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Last-Passage Percolation Model

Last-passage time

Let x,y € Z2, with x <y, and denote I'(x,y) the set of all
up-right oriented paths from x to y. Consider a collection
{Wx : x € Z?} of i.i.d. Exp(1) random variables and define

L(x,y):= max > W,.
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Last-Passage Percolation Model

Figure: An up-right path.



Last-Passage Percolation Model

Figure: Another up-right path.



Last-Passage Percolation Model

Figure: L(x,y) = 13,9, L(x,2z) = 8,5.



Last-Passage Percolation Model

Figure: {y 1y > x, L(x,y) < 6}.
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Geodesics
There exists a.s. a unique v(x,y) € I'(x,y) such that

> We=L(xy).



Last-Passage Percolation Model

Geodesics
There exists a.s. a unique v(x,y) € I'(x,y) such that

> We=L(xy).

Backward Algorithm
If v(X,¥) = (X1, -+ ,Xp), with X, =y, then

Xj_y = argmax{L(x; — ey, X;), L(X; — e2,X;)} .



Finite Geodesic

Figure: Backward Algorithm.



Existence and Coalescence of Geodesics
An up-right semi-infinite path ~(xg) = (Xo, X1, - - - ) is a geodesic
If ’Y(XI‘) x]) = (xi+1 g "t axj) .
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Existence and Coalescence of Geodesics
An up-right semi-infinite path ~(xg) = (Xo, X1, - - - ) is a geodesic
If ’Y(XI‘) x]) = (xi+1 g "t axj) .

We say that it has directiond = (1,1)

Existence and Coalescence
» a.s. 3' semi-infinite geodesic v'(x) with direction d;
» a.s. 3 ¢ € Z? (random) such that
71(X) = v(x,€) +77(c) and ~'(y) =~(y,c) +~'(c).

(Ferrari, P.’05, Coupier ’11.)



Existence and Coalescence of Geodesics

Figure: Directional Geodesic.



Existence and Coalescence of Geodesics

Figure: Coalescence.



Scaling Coalescence Times

Let c(x, y) denote the first coalescence point (following the
up-right orientation). Take x = 0, y = (m,0), and denote T, the
second coordinate of ¢(x,y).
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Scaling Coalescence Times

Let c(x, y) denote the first coalescence point (following the
up-right orientation). Take x = 0, y = (m,0), and denote T, the
second coordinate of ¢(x,y).

Questions

» Does Ty ~ mS ?
» Does it have a non trivial limit ? Power law behaviour?
» What is the limit distribution ? Universality ?

Conjectures

» (=3/2.
. dist.
» 3 I|mm_>ooﬁ =" T, forsome 71 > 0.



Scaling Coalescence Times

The Airy Process

Fluctuations of last-passage times are described by the Airy,
process (A(v), v € R). Denote

n:=(n,n) and [v], := (2%3vr?/3,0),
and define

L(0,n + [V]n) — (4n+ 28/3vn?/3)
04/371/3

2

An(V) = —+ ve.

Then .
lim An(u) " A(v)

n—oo

(Johansson ’00, Corwin, Ferrari, Péché '10).



Scaling Coalescence Times

The Airy Sheet

It is conjectured that this convergence can be extend to a two
dimensional setting: let

L([u]n, 1+ [V]n) — (4n+28/3(v — u)r?/3)
54/371/3

An(u,v) = +(v—u)?.

Then (Corwin, Quastel, Remenik '15)
. dist.
? =
(?) 3 n@mAn(u, V) A(u,v),

where (A(u, v), u,v € R) is called the Airy Sheet.



Scaling Coalescence Times

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet).
Let B denote and independent standard two-sided Brownian
Motion and define U : R — R as

U(v) := arg max {\@B(u) AU, v) — (v — u)2} .

Consider the associate counting measure U(s) := #U ((0, s]).



Scaling Coalescence Times

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet).
Let B denote and independent standard two-sided Brownian
Motion and define U : R — R as

U(v) := arg max {\@B(u) AU, v) — (v — u)2} .

Consider the associate counting measure U(s) := #U ((0, s]).
Then (for r > 0)

: Tm _ _2/3y _
ﬂnll“oop(zwnqs/zﬁf)—lp(u(’ )=0).



More on the Point Process U

Power Law
Consider the distribution function
0, if r<o0;
F(r) = { P (U(r=2/3)=0) ifr>0.

Then we have the power law behaviour

3 lim r?3(1 —F(r)) = EU(1).

r—oo



More on the Point Process U

Power Law
Consider the distribution function
0, if r<o0;
F(r) = { P (U(r=2/3)=0) ifr>0.

Then we have the power law behaviour

3 lim r?3(1 —F(r)) = EU(1).

r—oo

Geodesic Forest
F also appears when one studies the height of a tree in the
geodesic forest model.



LPP Geodesic Forest

Figure: Point to substrate geodesic.
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Figure: Point to substrate geodesic.



LPP Geodesic Forest

Figure: Point to substrate geodesic.



Burges Equation with Random Forcing

s

Figure: Bakhtin and Goel (authors).



