Z}_n$$
.

Therefore

$$\mathbb{P}(T_m < n) = \mathbb{P}\left(T_m(\mathcal{L}^{\downarrow *}) < n\right)$$
$$= \mathbb{P}\left(\mathcal{Z}_n^{\downarrow}(m) = 0\right)$$
$$= \mathbb{P}\left(\mathcal{Z}_n(m) = 0\right).$$

Scaling the Exit-Point Process

Theorem

 \mathcal{Z}_n is translation invariant and ergodic. Furthermore, there exists $\epsilon_0>0$ such that

$$\liminf_{n\to\infty} n^{2/3} p_n > \epsilon_0 \,,$$

where
$$p_n := \mathbb{P}(\zeta_n(0) = 1)$$
.

Scaling the Exit-Point Process

Theorem

 \mathcal{Z}_n is translation invariant and ergodic. Furthermore, there exists $\epsilon_0>0$ such that

$$\liminf_{n\to\infty} n^{2/3} p_n > \epsilon_0 \,,$$

where $p_n := \mathbb{P}(\zeta_n(0) = 1)$.

Proof

(Balázs, Cator, Seppälaïnen '06)

$$\limsup_{n\to\infty}\mathbb{P}\left(|Z_n(n)|\geq rn^{2/3}\right)\leq c_0r^{-3}\,,\,\,\forall\,\,r>r_0\,.$$

Scaling the Exit-Point Process

Theorem

 \mathcal{Z}_n is translation invariant and ergodic. Furthermore, there exists $\epsilon_0 > 0$ such that

$$\liminf_{n\to\infty} n^{2/3} p_n > \epsilon_0 \,,$$

where $p_n := \mathbb{P}(\zeta_n(0) = 1)$.

Proof

(Balázs, Cator, Seppälaïnen '06)

$$\limsup_{n\to\infty}\mathbb{P}\left(|Z_n(n)|\geq rn^{2/3}\right)\leq c_0r^{-3}\,,\,\,\forall\,\,r>r_0\,.$$

▶ $mp_n \ge \mathbb{P}\left(\mathcal{Z}_n(m) \ge 1\right) \ge \mathbb{P}\left(|Z_n(n)| < m/2\right)$.

Power Law Behaviour

Corollary

There exists $\epsilon_0 > 0$ such that

$$\liminf_{n\to\infty} n^{2/3} \mathbb{P}\left(T_m \ge n\right) > \epsilon_0 \,, \,\, \forall \,\, m \ge 1 \,.$$

(In particular, $\mathbb{E}T_m = \infty$.)

Power Law Behaviour

Corollary

There exists $\epsilon_0 > 0$ such that

$$\liminf_{n\to\infty} n^{2/3} \mathbb{P}\left(T_m \geq n\right) > \epsilon_0 \,, \,\, \forall \,\, m\geq 1 \,.$$

(In particular, $\mathbb{E}T_m = \infty$.)

Proof

$$n^{2/3}\mathbb{P}(T_m \geq n) = n^{2/3}\mathbb{P}(\mathcal{Z}_n(m) \geq 1) \geq n^{2/3}p_n$$
.

Scaling the Exit Point

Let

$$U := \arg\max\{\sqrt{2}B(u) + A(u) - u^2\},\,$$

where B is a standard two sided Brownian motion process and A is an independent Airy₂ processs.

Scaling the Exit Point

Let

$$U := \arg\max\{\sqrt{2}B(u) + A(u) - u^2\},\,$$

where B is a standard two sided Brownian motion process and A is an independent Airy₂ processs.

