Coalescence of Geodesics in Last-Passage Percolation

Leandro P. R. Pimentel

Universidade Federal do Rio de Janeiro arXiv:1307.7769 (to appear in The Ann. Prob.)

Last-Passage Percolation Model

Last-passage time
Let $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^{2}$, with $\mathbf{x} \leq \mathbf{y}$, and denote $\Gamma(\mathbf{x}, \mathbf{y})$ the set of all up-right oriented paths from \mathbf{x} to \mathbf{y}. Consider a collection $\left\{W_{\mathbf{x}}: \mathbf{x} \in \mathbb{Z}^{2}\right\}$ of i.i.d. $\operatorname{Exp}(1)$ random variables and define

$$
L(\mathbf{x}, \mathbf{y}):=\max _{\gamma \in \Gamma(\mathbf{x}, \mathbf{y})} \sum_{\mathbf{z} \in \gamma} W_{\mathbf{z}} .
$$

Last-Passage Percolation Model

Figure: An up-right path.

Last-Passage Percolation Model

Figure: Another up-right path.

Last-Passage Percolation Model

Figure: $L(\mathbf{x}, \mathbf{y})=13,9, L(\mathbf{x}, \mathbf{z})=8,5$.

Last-Passage Percolation Model

Figure: $\{y: \mathbf{y} \geq \mathbf{x}, L(\mathbf{x}, \mathbf{y}) \leq 6\}$.

Last-Passage Percolation Model

Geodesics
There exists a.s. a unique $\gamma(\mathbf{x}, \mathbf{y}) \in \Gamma(\mathbf{x}, \mathbf{y})$ such that

$$
\sum_{\mathbf{z} \in \gamma(\mathbf{x}, \mathbf{y})} W_{\mathbf{z}}=L(\mathbf{x}, \mathbf{y})
$$

Last-Passage Percolation Model

Geodesics
There exists a.s. a unique $\gamma(\mathbf{x}, \mathbf{y}) \in \Gamma(\mathbf{x}, \mathbf{y})$ such that

$$
\sum_{\mathbf{z} \in \gamma(\mathbf{x}, \mathbf{y})} W_{\mathbf{z}}=L(\mathbf{x}, \mathbf{y})
$$

Backward Algorithm
If $\gamma(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$, with $\mathbf{x}_{n}=\mathbf{y}$, then

$$
\mathbf{x}_{j-1}=\arg \max \left\{L\left(\mathbf{x}_{j}-\mathbf{e}_{1}, \mathbf{x}_{j}\right), L\left(\mathbf{x}_{j}-\mathbf{e}_{2}, \mathbf{x}_{j}\right)\right\}
$$

Finite Geodesic

Figure: Backward Algorithm.

Existence and Coalescence of Geodesics

An up-right semi-infinite path $\gamma\left(\mathbf{x}_{0}\right)=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots\right)$ is a geodesic

$$
\text { if } \gamma\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i+1}, \cdots, \mathbf{x}_{j}\right) .
$$

We say that it has direction $\mathbf{d}=(1,1)$

$$
\text { if } \lim _{n \rightarrow \infty} \frac{\mathbf{x}_{n}}{\left|\mathbf{x}_{n}\right|}=\mathbf{d}
$$

Existence and Coalescence of Geodesics

An up-right semi-infinite path $\gamma\left(\mathbf{x}_{0}\right)=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots\right)$ is a geodesic

$$
\text { if } \gamma\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i+1}, \cdots, \mathbf{x}_{j}\right) .
$$

We say that it has direction $\mathbf{d}=(1,1)$

$$
\text { if } \lim _{n \rightarrow \infty} \frac{\mathbf{x}_{n}}{\left|\mathbf{x}_{n}\right|}=\mathbf{d}
$$

Existence and Coalescence

- a.s. \exists^{1} semi-infinite geodesic $\gamma^{\uparrow}(\mathbf{x})$ with direction \mathbf{d};

Existence and Coalescence of Geodesics

An up-right semi-infinite path $\gamma\left(\mathbf{x}_{0}\right)=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots\right)$ is a geodesic

$$
\text { if } \gamma\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i+1}, \cdots, \mathbf{x}_{j}\right) .
$$

We say that it has direction $\mathbf{d}=(1,1)$

$$
\text { if } \lim _{n \rightarrow \infty} \frac{\mathbf{x}_{n}}{\left|\mathbf{x}_{n}\right|}=\mathbf{d}
$$

