Physics and Mathematics of 2d Gravity: Stokes and Large N Anti-Stokes

Inês Aniceto

(Jagiellonian University, Krákow)

Resurgence in Gauge and String Theory, KITP, October 31, 2017

This presentation is based in work in progress (to appear), from an on-going collaboration with Ricardo Schiappa and Marcel Vonk

It directly links to the results just presented by Marcel Vonk.

Goal: get a **full** understanding of the physics and mathematics encoded in resurgent asymptotic (trans)series.

Outline

- Motivation
- From local to global: gluing sectorial solutions in Painlevé I
 - Stokes transitions
 - Resonance
- From local to global: off-criticality and the quartic matrix model
 - Phase diagram: evidence of different phases
 - Building one-parameter family of solutions
 - Analytic transseries summation: from Stokes to anti-Stokes
 - Analytic data: determining zeros of partition function
- Conclusions

Next

1. Motivation

Painlevé I, 2d Gravity and Matrix models

- Matrix models:
 - NP description of string theory in simpler backgrounds: non-critical strings and Dijkgraaf-Vafa type topological strings[Dijkgraaf,Vafa '02]
 - ightharpoonup Simper models for studying NP structure behind large N 't Hooft expansions
 - ► Can help us understand large-N duality
- ▶ 2d quantum gravity is obtained by taking a double scaling limit: large N and small coupling g_s[Douglas,Shenker '90][Brézin,Kazakov '90][Gross,Migdal '90]
- Free energy of 2d gravity related to the Painlevé I NLODE
 - u(z) = -F''(z) where $z^{-5/4} \sim g_s$.
- Study Painlevé I: simpler model, but already showing major features from string theory
 - ► Asymptotic series with (2g)! growth $\Rightarrow g_s^2$ expansion

Global vs local

What we have seen so far (from Marcel Vonk's talk):

- ► Transseries as the most general formal solution of the Painlevé I equation
- ► Analysed sectorial solutions within Stokes wedges, with different asymptotic behaviour, generally dependent on two parameters
- ▶ Boundary data determines fully a particular sectorial solution
- ► Use analytic transseries summation to obtain analytic data: Lee-Yang zeros within these sectors

Our present goal:

- ▶ How to construct a **global** solution, i.e., how to "glue" the different sectors?
- How to generalise these results beyond Painlevé I, i.e. off-criticality in the context of matrix models?

Next

2. Global solutions of Painlevé I

Review: general solution for Painlevé I

Use a **2-parameter transseries**: [Garoufalidis,lts,Kapaev,Mariño '10] [IA,Schiappa,Vonk '11]

$$u(x; \sigma_1, \sigma_2) = x^{-\frac{2}{5}} \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} L_{nm}(x; \sigma_1, \sigma_2) \, \sigma_1^n \sigma_2^m \, \mathrm{e}^{-\frac{(n-m)A}{x}} \, x^{\beta_{nm}} \, \Phi^{(n|m)}(x)$$

- ▶ Two instanton actions $A = \pm 8\sqrt{3}/5$: evidence of resonance, many sectors with same exponential grading
- $x = z^{-5/4} \sim g_s$ is open string coupling; σ_i are boundary data
- Asymptotic series: $\Phi^{(n|n)}(x)$ have a topological genus expansion (g_s^2) , $\Phi^{(n|m)}$, $n \neq m$ have expansions in g_s : evidence of resonance
- ▶ Logarithmic sectors (from resonance) not independent, to be summed away:

$$L_{nm}(x; \sigma_1, \sigma_2) = \sum_{k=0}^{+\infty} \frac{1}{k!} \left(\frac{2}{\sqrt{3}} (m-n) \sigma_1 \sigma_2 \log x \right)^k$$

From local to global: Painlevé I

- Sectorial solutions in Painlevé I (from Marcel Vonk's talk):
 - Specified by boundary data σ_i
 - ► Analytic transseries summation ⇒ analytical data: Lee-Yang zeros
- ► Global solutions: "glue" different sectors together
 - Stokes transitions and resonance