Scaling Geodesic Forests

» Let h; denote the height of the tree at z. For random walk
type (no drift) of substrate, then we should have that

Hm = ax hz )
1,.m

z=

under m®/2 rescaling, converges to F(r).



Scaling Geodesic Forests

» Let h; denote the height of the tree at z. For random walk
type (no drift) of substrate, then we should have that

Hm = max hz )
z=1,--.m

under m®/2 rescaling, converges to F(r).
» For flat type of substrate, one expects a similar result but

the limit point process will be with respect to the Airy sheet
minus a drifting parabola (Lopez, P. '15).



Last-Passage-Percolation with Boundary

Forn>1and x € Z, let

Ly(x,n) := max{M(z) + L,(x,n)} ,
z<x
where L;(x,n) :=L((z,1),(x,n)) + W, and

0, if z=0;
M(z) =< Sr_1Expc(1/2), if z>0;
Sl Exp(1/2), if,z<0,



Last-Passage-Percolation with Boundary

Forn>1and x € Z, let

Ly(x,n) := max{M(z) + L,(x,n)} ,
z<x
where L;(x,n) :=L((z,1),(x,n)) + W, and

0, if z=0;
M(z) :={ Y or_41Expc(1/2), if z>0;
Sl Exp(1/2), if,z<0,

LPP-invariance
Foralln> 1

Lu(y,n) — Lu(x, n) = M(y) — M(x).



Last-Passage-Percolation with Boundary

Figure: Signed Exp(1/2) boundary.



Last-Passage-Percolation with Boundary

Figure: Signed Exp(1/2) boundary.



The Exit-Point Process

For fixed n > 1 define the exit-point process (Z,(x) ,x € Z) as

Zn(x) 2 arg max {M(z) + L:(x,n)} , forx € Z
z<x



The Exit-Point Process

For fixed n > 1 define the exit-point process (Z,(x) ,x € Z) as

Zn(x) 2 arg max {M(z) + L:(x,n)} , forx € Z
z<x

Let
Cn(2) :=1{z = Zy(x) for some x € Z} ,

and define the counting measure

Za(m):= Y (a(2).

ze(0,m]



The Exit-Point Process

Figure: Backward algorithm for exit points.



The Exit-Point Process

A e e

oo

&>

Figure: Z,(m) =3
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Duality: Coalescence Times and Exit-Points

Theorem

P (T < n) =P (Z,(m) =0).

Proof
» Busemann field and LPP-Reversibility;
» Self-duality of the geodesic tree;
» Exit points are crossing points of directional geodesics.



Proof of Duality

Define the directional geodesic trees
ch= {VT(X) X € Zz} and £t = {fﬁ(x) X € ZZ}

(v*(x) folows direction —d), and let £+* denote the dual of £*.
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Proof of Duality

Define the directional geodesic trees
ch= {ﬁ(x) X € Zz} and £t = {fﬁ(x) X € ZZ}

(v*(x) folows direction —d), and let £+* denote the dual of £*.
Our first aim is to show that

o ot
Consider the Busemann field

B' = {Bi(x) X € ZZ} , Where B*(x):= L(¢,x)— L(c,0).



Proof of Duality

Figure: Busemann Field and Directional Geodesics (—d).
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Figure: Busemann Field and Directional Geodesics (—d).



Proof of Duality
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Proof of Duality
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Proof of Duality

Backward algorithm W
For +(X) = (Xn)n>0 then xo = x and

Xp1 = argmax {Bi(xn - e1) ) Bi(xn - eg)} )

and so £+ can be seen as the set composed of down-left
oriented edges (X, ex) such that x € Z? and

o [ X—€ if B(x —e1) > BY(x—ey),
X7l x—ey if B{(x—ep)> B (x—ey).

Thus
LY =w(BY).



Proof of Duality

£V can be seen as the set composed of up-right oriented
edges (x*, ex-) such that

x*+e ifexqg=(x+d)—eq,
ex*: % .
X*+e ifexq=(Xx+d)—ez.

It can be rewritten as:

o, X ter ff B¥(x* +eq) < B¥(x* +e5),
T x*te if B (X*+ep) < B¥(X* +eq),

where B¥(x*) := B+(x).



Proof of Duality

Let ¢ : X € Z2 +— $(X) := (—X)* € Z?* and set

B(x) := ~B"(4(x)).

Thus ¢~'(£%*) can be represented as the set composed of
down-left oriented edges (X, ex) such that

e, — x—eq if ?(x—e1)>§(x—e2),
*T lx—ey if Bx—ep)>B(x—ey).

Or, equivalently, .
¢*‘ (ﬁ*) =V(B).



Proof of Duality

» The Busemann field is the stationary TASEP (p = 1/2)
conditioned to have a particle jumping from site 0 to site 1
at time zero (Cator, P.’12). B(i,j) is the time the ith hole
and the jth particle interchange positions;
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Proof of Duality

» The Busemann field is the stationary TASEP (p = 1/2)
conditioned to have a particle jumping from site 0 to site 1
at time zero (Cator, P.’12). B(i,j) is the time the ith hole
and the jth particle interchange positions;

» B represents the reversed process (where labels are

reflected) and B =" B.

