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This presentation is based in work in progress (to appear), from an on-going
collaboration with Ricardo Schiappa and Marcel Vonk

|

It directly links to the results just presented by Marcel Vonk.

Goal: get a full understanding of the physics and mathematics encoded in
resurgent asymptotic (trans)series.



Outline

@ Motivation
@ From local to global: gluing sectorial solutions in Painlevé |

» Stokes transitions

» Resonance

© From local to global: off-criticality and the quartic matrix model

> Phase diagram: evidence of different phases
> Building one-parameter family of solutions
> Analytic transseries summation: from Stokes to anti-Stokes

> Analytic data: determining zeros of partition function

@ Conclusions






Painlevé |, 2d Gravity and Matrix models

» Matrix models:

> NP description of string theory in simpler backgrounds: non-critical strings
and Dijkgraaf-Vafa type topological strings|Dijkgraaf,Vafa '02]

> Simper models for studying NP structure behind large N 't Hooft expansions

> Can help us understand large-N duality

> 2d quantum gravity is obtained by taking a double scaling limit: large N
and small coupling 8gs[Douglas,Shenker '90][Brézin,Kazakov '90][Gross,Migdal '90]

> Free energy of 2d gravity related to the Painlevé | NLODE
> u(z) = —F"(z) where z7%* ~ g.

» Study Painlevé I: simpler model, but already showing major features from
string theory

> Asymptotic series with (2g)! growth = g2 expansion



Global vs local

What we have seen so far (from Marcel Vonk's talk):
» Transseries as the most general formal solution of the Painlevé | equation

> Analysed sectorial solutions within Stokes wedges, with different asymptotic
behaviour, generally dependent on two parameters

» Boundary data determines fully a particular sectorial solution

» Use analytic transseries summation to obtain analytic data:
Lee-Yang zeros within these sectors

Our present goal:
» How to construct a global solution, i.e., how to "glue” the different sectors?

» How to generalise these results beyond Painlevé |, i.e. off-criticality in the
context of matrix models?






Review: general solution for Painlevé |

Use a 2—parameter transseries: [Garoufalidis,Its,Kapaev,Marifio '10] [IA,Schiappa,Vonk '11]
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u(x;o1,02) = X% Z Z Lom (x; 01,02) o705 e™ xPm d(nIm) (x)
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Two instanton actions A = £8+/3/5: evidence of resonance, many sectors
with same exponential grading

» x =z 9/* ~ g is open string coupling; o; are boundary data

v

Asymptotic series: ®("")(x) have a topological genus expansion (g2 ),
oM £ m have expansions in g: evidence of resonance

v

Logarithmic sectors (from resonance) not independent, to be summed away:
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From local to global: Painlevé |

Painlevé |

Tritronquée

Tronquée

General

Quartic MM

> Sectorial solutions in Painlevé | (from Marcel Vonk's talk):

» Specified by boundary data o;

> Analytic transseries summation = analytical data: Lee-Yang zeros

> Global solutions: "glue” different sectors together

» Stokes transitions and resonance




Stokes transitions

u(x,o) = Z o"e "Axd,(x), A= (A —-A), " =olof

2
neNg

» Specific boundary data o fully defines a sectorial solution, valid on a Stokes
wedge. Different o lead to different solutions and asymptotics.

» Global solution will have different asymptotic properties in different sectors,
or Stokes wedges.

» Thus Stokes phenomena occurring at Stokes lines translates to changes
in the o: it propagates the boundary data from one wedge to another.

» These changes are encoded in the Stokes transitions, and depend
generically on a infinite set of Stokes data.



Stokes transitions

u(x,o) = Z a"e A xd,(x), A= (A -A), " =clof
nENg
» Stokes lines in Painlevé | at arg x = 0, 7 (dictated by the instanton actions)

» How does Stokes transition at arg x = 0 look like? Take o, =0

or—~ o1+ 51 ; oy = 0.

ENVZ . ,
S = —123? is the well known Stokes constant of Painlevé |

> A general Stokes transitions looks like:
o1 — Sy (01,02) ; o2 = Sy (01,02)

where S; depend on the original boundary data and a collection of problem
specific numbers: Stokes data

Stokes transitions for the full two-parameter solution are completely
determined by the collection of Stokes data.



Stokes transitions

u(x,o) = Z o"e " A Xd, (x)

nen?
» Resurgent relations between sectors give rise to
contributions to Stokes transitions n

» These contributions are dictated by Stokes data
» Stokes data organises into vectors Sg,
parametrized by vectors £ in a Z? (semi-)lattice

. o
» Stokes data is fundamental to each problem, but
usually only accessible numerically

> Are they all independent in Painlevé 1?7 No! Resonance



Example: contributions from @3, to Stokes transitions
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» All contributions: fundamental (weighed by S,), plus iterations




Stokes transitions, Borel singularities and resonance
» Borel plane: singularities in Stokes directions are given by £- A € C

» Contributions to Stokes transitions will collapse on different Stokes
directions via the projection into Borel plane P: € — £- A