Existence and Coalescence

- a.s. \exists^{1} semi-infinite geodesic $\gamma^{\uparrow}(\mathbf{x})$ with direction \mathbf{d};
- a.s. $\exists \mathbf{c} \in \mathbb{Z}^{2}$ (random) such that

$$
\gamma^{\uparrow}(\mathbf{x})=\gamma(\mathbf{x}, \mathbf{c})+\gamma^{\uparrow}(\mathbf{c}) \text { and } \gamma^{\uparrow}(\mathbf{y})=\gamma(\mathbf{y}, \mathbf{c})+\gamma^{\uparrow}(\mathbf{c}) .
$$

(Ferrari, P. '05, Coupier '11.)

Existence and Coalescence of Geodesics

Figure: Directional Geodesic.

Existence and Coalescence of Geodesics

Figure: Coalescence.

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- Does $T_{m} \sim m^{\zeta}$?

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.

Questions

- Does $T_{m} \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.
Questions

- Does $T_{m} \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution ? Universality ?

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.
Questions

- Does $T_{m} \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution ? Universality ?

Conjectures

- $\zeta=3 / 2$.

Scaling Coalescence Times

Let $\mathbf{c}(\mathbf{x}, \mathbf{y})$ denote the first coalescence point (following the up-right orientation). Take $\mathbf{x}=\mathbf{0}, \mathbf{y}=(m, 0)$, and denote T_{m} the second coordinate of $\mathbf{c}(\mathbf{x}, \mathbf{y})$.
Questions

- Does $T_{m} \sim m^{\zeta}$?
- Does it have a non trivial limit? Power law behaviour?
- What is the limit distribution ? Universality ?

Conjectures

- $\zeta=3 / 2$.
- $\exists \lim _{m \rightarrow \infty} \frac{T_{m}}{\tau_{1} m^{3 / 2}} \stackrel{\text { dist. }}{=} T$, for some $\tau_{1}>0$.

Scaling Coalescence Times

The Airy Process
Fluctuations of last-passage times are described by the Airy 2 process $(A(v), v \in \mathbb{R})$. Denote

$$
\mathbf{n}:=(n, n) \text { and }[v]_{n}:=\left(2^{5 / 3} v n^{2 / 3}, 0\right),
$$

and define

$$
A_{n}(v):=\frac{L\left(\mathbf{0}, \mathbf{n}+[v]_{n}\right)-\left(4 n+2^{8 / 3} v n^{2 / 3}\right)}{2^{4 / 3} n^{1 / 3}}+v^{2}
$$

Then

$$
\lim _{n \rightarrow \infty} A_{n}(u) \stackrel{\text { dist. }}{=} A(v)
$$

(Johansson '00, Corwin, Ferrari, Péché '10).

Scaling Coalescence Times

The Airy Sheet
It is conjectured that this convergence can be extend to a two dimensional setting: let

$$
A_{n}(u, v):=\frac{L\left([u]_{n}, \mathbf{n}+[v]_{n}\right)-\left(4 n+2^{8 / 3}(v-u) n^{2 / 3}\right)}{2^{4 / 3} n^{1 / 3}}+(v-u)^{2}
$$

Then (Corwin, Quastel, Remenik '15)

$$
\text { (?) } \exists \lim _{n \rightarrow \infty} A_{n}(u, v) \stackrel{\text { dist. }}{=} A(u, v)
$$

where $(A(u, v), u, v \in \mathbb{R})$ is called the Airy Sheet.

Scaling Coalescence Times

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet). Let B denote and independent standard two-sided Brownian Motion and define $U: \mathbb{R} \mapsto \mathbb{R}$ as

$$
U(v):=\arg \max _{u \in \mathbb{R}}\left\{\sqrt{2} B(u)+A(u, v)-(v-u)^{2}\right\} .
$$

Consider the associate counting measure $\mathcal{U}(s):=\# U((0, s])$.