Stokes transitions

$$u(x, \boldsymbol{\sigma}) = \sum_{\mathbf{n} \in \mathbb{N}_0^2} \boldsymbol{\sigma}^{\mathbf{n}} e^{-\mathbf{n} \cdot \mathbf{A}/x} \Phi_{\mathbf{n}}(x), \quad \mathbf{A} \equiv (A, -A), \ \boldsymbol{\sigma}^{\mathbf{n}} \equiv \sigma_1^n \sigma_2^m$$

- ightharpoonup Specific boundary data σ fully defines a sectorial solution, valid on a Stokes wedge. Different σ lead to different solutions and asymptotics.
- Global solution will have different asymptotic properties in different sectors, or Stokes wedges.
- ▶ Thus **Stokes phenomena** occurring at Stokes lines translates to changes in the σ : it propagates the boundary data from one wedge to another.
- ► These changes are encoded in the Stokes transitions, and depend generically on a infinite set of Stokes data.

Stokes transitions

$$u(x, \sigma) = \sum_{\mathbf{n} \in \mathbb{N}_0^2} \sigma^{\mathbf{n}} e^{-\mathbf{n} \cdot \mathbf{A}/x} \Phi_{\mathbf{n}}(x), \quad \mathbf{A} \equiv (A, -A), \ \sigma^{\mathbf{n}} \equiv \sigma_1^n \sigma_2^m$$

- ▶ Stokes lines in Painlevé I at arg $x = 0, \pi$ (dictated by the instanton actions)
- ▶ How does Stokes transition at arg x = 0 look like? Take $\sigma_2 = 0$

$$\sigma_1 \rightarrow \sigma_1 + S_1$$
 ; $\sigma_2 = 0$.

 $S_1 = -i \frac{3^{1/4}}{2\sqrt{\pi}}$ is the well known Stokes constant of Painlevé I

► A general Stokes transitions looks like:

$$\sigma_1 \to \mathbb{S}_1 (\sigma_1, \sigma_2)$$
; $\sigma_2 \to \mathbb{S}_2 (\sigma_1, \sigma_2)$

where \mathbb{S}_i depend on the original boundary data and a collection of problem specific numbers: **Stokes data**

Stokes transitions for the full two-parameter solution are completely determined by the collection of Stokes data.

Stokes transitions

$$u(x, \sigma) = \sum_{\mathbf{n} \in \mathbb{N}_0^2} \sigma^{\mathbf{n}} e^{-\mathbf{n} \cdot \mathbf{A}/x} \Phi_{\mathbf{n}}(x)$$

- Resurgent relations between sectors give rise to contributions to Stokes transitions
- These contributions are dictated by Stokes data
- ▶ Stokes data organises into vectors \mathbf{S}_{ℓ} , parametrized by vectors ℓ in a \mathbb{Z}^2 (semi-)lattice
- ► Stokes data is fundamental to each problem, but usually only accessible numerically
- ► Are they all independent in Painlevé I? No! Resonance

Example: contributions from $\Phi_{(3,2)}$ to Stokes transitions

All contributions: **fundamental** (weighed by S_{ℓ}), plus iterations

Stokes transitions, Borel singularities and resonance

- lacktriangle Borel plane: singularities in Stokes directions are given by $\ell \cdot {f A} \in \mathbb{C}$
- ▶ Contributions to Stokes transitions will collapse on different Stokes directions via the projection into Borel plane $\mathcal{P}: \ell \to \ell \cdot \mathbf{A}$

- Generally $\mathbf{A} = (A_1, A_2)$: each lattice point falls on a unique singularity
- ▶ Resonance: $\mathbf{A} = (A, -A)$: different lattice points go into same singularity

Resonance

- $lackbox{ Non-resonant case: different lattice points ℓ lead to different $\ell \cdot {f A}$}$
- **Proof.** Resonant case: lattice points $\ell':\ell'-\ell\in\ker\mathcal{P}$ contribute to same $\ell\cdot\mathbf{A}$
- This results in many geometric relations constraining Stokes data. We have a residual set of independent numbers.