72 £
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Borel plane C £-A Ry PN S Ay Ny N

> Generally A = (A1, Ay): each lattice point falls on a unique singularity

» Resonance: A = (A, —A): different lattice points go into same singularity



Resonance

Non-resonant ®3 ) Resonant @3 )

Lez?
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» Non-resonant case: different lattice points £ lead to different £ - A
» Resonant case: lattice points £ : £ — £ € ker P contribute to same £ - A

> This results in many geometric relations constraining Stokes data. We
have a residual set of independent numbers.
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Residual unconstrained data: No, Ny, -+, Ny, -

E.g. S(_z,_l) = (%NO_?' — %NO_ZN1 — iNz) (—2, 3)



The Stokes vectors of Painlevé |
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The Stokes vectors of Painlevé |
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The Stokes vectors of Painlevé |
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The Stokes vectors of Painlevé |
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The geometric relations translate into knowledge of all Stokes data!
Starting data Ny, k € Ny

= construct global solutions of Painlevé |






From local to global: off-criticality

» Analyse the large N asymptotic expansions of matrix model observables
using transseries, resurgence analysis and summation

» Start with the local formal transseries solutions for large N free energies of
the quartic MM, determined in "Stokes regions”: the 1-cut [Marifio
'08][IA,Schiappa,Vonk '11] and 2-cut [Schiappa,Vaz '13] backgrounds

> In [Couso-Santamaria,Schiappa,Vaz '15]: used Borel-Padé-Ecalle summation of
transseries to obtain finite N results

We want to understand the large-/N physics and corresponding
string dualities.

> Large-N structure:
» construct full phase diagram of matrix model,
> recover analytic data from analytic transseries summation;
» connect different sectorial solutions with Stokes transitions



Quartic matrix model
Quartic model partition function (N x N matrix M)

Z(N, g) o /dM exp (—éTrV(M)) . V(z)= %zz _ %M

Local solutions in "Stokes regions™: saddle point
analysis around 1-cut solution

Free energy has perturbative genus expansion at large N

F=logZ~>» F(t)gX¥ ? t=gN
g>0
» Obey a NP finite difference eq: string equation

» Resurgent properties: 2 parameter transseries, instanton action and
coefficients of transseries are functions!

» Double-scaling limit: recover the results for Painlevé |



Quartic matrix model
Quartic MM partition function:

1 1, 1,
Z(N,gs)o</dM exp( gsTrV(M)) , V(z)= 52 24)\2

» Introduce orthogonal polynomials {p,(z)}, with normalisations h,
> Define r, = -, obeying the finite N relation
N
Zni12Zn—
N— n+1<n—1
Zuo J[ o = 2
n=1 n

» Recursion equations of the {p,(z)} lead to NL string equation for the r,:

R() (1 3Rt~ 2) 4 RO+ Rt +8)) =¢. R(ng) =,
where and R(t) is directly related to the free energies

» Comparison with Painlevé I ZuMm < Zp1 : R < u



Quartic matrix model

R(t) has resurgent properties, with transseries solution:

At)
R(t,01,02) Z ofoye” (n=m)= tﬂ"mR(,,|m)(t)

n,m>0

> R(njm)(t) asymptotic expansions

(]

» Instanton action A(t) and coefficients Rg" (t) are functions.

» Large-N phase diagram (first studied in [Bertola '07,Bertola, Tovbis '11]): study the

leading contributions to the exponentials, given by @:

> Stokes lines Im (A (t) /t) = 0: instanton contributions maximally suppressed

> Anti-Stokes lines Re (A (t) /t) = 0: all contributions of same order



Phase Diagram
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> light blue: Stokes regions, standard
't Hooft large N expansion

> |: 1-cut solution is dominant
> |l: 2-cut sym solution dominant

> anti-Stokes region,dominated
by 3-cuts solution, modular
properties; no genus expansion
[Bonnet,David,Eynard '00]

> light red: trivalent tree-like
configuration dominant

> Re line in | and Il: Stokes lines, exponentially suppressed saddles are
maximally suppressed
» P1 (P2): DS point described by Painlevé | (I1) equation

Evidence of different phases?
What local solutions are associated with each phase?
How to obtain analytic data? Global Solutions?



Eigenvalue distribution: numerical evidence

» Calculate and plot the position of zeros of py(z): for large enough N it will
reproduce correct density of eigenvalues

> keep argt €] 7, 7| fixed; changing [t|: eignevalues move in complex z-plane

Stokes region: dominant structure is two-cut
Anti-Stokes region: distributions along 3 cuts of comparable length
Trivalent phase: tree-like configurations

vV vy vVvYy

Organization of eigenvalues is markedly different, but do these lead to
different physical phases?