Scaling Coalescence Times

Variational formula (partial result)

Suppose there exists a unique Airy Sheet (and is a nice sheet). Let B denote and independent standard two-sided Brownian Motion and define $U: \mathbb{R} \mapsto \mathbb{R}$ as

$$
U(v):=\arg \max _{u \in \mathbb{R}}\left\{\sqrt{2} B(u)+A(u, v)-(v-u)^{2}\right\} .
$$

Consider the associate counting measure $\mathcal{U}(s):=\# U((0, s])$. Then (for $r>0$)

$$
\exists \lim _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}} \leq r\right)=\mathbb{P}\left(\mathcal{U}\left(r^{-2 / 3}\right)=0\right) .
$$

More on the Point Process \mathcal{U}

Power Law

Consider the distribution function

$$
\mathbb{F}(r):= \begin{cases}0, & \text { if } r \leq 0 ; \\ \mathbb{P}\left(\mathcal{U}\left(r^{-2 / 3}\right)=0\right) & \text { if } r>0 .\end{cases}
$$

Then we have the power law behaviour

$$
\exists \lim _{r \rightarrow \infty} r^{2 / 3}(1-\mathbb{F}(r))=\mathbb{E} \mathcal{U}(1) .
$$

More on the Point Process \mathcal{U}

Power Law

Consider the distribution function

$$
\mathbb{F}(r):= \begin{cases}0, & \text { if } r \leq 0 ; \\ \mathbb{P}\left(\mathcal{U}\left(r^{-2 / 3}\right)=0\right) & \text { if } r>0\end{cases}
$$

Then we have the power law behaviour

$$
\exists \lim _{r \rightarrow \infty} r^{2 / 3}(1-\mathbb{F}(r))=\mathbb{E} \mathcal{U}(1)
$$

Geodesic Forest

\mathbb{F} also appears when one studies the height of a tree in the geodesic forest model.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

LPP Geodesic Forest

Figure: Point to substrate geodesic.

Burges Equation with Random Forcing

Figure: Bakhtin and Goel (authors).

Scaling Geodesic Forests

- Let h_{z} denote the height of the tree at z. For random walk type (no drift) of substrate, then we should have that

$$
H_{m}:=\max _{z=1, \cdots, m} h_{z}
$$

under $m^{3 / 2}$ rescaling, converges to $\mathbb{F}(r)$.

Scaling Geodesic Forests

- Let h_{z} denote the height of the tree at z. For random walk type (no drift) of substrate, then we should have that

$$
H_{m}:=\max _{z=1, \cdots, m} h_{z}
$$

under $m^{3 / 2}$ rescaling, converges to $\mathbb{F}(r)$.

- For flat type of substrate, one expects a similar result but the limit point process will be with respect to the Airy sheet minus a drifting parabola (Lopez, P. '15).

Last-Passage-Percolation with Boundary

For $n \geq 1$ and $x \in \mathbb{Z}$, let

$$
L_{M}(x, n):=\max _{z \leq x}\left\{M(z)+L_{z}(x, n)\right\}
$$

where $L_{z}(x, n):=L((z, 1),(x, n))+W_{(z, 1)}$ and

$$
M(z):= \begin{cases}0, & \text { if } z=0 \\ \sum_{k=1}^{z} \operatorname{Exp}_{k}(1 / 2), & \text { if } z>0 \\ -\sum_{k=z}^{-1} \operatorname{Exp}_{k}(1 / 2), & \text { if }, z<0\end{cases}
$$

Last-Passage-Percolation with Boundary

For $n \geq 1$ and $x \in \mathbb{Z}$, let

$$
L_{M}(x, n):=\max _{z \leq x}\left\{M(z)+L_{z}(x, n)\right\}
$$

where $L_{z}(x, n):=L((z, 1),(x, n))+W_{(z, 1)}$ and

$$
M(z):= \begin{cases}0, & \text { if } z=0 \\ \sum_{k=1}^{z} \operatorname{Exp}_{k}(1 / 2), & \text { if } z>0 \\ -\sum_{k=z}^{-1} \operatorname{Exp}_{k}(1 / 2), & \text { if }, z<0\end{cases}
$$

LPP-invariance
For all $n \geq 1$

$$
L_{M}(y, n)-L_{M}(x, n) \stackrel{\text { dist. }}{=} M(y)-M(x) .
$$

Last-Passage-Percolation with Boundary

Figure: Signed $\operatorname{Exp}(1 / 2)$ boundary.

Last-Passage-Percolation with Boundary

Figure: Signed $\operatorname{Exp}(1 / 2)$ boundary.