Residual unconstrained data: $N_0, N_1, \cdots, N_k, \cdots$

E.g.
$$\mathbf{S}_{(-2,-1)} = \left(\frac{\mathrm{i}}{8}N_0^{-3} - \frac{1}{2}N_0^{-2}N_1 - \mathrm{i}N_2\right)(-2,3)$$

Resonance

Resonance

Pattern

Resonance

Pattern

Conjugation+shift

The geometric relations translate into knowledge of all Stokes data! Starting data N_k , $k \in \mathbb{N}_0$

construct global solutions of Painlevé I

Next

3. Off-criticality: large *N* asymptotic analysis of quartic matrix model

From local to global: off-criticality

- ► Analyse the large *N* asymptotic expansions of matrix model observables using transseries, resurgence analysis and summation
- ► Start with the local formal *transseries* solutions for large *N* free energies of the quartic MM, determined in "Stokes regions": the 1-cut [Mariño '08][IA,Schiappa,Vonk '11] and 2-cut [Schiappa,Vaz '13] backgrounds
- ► In [Couso-Santamaría, Schiappa, Vaz '15]: used Borel-Padé-Écalle summation of transseries to obtain finite *N* results

We want to understand the large-*N* physics and corresponding string dualities.

- Large-N structure:
 - construct full phase diagram of matrix model;
 - recover analytic data from analytic transseries summation;
 - connect different sectorial solutions with Stokes transitions

Quartic matrix model

Quartic model partition function ($N \times N$ matrix M)

$$\mathcal{Z}(N,g_s) \propto \int dM \, \exp\left(-rac{1}{g_s} {
m Tr} \, V(M)
ight) \, , \quad V(z) = rac{1}{2} z^2 - rac{1}{24} \lambda z^4$$

Local solutions in "Stokes regions": saddle point analysis around **1-cut solution**

Free energy has perturbative genus expansion at large N

$$F \equiv \log Z \simeq \sum_{g>0} F_g(t) g_s^{2g-2}, \ t = g_s N$$

- ▶ Obey a NP **finite difference eq**: string equation
- ► Resurgent properties: 2 parameter transseries, instanton action and coefficients of transseries are functions!
- ▶ Double-scaling limit: recover the results for Painlevé I

Quartic matrix model

Quartic MM partition function:

$$\mathcal{Z}(N,g_s) \propto \int dM \, \exp\left(-rac{1}{g_s} {
m Tr} \, V(M)
ight) \, , \quad V(z) = rac{1}{2} z^2 - rac{1}{24} \lambda z^4$$

- ▶ Introduce orthogonal polynomials $\{p_n(z)\}$, with normalisations h_n
- ▶ Define $r_n = \frac{h_n}{h_{n-1}}$, obeying the finite N relation

$$\mathcal{Z}_N \propto \prod_{n=1}^N r_n^{N-n}, \quad r_n = \frac{\mathcal{Z}_{n+1}\mathcal{Z}_{n-1}}{\mathcal{Z}_n^2}$$

▶ Recursion equations of the $\{p_n(z)\}$ lead to NL string equation for the r_n :

$$\mathcal{R}(t)\left(1-rac{\lambda}{6}(\mathcal{R}(t-g_s)+\mathcal{R}(t)+\mathcal{R}(t+g_s))
ight)=t\;,\quad \mathcal{R}(n\,g_s)=r_n$$

where and $\mathcal{R}(t)$ is directly related to the free energies

▶ Comparison with Painlevé I: $\mathcal{Z}_{\mathrm{MM}} \leftrightarrow \mathcal{Z}_{\mathrm{PI}}$; $\mathcal{R} \leftrightarrow \mathit{u}$

Quartic matrix model

 $\mathcal{R}(t)$ has resurgent properties, with transseries solution:

$$\mathcal{R}(t,\sigma_1,\sigma_2) = \sum_{n,m\geq 0} \sigma_1^n \sigma_2^m \mathrm{e}^{-N(n-m)\frac{A(t)}{t}} t^{\beta_{nm}} R_{(n|m)}(t)$$