Sectorial solutions

Painlevé |

Tritronquée

Tronquée

General

Quartic MM

Anti-Stokes

Trivalent
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The anti-Stokes phase: numerical evidence

» Numerically calculate the recursion coefficients r, with
the boundary condition corresponding to 1-cut
configuration

» Take N = 1000 argt = {5 fixed, change |t| from the
1-cut phase into anti-Stokes

1/'/

> r: normalization factor (classical solution g5 = 0)
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(r-r): log of absolute value (ra—r): phase



The anti-Stokes phase: numerical evidence

» Perform optimal truncation to the one-parameter sectors of R (t,071,0):
> perturbative R 0)(t)

» Compare to the numerical results for the r,

0 * . Ol . a by . .
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(ra—r) vs (Rpert—T): log of absolute value (rn=r) vs (Rper—1): phase

The summation of the perturbative expansion leads to very good results
in the Stokes region, but it stops at the anti-Stokes boundary, where the
instanton contributions become of the same order



The anti-Stokes phase: numerical evidence

» Perform optimal truncation to the one-parameter sectors of R (¢, 071, 0):

>

» Compare to the numerical results for the r,

U /.
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(ra—r) vs (Ry_int—T): log of absolute value (ra—r) vs (Rq_inst—T): phase

Adding the first instanton correction to the R (t) has corrected part of the
first oscillation, still very close to the anti-Stokes boundary



The anti-Stokes phase: numerical evidence

» Perform optimal truncation to the one-parameter sectors of R (t,071,0):
> perturbative R )(t) plus n-instantons R, )(t) , for n=1,2,3

» Compare to the numerical results for the r,

P
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(ra=r) vs (Rs_inst—r): log of absolute value (ra=r) vs (R3_inst—T): phase

Adding the first three instanton correction to the R (t), has now produced
a very small difference, we can reach one extra data point: all instanton
contributions are of the same order and need to be included



The anti-Stokes phase

» Evidence that indeed the different phases are physical: they lead to
different asymptotics of the R (t) in different regions

» Still, we cannot yet reach far into the anti-Stokes region

» Can we do better? Perform analytic transseries summation (as in Marcel
Vonk's talk)



Linear analytic transseries summation

> Learn from the example of Painlevé | (Marcel Vonk's talk) and start by
doing linear analytic transseries summation

» Sum the leading terms in g5 in the one-parameter transseries (o2 = 0)
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(ra-r) vs (Riin ats 1-T): log of absolute value

(ra=r) vs (Riin.aTs 1-T): phase

Leading gs linear transseries summation for R (t) shows definite improve-
ment, mostly for the absolute value results.



Linear analytic transseries summation

> Learn from the example of Painlevé | (Marcel Vonk's talk) and start by
doing linear analytic transseries summation
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Leading and subleading g; linear transseries summation for R (t) shows that
we can go further into the anti-Stokes region, but slow improvement.



Can we do better?

» Optimal truncation did not correctly recover the results in the anti-Stokes
phase. The sum over instanton corrections is insufficient as all corrections
are of the same order.

» Linear analytic transseries summation recovered results further into the
anti-Stokes region, but subleading g5 corrections give slow improvement

» Can we do better? From Marcel Vonk's talk, we should perform quadratic
analytic transseries summation or the partition function



Quadratic analytic transseries summation

» Perform quadratic analytic transseries summation for the one-parameter
partition function

> Sum the (n—th instanton sector starts at
order gs”z)

» Determine the R (t) from these results
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Leading g5 quadratic transseries summation for Z (t) follows the numerical
results far into the anti-Stokes region!



Zeroes of the partition function

Use the quadratic analytic transseries summation to predict Lee-Yang zeros?

> Left: prediction of zeros of Z (t) obtained from ...
quadratic analytic transseries summation with
N = 10 eigenvalues

» Down: numerical calculation of zeros from direct
calculation of the matrix integral (N = 100). The
grayscale is proportional to number of zeros o
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Leading gs quadratic transseries summation for Z (t) predicts analytic re-
sults deep into the anti-Stokes region!



Summary

Global solutions of Painlevé |

» "Glue” the sectorial solutions with Stokes transitions
> Use resonance to determine geometric relations constraining Stokes data

Asymptotic large-N analysis of quartic matrix model

» Study of different asymptotics across the complex 't Hooft coupling

» Summation of local solutions: optimal truncation, linear and quadratic
analytic transseries summation

> Lee-Yang zeros prediction in the anti-Stokes region



Current work

Stokes phenomena in Painlevé I
» Full geometric structure of Stokes data
> Determining the residual Stokes data analytically

» Modular properties of the analytic transseries summation

Stokes phenomena in quartic matrix model:
> Stokes transitions connecting local results from different regions

» Trivalent phase: full 2-parameter transseries solutions



Future applications

» Our analysis only needed the weak coupling expansions for the transseries.

» Using analytic transseries summation we can recover results everywhere in
the 't Hooft complex plane, for arbitrarily large coupling.

» The methods we used are generic, and could be applied to more complex
systems

> e.g. HAE: the transseries for topological strings in particular backgrounds is
already known[Couso-Santamaria et al '14,15,16], which can be matched to
non-perturbative definitions of string theory [Couso-Santamaria,Marifio,Schiappa
'16][Codesido,Marifio,Schiappa].



Thank you!
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