The Exit-Point Process

For fixed $n \geq 1$ define the exit-point process $\left(Z_{n}(x), x \in \mathbb{Z}\right)$ as

$$
Z_{n}(x): \stackrel{\text { a.s. }}{=} \arg \max _{z \leq x}\left\{M(z)+L_{z}(x, n)\right\}, \text { for } x \in \mathbb{Z}
$$

The Exit-Point Process

For fixed $n \geq 1$ define the exit-point process $\left(Z_{n}(x), x \in \mathbb{Z}\right)$ as

$$
Z_{n}(x): \text { as. }=\arg \max _{z \leq x}\left\{M(z)+L_{z}(x, n)\right\}, \text { for } x \in \mathbb{Z}
$$

Let

$$
\zeta_{n}(z):=\mathbb{1}\left\{z=Z_{n}(x) \text { for some } x \in \mathbb{Z}\right\}
$$

and define the counting measure

$$
\mathcal{Z}_{n}(m):=\sum_{z \in(0, m]} \zeta_{n}(z)
$$

The Exit-Point Process

Figure: Backward algorithm for exit points.

The Exit-Point Process

Figure: $\mathcal{Z}_{n}(m)=3$

Duality: Coalescence Times and Exit-Points

Theorem

$$
\mathbb{P}\left(T_{m}<n\right)=\mathbb{P}\left(\mathcal{Z}_{n}(m)=0\right) .
$$

Duality: Coalescence Times and Exit-Points

Theorem

$$
\mathbb{P}\left(T_{m}<n\right)=\mathbb{P}\left(\mathcal{Z}_{n}(m)=0\right) .
$$

Proof

- Busemann field and LPP-Reversibility;

Duality: Coalescence Times and Exit-Points

Theorem

$$
\mathbb{P}\left(T_{m}<n\right)=\mathbb{P}\left(\mathcal{Z}_{n}(m)=0\right) .
$$

Proof

- Busemann field and LPP-Reversibility;
- Self-duality of the geodesic tree;

Duality: Coalescence Times and Exit-Points

Theorem

$$
\mathbb{P}\left(T_{m}<n\right)=\mathbb{P}\left(\mathcal{Z}_{n}(m)=0\right) .
$$

Proof

- Busemann field and LPP-Reversibility;
- Self-duality of the geodesic tree;
- Exit points are crossing points of directional geodesics.

Proof of Duality

Define the directional geodesic trees

$$
\mathcal{L}^{\uparrow}:=\left\{\gamma^{\uparrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\} \text { and } \mathcal{L}^{\downarrow}:=\left\{\gamma^{\downarrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\}
$$

$\left(\gamma^{\downarrow}(\mathbf{x})\right.$ folows direction $\left.-\mathbf{d}\right)$, and let $\mathcal{L}^{\downarrow *}$ denote the dual of \mathcal{L}^{\downarrow}.

Proof of Duality

Define the directional geodesic trees

$$
\mathcal{L}^{\uparrow}:=\left\{\gamma^{\uparrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\} \text { and } \mathcal{L}^{\downarrow}:=\left\{\gamma^{\downarrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\}
$$

$\left(\gamma^{\downarrow}(\mathbf{x})\right.$ folows direction $\left.-\mathbf{d}\right)$, and let $\mathcal{L}^{\downarrow *}$ denote the dual of \mathcal{L}^{\downarrow}.
Our first aim is to show that

$$
\mathcal{L}^{\downarrow *} \stackrel{\text { dist. }}{=} \mathcal{L}^{\uparrow} .
$$

Proof of Duality

Define the directional geodesic trees

$$
\mathcal{L}^{\uparrow}:=\left\{\gamma^{\uparrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\} \text { and } \mathcal{L}^{\downarrow}:=\left\{\gamma^{\downarrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\}
$$

$\left(\gamma^{\downarrow}(\mathbf{x})\right.$ folows direction $\left.-\mathbf{d}\right)$, and let $\mathcal{L}^{\downarrow *}$ denote the dual of \mathcal{L}^{\downarrow}.
Our first aim is to show that

$$
\mathcal{L}^{{ }^{+*}} \stackrel{\text { dist. }}{=} \mathcal{L}^{\uparrow} .
$$

Consider the Busemann field

$$
B^{\downarrow}:=\left\{B^{\downarrow}(\mathbf{x}): \mathbf{x} \in \mathbb{Z}^{2}\right\}, \text { where } B^{\downarrow}(\mathbf{x}):=L(\mathbf{c}, \mathbf{x})-L(\mathbf{c}, \mathbf{0}) .
$$

Proof of Duality

Figure: Busemann Field and Directional Geodesics (-d).