- $ightharpoonup R_{(n|m)}(t)$ asymptotic expansions
- ▶ Instanton action A(t) and coefficients $R_g^{(n|m)}(t)$ are functions.
- ▶ Large-*N* phase diagram (first studied in [Bertola '07,Bertola,Tovbis '11]): study the leading contributions to the exponentials, given by $\frac{A(t)}{t}$:
 - ▶ Stokes lines $\mathbb{I}_{m}(A(t)/t) = 0$: instanton contributions maximally suppressed
 - ▶ Anti-Stokes lines $\mathbb{R}e\left(A\left(t\right)/t\right)=0$: all contributions of same order

Phase Diagram

- ► light blue: Stokes regions, standard 't Hooft large *N* expansion
 - ▶ I: 1-cut solution is dominant
 - ► II: 2-cut sym solution dominant
- green: anti-Stokes region,dominated by 3-cuts solution, modular properties; no genus expansion [Bonnet,David,Eynard '00]
- ▶ light red: trivalent tree-like configuration dominant
- ▶ Re line in I and II: Stokes lines, exponentially suppressed saddles are maximally suppressed
- ▶ P1 (P2): DS point described by Painlevé I (II) equation

Evidence of different phases?
What local solutions are associated with each phase?
How to obtain analytic data? Global Solutions?

Eigenvalue distribution: numerical evidence

- ▶ Calculate and plot the position of zeros of $p_N(z)$: for large enough N it will reproduce correct density of eigenvalues
- ▶ keep arg $t \in]\frac{\pi}{2}, \pi[$ fixed; changing |t|: eignevalues move in complex z-plane

- Stokes region: dominant structure is two-cut
- ► Anti-Stokes region: distributions along 3 cuts of comparable length
- ► Trivalent phase: tree-like configurations
- Organization of eigenvalues is markedly different, but do these lead to different physical phases?

Sectorial solutions

- Numerically calculate the recursion coefficients r_n with the boundary condition corresponding to 1-cut configuration
- ▶ Take N=1000 arg $t=\frac{\pi}{12}$ fixed, change |t| from the 1-cut phase into anti-Stokes
- ightharpoonup r: normalization factor (classical solution $g_s = 0$)

- ▶ Perform optimal truncation to the one-parameter sectors of $\mathcal{R}(t, \sigma_1, 0)$:
 - ▶ perturbative $R_{(0,0)}(t)$
- ightharpoonup Compare to the numerical results for the r_n

The summation of the perturbative expansion leads to very good results in the Stokes region, but it stops at the anti-Stokes boundary, where the instanton contributions become of the same order

- ▶ Perform optimal truncation to the one-parameter sectors of $\mathcal{R}(t, \sigma_1, 0)$:
 - perturbative $R_{(0,0)}(t)$ plus 1-instanton $R_{(1,0)}(t)$
- ightharpoonup Compare to the numerical results for the r_n

Adding the first instanton correction to the $\mathcal{R}(t)$ has corrected part of the first oscillation, still very close to the anti-Stokes boundary

- ▶ Perform optimal truncation to the one-parameter sectors of $\mathcal{R}(t, \sigma_1, 0)$:
 - perturbative $R_{(0,0)}(t)$ plus n-instantons $R_{(n,0)}(t)$, for n=1,2,3
- ightharpoonup Compare to the numerical results for the r_n

Adding the first three instanton correction to the $\mathcal{R}(t)$, has now produced a very small difference, we can reach one extra data point: all instanton contributions are of the same order and need to be included

The anti-Stokes phase

- ▶ Evidence that indeed the **different phases are physical**: they lead to different asymptotics of the $\mathcal{R}(t)$ in different regions
- ▶ Still, we cannot yet reach far into the anti-Stokes region
- ► Can we do better? Perform **analytic transseries summation** (as in Marcel Vonk's talk)

Linear analytic transseries summation

- ► Learn from the example of Painlevé I (Marcel Vonk's talk) and start by doing linear analytic transseries summation
- ▶ Sum the leading terms in g_s in the one-parameter transseries ($\sigma_2 = 0$)

 (r_n-r) vs $(R_{lin.ATS,1}-r)$: log of absolute value

 (r_n-r) vs $(R_{lin.ATS,1}-r)$: phase

Leading g_s linear transseries summation for $\mathcal{R}(t)$ shows definite improvement, mostly for the absolute value results.