Theorem

$$\lim_{n\to\infty}\frac{Z_n(n)}{2^{5/3}n^{2/3}}\stackrel{dist.}{=} U.$$

Denote

$$\mathbb{G}(r):=\liminf_{m o\infty}\mathbb{P}\left(rac{T_m}{2^{-5/2}m^{3/2}}>r
ight) ext{ and } \mathbb{F}(s):=\mathbb{P}\left(U\leq s
ight).$$

Denote

$$\mathbb{G}(r):=\liminf_{m o\infty}\mathbb{P}\left(rac{T_m}{2^{-5/2}m^{3/2}}>r
ight) ext{ and } \mathbb{F}(s):=\mathbb{P}\left(U\leq s
ight).$$

Theorem (Lower Bounds)

$$\blacktriangleright \mathbb{G}(r) \geq \mathbb{F}(r^{-2/3}) - \mathbb{F}(0);$$

Denote

$$\mathbb{G}(r):=\liminf_{m o\infty}\mathbb{P}\left(rac{T_m}{2^{-5/2}m^{3/2}}>r
ight) ext{ and } \mathbb{F}(s):=\mathbb{P}\left(U\leq s
ight).$$

Theorem (Lower Bounds)

- $\qquad \mathbb{G}(r) \geq \mathbb{F}(r^{-2/3}) \mathbb{F}(0);$
- ▶ $\liminf_{r\to 0^+} \mathbb{G}(r) = 1;$

Denote

$$\mathbb{G}(r):=\liminf_{m o\infty}\mathbb{P}\left(rac{T_m}{2^{-5/2}m^{3/2}}>r
ight) ext{ and } \mathbb{F}(s):=\mathbb{P}\left(U\leq s
ight).$$

Theorem (Lower Bounds)

- $\blacktriangleright \ \mathbb{G}(r) \geq \mathbb{F}(r^{-2/3}) \mathbb{F}(0);$
- ▶ $\liminf_{r\to 0^+} \mathbb{G}(r) = 1;$
- ▶ $\liminf_{r\to\infty} r^{2/3}\mathbb{G}(r) \ge \liminf_{\delta\to 0^+} \frac{\mathbb{F}(\delta)-\mathbb{F}(0)}{\delta}$.

Theorem (Upper bonds)

lf

$$\limsup_{n\to\infty} n^{2/3} p_n < \infty$$

then

▶ $\limsup_{n\to\infty} n^{2/3} \mathbb{P}\left(T_m \ge n\right) < \infty;$

Theorem (Upper bonds)

lf

$$\limsup_{n\to\infty} n^{2/3}p_n < \infty$$

then

- ▶ $\limsup_{n\to\infty} n^{2/3} \mathbb{P}\left(T_m \geq n\right) < \infty;$
- ▶ $\limsup_{r\to\infty} r^{2/3}\mathbb{G}(r) < \infty$

Let

$$U_n(v) := \frac{Z_n(n+2^{5/3}n^{2/3}v)}{2^{5/3}n^{2/3}}.$$

We expect that

$$\exists \lim_{n\to\infty} U_n(v) \stackrel{dist.}{=} U(v),$$

and hence

$$\exists \lim_{r \to \infty} r^{2/3} \mathbb{G}(r) = \lim_{\delta \to 0^+} \delta^{-1} \mathbb{P}\left(\mathcal{U}(\delta) \ge 1\right) = \mathbb{E}\mathcal{U}(1),$$

and

$$\exists \lim_{n\to\infty} \mathbb{E} \mathcal{Z}_n\left(\lfloor 2^{5/3} n^{2/3} \rfloor\right) = 2^{5/3} \lim_{n\to\infty} n^{2/3} p_n = \mathbb{E} \mathcal{U}(1).$$

What is missing?

 Uniqueness of the Airy Sheet (and distributional description);

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- ► Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- ► Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times

Duality would then imply that

$$\exists \lim_{m\to\infty} \mathbb{P}\left(\frac{T_m}{2^{-5/2}m^{3/2}} \le r\right) = \mathbb{P}\left(\mathcal{U}(r^{-2/3}) = 0\right).$$

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times

Duality would then imply that

$$\exists \lim_{m\to\infty} \mathbb{P}\left(\frac{T_m}{2^{-5/2}m^{3/2}} \le r\right) = \mathbb{P}\left(\mathcal{U}(r^{-2/3}) = 0\right).$$

Thank you for your attention.