Proof of Duality

Figure: Busemann Field and Directional Geodesics (-d).

Proof of Duality

Figure: Directional Geodesic Tree $\mathcal{L} \downarrow$.

Proof of Duality

Figure: \mathcal{L}^{\downarrow} (blue) and $\mathcal{L}^{\downarrow *}$ (red).

Proof of Duality

Backward algorithm ψ
For $\gamma^{\downarrow}(\mathbf{x})=\left(\mathbf{x}_{n}\right)_{n \geq 0}$ then $\mathbf{x}_{0}=\mathbf{x}$ and

$$
\mathbf{x}_{n+1}=\arg \max \left\{B^{\downarrow}\left(\mathbf{x}_{n}-\mathbf{e}_{1}\right), B^{\downarrow}\left(\mathbf{x}_{n}-\mathbf{e}_{2}\right)\right\},
$$

and so \mathcal{L}^{\downarrow} can be seen as the set composed of down-left oriented edges ($\mathbf{x}, \mathbf{e}_{\mathbf{x}}$) such that $\mathbf{x} \in \mathbb{Z}^{2}$ and

$$
\mathbf{e}_{\mathbf{x}}= \begin{cases}\mathbf{x}-\mathbf{e}_{1} & \text { if } B^{\downarrow}\left(\mathbf{x}-\mathbf{e}_{1}\right)>B^{\downarrow}\left(\mathbf{x}-\mathbf{e}_{2}\right), \\ \mathbf{x}-\mathbf{e}_{2} & \text { if } B^{\downarrow}\left(\mathbf{x}-\mathbf{e}_{2}\right)>B^{\downarrow}\left(\mathbf{x}-\mathbf{e}_{1}\right) .\end{cases}
$$

Thus

$$
\mathcal{L}^{\downarrow}=\Psi\left(B^{\downarrow}\right)
$$

Proof of Duality

$\mathcal{L}^{\downarrow *}$ can be seen as the set composed of up-right oriented edges ($\mathbf{x}^{*}, \mathbf{e}_{\mathbf{x}^{*}}$) such that

$$
\mathbf{e}_{\mathbf{x}^{*}}= \begin{cases}\mathbf{x}^{*}+\mathbf{e}_{1} & \text { if } \mathbf{e}_{\mathbf{x}+\mathbf{d}}=(\mathbf{x}+\mathbf{d})-\mathbf{e}_{1} \\ \mathbf{x}^{*}+\mathbf{e}_{2} & \text { if } \mathbf{e}_{\mathbf{x}+\mathbf{d}}=(\mathbf{x}+\mathbf{d})-\mathbf{e}_{2}\end{cases}
$$

It can be rewritten as:

$$
\mathbf{e}_{\mathbf{x}^{*}}= \begin{cases}\mathbf{x}^{*}+\mathbf{e}_{1} & \text { if } B^{\downarrow *}\left(\mathbf{x}^{*}+\mathbf{e}_{1}\right)<B^{\downarrow *}\left(\mathbf{x}^{*}+\mathbf{e}_{2}\right), \\ \mathbf{x}^{*}+\mathbf{e}_{2} & \text { if } B^{\downarrow *}\left(\mathbf{x}^{*}+\mathbf{e}_{2}\right)<B^{\downarrow *}\left(\mathbf{x}^{*}+\mathbf{e}_{1}\right),\end{cases}
$$

where $B^{\downarrow *}\left(\mathbf{x}^{*}\right):=B^{\downarrow}(\mathbf{x})$.

Proof of Duality

Let $\phi: \mathbf{x} \in \mathbb{Z}^{2} \mapsto \phi(\mathbf{x}):=(-\mathbf{x})^{*} \in \mathbb{Z}^{2 *}$ and set

$$
\tilde{B}(\mathbf{x}):=-B^{\downarrow *}(\phi(\mathbf{x})) .
$$

Thus $\phi^{-1}\left(\mathcal{L}^{\downarrow *}\right)$ can be represented as the set composed of down-left oriented edges $\left(\mathbf{x}, \mathbf{e}_{\mathbf{x}}\right)$ such that

$$
\mathbf{e}_{\mathbf{x}}= \begin{cases}\mathbf{x}-\mathbf{e}_{1} & \text { if } \tilde{B}\left(\mathbf{x}-\mathbf{e}_{1}\right)>\tilde{B}\left(\mathbf{x}-\mathbf{e}_{2}\right), \\ \mathbf{x}-\mathbf{e}_{2} & \text { if } \tilde{B}\left(\mathbf{x}-\mathbf{e}_{2}\right)>\tilde{B}\left(\mathbf{x}-\mathbf{e}_{1}\right) .\end{cases}
$$