Linear analytic transseries summation

- ► Learn from the example of Painlevé I (Marcel Vonk's talk) and start by doing linear analytic transseries summation
- \blacktriangleright Leading and subleading terms in g_s in the one-parameter transseries

 (r_n-r) vs $(R_{lin.ATS,2}-r)$: log of absolute value

 (r_n-r) vs $(R_{lin.ATS,2}-r)$: phase

Leading and subleading g_s linear transseries summation for $\mathcal{R}\left(t\right)$ shows that we can go further into the anti-Stokes region, but slow improvement.

Can we do better?

- Optimal truncation did not correctly recover the results in the anti-Stokes phase. The sum over instanton corrections is insufficient as all corrections are of the same order.
- ightharpoonup Linear analytic transseries summation recovered results further into the anti-Stokes region, but subleading g_s corrections give slow improvement
- ► Can we do better? From Marcel Vonk's talk, we should perform quadratic analytic transseries summation or the partition function

Quadratic analytic transseries summation

- Perform quadratic analytic transseries summation for the one-parameter partition function
- ▶ Sum the leading terms in g_s for $\mathcal{Z}(t)$ (n—th instanton sector starts at order $g_s^{n^2}$)
- ▶ Determine the $\mathcal{R}(t)$ from these results

(rn-r) vs (Rquad, ATS, 1-r): log of absolute value

(r_n-r) vs (R_{quad.ATS,1}-r): phase

Leading g_s quadratic transseries summation for $\mathcal{Z}(t)$ follows the numerical results far into the anti-Stokes region!

Zeroes of the partition function

Use the quadratic analytic transseries summation to predict Lee-Yang zeros?

- ▶ **Left:** prediction of zeros of $\mathcal{Z}(t)$ obtained from quadratic analytic transseries summation with N = 10 eigenvalues
- **Down:** numerical calculation of zeros from direct calculation of the matrix integral (N = 100). The grayscale is proportional to number of zeros

Leading g_s quadratic transseries summation for $\mathcal{Z}(t)$ predicts analytic results deep into the anti-Stokes region!

Summary

Global solutions of Painlevé I

- "Glue" the sectorial solutions with Stokes transitions
- ▶ Use resonance to determine geometric relations constraining Stokes data

Asymptotic large-N analysis of quartic matrix model

- ▶ Study of different asymptotics across the complex 't Hooft coupling
- Summation of local solutions: optimal truncation, linear and quadratic analytic transseries summation
- Lee-Yang zeros prediction in the anti-Stokes region

Current work

Stokes phenomena in Painlevé I:

- ▶ Full geometric structure of Stokes data
- Determining the residual Stokes data analytically
- ▶ Modular properties of the analytic transseries summation

Stokes phenomena in quartic matrix model:

- ▶ Stokes transitions connecting local results from different regions
- ▶ Trivalent phase: full 2-parameter transseries solutions

Future applications

- ▶ Our analysis only needed the weak coupling expansions for the transseries.
- ▶ Using analytic transseries summation we can recover results everywhere in the 't Hooft complex plane, for arbitrarily large coupling.
- ▶ The methods we used are generic, and could be applied to more complex systems
 - e.g. HAE: the transseries for topological strings in particular backgrounds is already known[Couso-Santamaría et al '14,15,16], which can be matched to non-perturbative definitions of string theory [Couso-Santamaría,Mariño,Schiappa '16][Codesido,Mariño,Schiappa].

