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This presentation is based in work in progress (to appear), from an on-going
collaboration with Ricardo Schiappa and Marcel Vonk

It directly links to the results just presented by Marcel Vonk.

Goal: get a full understanding of the physics and mathematics encoded in
resurgent asymptotic (trans)series.
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1. Motivation



Painlevé I, 2d Gravity and Matrix models

I Matrix models:

I NP description of string theory in simpler backgrounds: non-critical strings
and Dijkgraaf-Vafa type topological strings[Dijkgraaf,Vafa ’02]

I Simper models for studying NP structure behind large N ’t Hooft expansions

I Can help us understand large-N duality

I 2d quantum gravity is obtained by taking a double scaling limit: large N
and small coupling gs [Douglas,Shenker ’90][Brézin,Kazakov ’90][Gross,Migdal ’90]

I Free energy of 2d gravity related to the Painlevé I NLODE

I u (z) = −F ′′(z) where z−5/4 ∼ gs .

I Study Painlevé I: simpler model, but already showing major features from
string theory

I Asymptotic series with (2g)! growth ⇒ g 2
s expansion



Global vs local

What we have seen so far (from Marcel Vonk’s talk):

I Transseries as the most general formal solution of the Painlevé I equation

I Analysed sectorial solutions within Stokes wedges, with different asymptotic
behaviour, generally dependent on two parameters

I Boundary data determines fully a particular sectorial solution

I Use analytic transseries summation to obtain analytic data:
Lee-Yang zeros within these sectors

Our present goal:

I How to construct a global solution, i.e., how to ”glue” the different sectors?

I How to generalise these results beyond Painlevé I, i.e. off-criticality in the
context of matrix models?



Next

2. Global solutions of Painlevé I



Review: general solution for Painlevé I

Use a 2-parameter transseries: [Garoufalidis,Its,Kapaev,Mariño ’10] [IA,Schiappa,Vonk ’11]

u(x ;σ1, σ2) = x−
2
5

+∞∑
n=0

+∞∑
m=0

Lnm (x ;σ1, σ2)σn
1σ

m
2 e−

(n−m)A
x xβnm Φ(n|m)(x)

I Two instanton actions A = ±8
√

3/5: evidence of resonance, many sectors
with same exponential grading

I x = z−5/4 ∼ gs is open string coupling; σi are boundary data

I Asymptotic series: Φ(n|n)(x) have a topological genus expansion (g2
s ),

Φ(n|m), n 6= m have expansions in gs : evidence of resonance

I Logarithmic sectors (from resonance) not independent, to be summed away:

Lnm (x ;σ1, σ2) =
+∞∑
k=0

1

k!

(
2√
3

(m − n)σ1σ2 log x

)k



From local to global: Painlevé I

0 parameter 1 parameter 2 parameter

Painlevé I

Tritronquée Tronquée General

Quartic MM ? ? ?

I Sectorial solutions in Painlevé I (from Marcel Vonk’s talk):

I Specified by boundary data σi

I Analytic transseries summation ⇒ analytical data: Lee-Yang zeros

I Global solutions: ”glue” different sectors together

I Stokes transitions and resonance



Stokes transitions

u(x ,σ) =
∑
n∈N2

0

σne−n·A/xΦn(x), A ≡ (A,−A), σn ≡ σn
1σ

m
2

I Specific boundary data σ fully defines a sectorial solution, valid on a Stokes
wedge. Different σ lead to different solutions and asymptotics.

I Global solution will have different asymptotic properties in different sectors,
or Stokes wedges.

I Thus Stokes phenomena occurring at Stokes lines translates to changes
in the σ: it propagates the boundary data from one wedge to another.

I These changes are encoded in the Stokes transitions, and depend
generically on a infinite set of Stokes data.



Stokes transitions

u(x ,σ) =
∑
n∈N2

0

σne−n·A/xΦn(x), A ≡ (A,−A), σn ≡ σn
1σ

m
2

I Stokes lines in Painlevé I at arg x = 0, π (dictated by the instanton actions)

I How does Stokes transition at arg x = 0 look like? Take σ2 = 0

σ1 → σ1 + S1 ; σ2 = 0.

S1 = −i 31/4

2
√
π

is the well known Stokes constant of Painlevé I

I A general Stokes transitions looks like:

σ1 → S1 (σ1, σ2) ; σ2 → S2 (σ1, σ2)

where Si depend on the original boundary data and a collection of problem
specific numbers: Stokes data

Stokes transitions for the full two-parameter solution are completely
determined by the collection of Stokes data.