Or, equivalently,

$$
\phi^{-1}\left(\mathcal{L}^{\downarrow *}\right)=\Psi(\tilde{B})
$$

Proof of Duality

- The Busemann field is the stationary TASEP $(p=1 / 2)$ conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). $B(i, j)$ is the time the i th hole and the j th particle interchange positions;

Proof of Duality

- The Busemann field is the stationary TASEP $(p=1 / 2)$ conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). $B(i, j)$ is the time the i th hole and the j th particle interchange positions;
- \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{\text { dist. }}{=} B$.

Proof of Duality

- The Busemann field is the stationary TASEP $(p=1 / 2)$ conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). $B(i, j)$ is the time the i th hole and the j th particle interchange positions;
- \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{\text { dist. }}{=} B$.
- Hence $\phi^{-1}\left(\mathcal{L}^{\downarrow *}\right)=\Psi(\tilde{B}) \stackrel{\text { dist. }}{=} \Psi(B)=\mathcal{L}^{\downarrow}$;

Proof of Duality

- The Busemann field is the stationary TASEP $(p=1 / 2)$ conditioned to have a particle jumping from site 0 to site 1 at time zero (Cator, P. '12). $B(i, j)$ is the time the i th hole and the j th particle interchange positions;
- \tilde{B} represents the reversed process (where labels are reflected) and $\tilde{B} \stackrel{\text { dist. }}{=} B$.
- Hence $\phi^{-1}\left(\mathcal{L}^{\downarrow *}\right)=\Psi(\tilde{B}) \stackrel{\text { dist. }}{=} \Psi(B)=\mathcal{L}^{\downarrow}$;
- In particular, $\mathcal{L}^{\downarrow *} \stackrel{\text { dist. }}{=} \mathcal{L}^{\uparrow} \Rightarrow T_{m}\left(\mathcal{L}^{\uparrow}\right) \stackrel{\text { dist. }}{=} T_{m}\left(\mathcal{L}^{\downarrow *}\right)$.

Proof of Duality

Fix $n \geq 0$ and for $x \in \mathbb{Z}$ denote $Z_{n}^{\downarrow}(x)$ the first point in $\gamma^{\downarrow}((x, n))$, following the down-left orientation, that intersects transversally the horizontal axis $\mathbb{Z} \times\{0\}$ (crossing point).

Proof of Duality

Fix $n \geq 0$ and for $x \in \mathbb{Z}$ denote $Z_{n}^{\downarrow}(x)$ the first point in $\gamma^{\downarrow}((x, n))$, following the down-left orientation, that intersects transversally the horizontal axis $\mathbb{Z} \times\{0\}$ (crossing point). Define

$$
\mathcal{Z}_{n}^{\downarrow}(m):=\sum_{z \in(0, m]} \zeta_{n}^{\downarrow}(z), \text { for } m \geq 0,
$$

where

$$
\zeta_{n}^{\downarrow}(z)= \begin{cases}1 & \text { if } z=Z_{n}^{\downarrow}(x) \text { for some } x \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Proof of Duality

\mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow *}$ satisfy

$$
\left\{T_{m}\left(\mathcal{L}^{\downarrow *}\right)<n\right\}=\left\{\mathcal{Z}_{n}^{\downarrow}(m)=0\right\}
$$

Proof of Duality

\mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow *}$ satisfy

$$
\left\{T_{m}\left(\mathcal{L}^{\downarrow *}\right)<n\right\}=\left\{\mathcal{Z}_{n}^{\downarrow}(m)=0\right\}
$$

Since (Cator, P. '12),

$$
B \stackrel{\text { dist. }}{=} L_{M} \Rightarrow \mathcal{Z}_{n}^{\downarrow} \stackrel{\text { dist. }}{=} \mathcal{Z}_{n}
$$

Proof of Duality

\mathcal{L}^{\downarrow} and its dual $\mathcal{L}^{\downarrow *}$ satisfy

$$
\left\{T_{m}\left(\mathcal{L}^{\downarrow *}\right)<n\right\}=\left\{\mathcal{Z}_{n}^{\downarrow}(m)=0\right\}
$$