» Hence ¢~ (L) = w(B) & w(B) = £;

> In particular, £ 5 £ = To(£h) % To(4).



Proof of Duality

Fix n > 0 and for x € Z denote Z7(x) the first point in v*((x, n)),
following the down-left orientation, that intersects transversally
the horizontal axis Z x {0} (crossing point).



Proof of Duality

Fix n > 0 and for x € Z denote Z7(x) the first point in v*((x, n)),
following the down-left orientation, that intersects transversally

the horizontal axis Z x {0} (crossing point). Define

= Y ¢i(2), form>0,
ze(0,m]

where

iy = {1 if z= Z(x) for some x € Z,
" 0 otherwise.
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Proof of Duality

£+ and its dual £+* satisfy
{Tm(£") < n} = {Z3(m) = 0}.
Since (Cator, P. '12),

B 1y = z Bz

Therefore
P(Tm<n) = P (Tm(ﬁ*) < n)

- P (Z,%(m) - 0)
— P(Z,(m)=0).



Scaling the Exit-Point Process
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Z, is translation invariant and ergodic. Furthermore, there
exists ¢y > 0 such that
2/3

liminfn
n—oo

Pn > €0,

where p, := P (¢a(0) = 1).
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where p, :=P(¢s(0) = 1).
Proof
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Scaling the Exit-Point Process

Theorem

Z, is translation invariant and ergodic. Furthermore, there
exists ¢y > 0 such that

liminf n?/3

n—oo

Pn > €0,

where p, :=P(¢s(0) = 1).
Proof

» (Balazs, Cator, Seppalainen '06)

limsup P (|Z,,(n)| > rn2/3) <cr3, vr>n.

n—o0

> mpp > P(Z,(m) > 1) >P(|Zy(n)] < m/2) .



Power Law Behaviour

Corollary
There exists ey > 0 such that

liminf 2P (T, > n) > e, YVm>1.
n—oo

(In particular, ETp, = c0.)



Power Law Behaviour

Corollary
There exists ey > 0 such that

liminf 2P (T, > n) > e, YVm>1.
n—oo

(In particular, ETp, = c0.)

Proof

B3P (T > n) = P3P (Z,(m) > 1) > n?/3p,.



Scaling the Exit Point

Let
U := argmax{V2B(u) + A(u) — u?},

where B is a standard two sided Brownian motion process and
Ais an independent Airy, processs.



Scaling the Exit Point

Let
U := argmax{V2B(u) + A(u) — u?},

where B is a standard two sided Brownian motion process and
Ais an independent Airy, processs.
Theorem

. Zp(N)  dist.
Am ssmes - Y-




Scaling Coalescence Times

Denote

. . . Tm .
G(r) := I;nrllgof]P’ (2—5/2m3/2 > r) andF(s) =P (U< s).
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> liminf,_ o+ G(r) = 1;



Scaling Coalescence Times

Denote

G(r) := I;nrllgofP (2—5/2m3/2 > r) and F(s) . =P(U<s).

Theorem (Lower Bounds)
» G(r) > F(r=2/3) — F(0);

> liminf,_ o+ G(r) = 1;

> liminf,_, o r23G(r) > liminfs_,q. ZO=FO),




Scaling Coalescence Times

Theorem (Upper bonds)
If
lim sup n?/3p, < oo

n—oo
then
> limsup, ., "?/3P (T > n) < oo;



Scaling Coalescence Times

Theorem (Upper bonds)
If
lim sup n?/3p, < oo

n—oo
then
> limsup, ., "?/3P (T > n) < oo;

> limsup,_,, r?3G(r) < oo



Conjectural Picture

Let
Zn(n+ 253n2/3y)

Un(v) = 55/3 2/3

We expect that .
3 lim Un(v) & U(v),

n—oo

and hence

3 lim r23G(r) = lim 6 '"P(U(6) > 1) = EU(1),

r—oo 6—0+

and

; 5/3 42/3 _n5/3 |3 2/3 _
HnILmOOEZn(B n J)_z lim P/, = BU(1).



Conjectural Picture

What is missing?

» Uniqueness of the Airy Sheet (and distributional
description);



Conjectural Picture

What is missing?

» Uniqueness of the Airy Sheet (and distributional
description);

» Local absolutely continuous with respect to some nice
process (e.g Additive Brownian or Brownian Sheet).



Conjectural Picture

What is missing?
» Uniqueness of the Airy Sheet (and distributional
description);

» Local absolutely continuous with respect to some nice
process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times
Duality would then imply that

3 lim P <T’" < r) =P <u(r_2/3) = o) .

m—oo  \ 2-5/2m3/2 —



Conjectural Picture

What is missing?

» Uniqueness of the Airy Sheet (and distributional
description);

» Local absolutely continuous with respect to some nice
process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times
Duality would then imply that

3 lim P <T’" < r) =P <u(r_2/3) = o) .

m—oo  \ 2-5/2m3/2 —

Thank you for your attention.