Since (Cator, P. '12),

$$
B \stackrel{\text { dist. }}{=} L_{M} \Rightarrow \mathcal{Z}_{n}^{\downarrow} \stackrel{\text { dist. }}{=} \mathcal{Z}_{n}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left(T_{m}<n\right) & =\mathbb{P}\left(T_{m}\left(\mathcal{L}^{\downarrow *}\right)<n\right) \\
& =\mathbb{P}\left(\mathcal{Z}_{n}^{\downarrow}(m)=0\right) \\
& =\mathbb{P}\left(\mathcal{Z}_{n}(m)=0\right)
\end{aligned}
$$

Scaling the Exit-Point Process

Theorem

\mathcal{Z}_{n} is translation invariant and ergodic. Furthermore, there exists $\epsilon_{0}>0$ such that

$$
\liminf _{n \rightarrow \infty} n^{2 / 3} p_{n}>\epsilon_{0}
$$

where $p_{n}:=\mathbb{P}\left(\zeta_{n}(0)=1\right)$.

Scaling the Exit-Point Process

Theorem

\mathcal{Z}_{n} is translation invariant and ergodic. Furthermore, there exists $\epsilon_{0}>0$ such that

$$
\liminf _{n \rightarrow \infty} n^{2 / 3} p_{n}>\epsilon_{0}
$$

where $p_{n}:=\mathbb{P}\left(\zeta_{n}(0)=1\right)$.
Proof

- (Balázs, Cator, Seppälaïnen '06)

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\left|Z_{n}(n)\right| \geq r n^{2 / 3}\right) \leq c_{0} r^{-3}, \forall r>r_{0}
$$

Scaling the Exit-Point Process

Theorem

\mathcal{Z}_{n} is translation invariant and ergodic. Furthermore, there exists $\epsilon_{0}>0$ such that

$$
\liminf _{n \rightarrow \infty} n^{2 / 3} p_{n}>\epsilon_{0}
$$

where $p_{n}:=\mathbb{P}\left(\zeta_{n}(0)=1\right)$.
Proof

- (Balázs, Cator, Seppälaïnen ’06)

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\left|Z_{n}(n)\right| \geq r n^{2 / 3}\right) \leq c_{0} r^{-3}, \forall r>r_{0}
$$

- $m p_{n} \geq \mathbb{P}\left(\mathcal{Z}_{n}(m) \geq 1\right) \geq \mathbb{P}\left(\left|Z_{n}(n)\right|<m / 2\right)$.

Power Law Behaviour

Corollary
There exists $\epsilon_{0}>0$ such that

$$
\liminf _{n \rightarrow \infty} n^{2 / 3} \mathbb{P}\left(T_{m} \geq n\right)>\epsilon_{0}, \forall m \geq 1 .
$$

(In particular, $\mathbb{E} T_{m}=\infty$.)

Power Law Behaviour

Corollary
There exists $\epsilon_{0}>0$ such that

$$
\liminf _{n \rightarrow \infty} n^{2 / 3} \mathbb{P}\left(T_{m} \geq n\right)>\epsilon_{0}, \forall m \geq 1 .
$$

(In particular, $\mathbb{E} T_{m}=\infty$.)
Proof

$$
n^{2 / 3} \mathbb{P}\left(T_{m} \geq n\right)=n^{2 / 3} \mathbb{P}\left(\mathcal{Z}_{n}(m) \geq 1\right) \geq n^{2 / 3} p_{n} .
$$

Scaling the Exit Point

Let

$$
U:=\arg \max \left\{\sqrt{2} B(u)+A(u)-u^{2}\right\}
$$

where B is a standard two sided Brownian motion process and A is an independent Airy 2 processs.

Scaling the Exit Point

Let

$$
U:=\arg \max \left\{\sqrt{2} B(u)+A(u)-u^{2}\right\}
$$

where B is a standard two sided Brownian motion process and A is an independent Airy ${ }_{2}$ processs.
Theorem

$$
\lim _{n \rightarrow \infty} \frac{Z_{n}(n)}{2^{5 / 3} n^{2 / 3}} \stackrel{\text { dist. }}{=} U
$$

Scaling Coalescence Times

Denote

$$
\mathbb{G}(r):=\liminf _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}}>r\right) \text { and } \mathbb{F}(s):=\mathbb{P}(U \leq s)
$$

Scaling Coalescence Times

Denote

$$
\mathbb{G}(r):=\liminf _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}}>r\right) \text { and } \mathbb{F}(s):=\mathbb{P}(U \leq s)
$$

Theorem (Lower Bounds)

- $\mathbb{G}(r) \geq \mathbb{F}\left(r^{-2 / 3}\right)-\mathbb{F}(0) ;$

Scaling Coalescence Times

Denote

$$
\mathbb{G}(r):=\liminf _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}}>r\right) \text { and } \mathbb{F}(s):=\mathbb{P}(U \leq s)
$$

Theorem (Lower Bounds)

- $\mathbb{G}(r) \geq \mathbb{F}\left(r^{-2 / 3}\right)-\mathbb{F}(0) ;$
- $\liminf _{r \rightarrow 0^{+}} \mathbb{G}(r)=1$;

Scaling Coalescence Times

Denote

$$
\mathbb{G}(r):=\liminf _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}}>r\right) \text { and } \mathbb{F}(s):=\mathbb{P}(U \leq s)
$$

Theorem (Lower Bounds)

- $\mathbb{G}(r) \geq \mathbb{F}\left(r^{-2 / 3}\right)-\mathbb{F}(0) ;$
- $\liminf _{r \rightarrow 0^{+}} \mathbb{G}(r)=1$;
- $\liminf _{r \rightarrow \infty} r^{2 / 3} \mathbb{G}(r) \geq \lim \inf _{\delta \rightarrow 0^{+}} \frac{\mathbb{F}(\delta)-\mathbb{F}(0)}{\delta}$.

Scaling Coalescence Times

Theorem (Upper bonds)
If

$$
\limsup _{n \rightarrow \infty} n^{2 / 3} p_{n}<\infty
$$

then

- $\lim \sup _{n \rightarrow \infty} n^{2 / 3} \mathbb{P}\left(T_{m} \geq n\right)<\infty ;$

Scaling Coalescence Times

Theorem (Upper bonds)
If

$$
\limsup _{n \rightarrow \infty} n^{2 / 3} p_{n}<\infty
$$

then

- $\lim \sup _{n \rightarrow \infty} n^{2 / 3} \mathbb{P}\left(T_{m} \geq n\right)<\infty ;$
- $\lim \sup _{r \rightarrow \infty} r^{2 / 3} \mathbb{G}(r)<\infty$

Conjectural Picture

Let

$$
U_{n}(v):=\frac{Z_{n}\left(n+2^{5 / 3} n^{2 / 3} v\right)}{2^{5 / 3} n^{2 / 3}}
$$

We expect that

$$
\exists \lim _{n \rightarrow \infty} U_{n}(v) \stackrel{\text { dist. }}{=} U(v)
$$

and hence

$$
\exists \lim _{r \rightarrow \infty} r^{2 / 3} \mathbb{G}(r)=\lim _{\delta \rightarrow 0^{+}} \delta^{-1} \mathbb{P}(\mathcal{U}(\delta) \geq 1)=\mathbb{E} \mathcal{U}(1)
$$

and

$$
\exists \lim _{n \rightarrow \infty} \mathbb{E} \mathcal{Z}_{n}\left(\left\lfloor 2^{5 / 3} n^{2 / 3}\right\rfloor\right)=2^{5 / 3} \lim _{n \rightarrow \infty} n^{2 / 3} p_{n}=\mathbb{E} \mathcal{U}(1)
$$

Conjectural Picture

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);

Conjectural Picture

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

Conjectural Picture

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times

Duality would then imply that

$$
\exists \lim _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}} \leq r\right)=\mathbb{P}\left(\mathcal{U}\left(r^{-2 / 3}\right)=0\right) .
$$

Conjectural Picture

What is missing?

- Uniqueness of the Airy Sheet (and distributional description);
- Local absolutely continuous with respect to some nice process (e.g Additive Brownian or Brownian Sheet).

Scaling Coalescence Times
Duality would then imply that

$$
\exists \lim _{m \rightarrow \infty} \mathbb{P}\left(\frac{T_{m}}{2^{-5 / 2} m^{3 / 2}} \leq r\right)=\mathbb{P}\left(\mathcal{U}\left(r^{-2 / 3}\right)=0\right) .
$$

Thank you for your attention.