Stokes transitions

u(x ,σ) =
∑
n∈N2

0

σne−n·A/xΦn(x)

I Resurgent relations between sectors give rise to
contributions to Stokes transitions

I These contributions are dictated by Stokes data

I Stokes data organises into vectors S`,
parametrized by vectors ` in a Z2 (semi-)lattice

I Stokes data is fundamental to each problem, but
usually only accessible numerically

I Are they all independent in Painlevé I? No! Resonance



Example: contributions from Φ(3,2) to Stokes transitions

I All contributions: fundamental (weighed by S`), plus iterations



Stokes transitions, Borel singularities and resonance

I Borel plane: singularities in Stokes directions are given by ` · A ∈ C
I Contributions to Stokes transitions will collapse on different Stokes

directions via the projection into Borel plane P : `→ ` · A

Z2y
Borel plane C

P :

`y
` · A A1 2A1 3A1A22A23A2

.... ....

e1e2

2e1

3e12e2

3e2

e1

e2

= (1,0)
= (0,1)

I Generally A = (A1,A2): each lattice point falls on a unique singularity

I Resonance: A = (A,−A): different lattice points go into same singularity



Resonance

Non-resonant Φ(3,2)

P :

` ∈ Z2y
` · A ∈ C

Resonant Φ(3,2)

I Non-resonant case: different lattice points ` lead to different ` · A
I Resonant case: lattice points `′ : `′ − ` ∈ kerP contribute to same ` · A
I This results in many geometric relations constraining Stokes data. We

have a residual set of independent numbers.



The Stokes vectors of Painlevé I

Residual unconstrained data: N0,N1, · · · ,Nk , · · ·

E.g. S(−2,−1) =
(
i
8
N−3

0 − 1
2
N−2

0 N1 − iN2

)
(−2, 3)



The Stokes vectors of Painlevé I

Resonance



The Stokes vectors of Painlevé I

Resonance Pattern



The Stokes vectors of Painlevé I

Resonance Pattern Conjugation+shift



The Stokes vectors of Painlevé I

The geometric relations translate into knowledge of all Stokes data!
Starting data Nk , k ∈ N0

=⇒ construct global solutions of Painlevé I
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3. Off-criticality: large N asymptotic
analysis of quartic matrix model



From local to global: off-criticality

I Analyse the large N asymptotic expansions of matrix model observables
using transseries, resurgence analysis and summation

I Start with the local formal transseries solutions for large N free energies of
the quartic MM, determined in ”Stokes regions”: the 1-cut [Mariño

’08][IA,Schiappa,Vonk ’11] and 2-cut [Schiappa,Vaz ’13] backgrounds

I In [Couso-Santamaŕıa,Schiappa,Vaz ’15]: used Borel-Padé-Écalle summation of
transseries to obtain finite N results

We want to understand the large-N physics and corresponding
string dualities.

I Large-N structure:

I construct full phase diagram of matrix model;

I recover analytic data from analytic transseries summation;

I connect different sectorial solutions with Stokes transitions



Quartic matrix model
Quartic model partition function (N × N matrix M)

Z(N, gs) ∝
ˆ

dM exp

(
− 1

gs
TrV (M)

)
, V (z) =

1

2
z2 − 1

24
λz4

Local solutions in ”Stokes regions”: saddle point
analysis around 1-cut solution

Free energy has perturbative genus expansion at large N

F ≡ logZ '
∑
g≥0

Fg (t) g 2g−2
s , t = gsN

I Obey a NP finite difference eq: string equation

I Resurgent properties: 2 parameter transseries, instanton action and
coefficients of transseries are functions!

I Double-scaling limit: recover the results for Painlevé I



Quartic matrix model
Quartic MM partition function:

Z(N, gs) ∝
ˆ

dM exp

(
− 1

gs
TrV (M)

)
, V (z) =

1

2
z2 − 1

24
λz4

I Introduce orthogonal polynomials {pn(z)}, with normalisations hn

I Define rn = hn
hn−1

, obeying the finite N relation

ZN ∝
N∏

n=1

rN−nn , rn =
Zn+1Zn−1

Z2
n

I Recursion equations of the {pn(z)} lead to NL string equation for the rn:

R(t)

(
1− λ

6
(R(t − gs) +R(t) +R(t + gs))

)
= t , R(n gs) = rn

where and R(t) is directly related to the free energies

I Comparison with Painlevé I: ZMM ↔ ZPI ; R ↔ u



Quartic matrix model

R(t) has resurgent properties, with transseries solution:

R(t, σ1, σ2) =
∑

n,m≥0

σn
1σ

m
2 e−N (n−m) A(t)

t tβnmR(n|m)(t)

I R(n|m)(t) asymptotic expansions

I Instanton action A(t) and coefficients R
(n|m)
g (t) are functions.

I Large-N phase diagram (first studied in [Bertola ’07,Bertola,Tovbis ’11]): study the

leading contributions to the exponentials, given by A(t)
t :

I Stokes lines Im (A (t) /t) = 0: instanton contributions maximally suppressed

I Anti-Stokes lines Re (A (t) /t) = 0: all contributions of same order



Phase Diagram

t I light blue: Stokes regions, standard
’t Hooft large N expansion

I I: 1-cut solution is dominant
I II: 2-cut sym solution dominant

I green: anti-Stokes region,dominated
by 3-cuts solution, modular
properties; no genus expansion
[Bonnet,David,Eynard ’00]

I light red: trivalent tree-like
configuration dominant

I Re line in I and II: Stokes lines, exponentially suppressed saddles are
maximally suppressed

I P1 (P2): DS point described by Painlevé I (II) equation

Evidence of different phases?
What local solutions are associated with each phase?

How to obtain analytic data? Global Solutions?



Eigenvalue distribution: numerical evidence

I Calculate and plot the position of zeros of pN(z): for large enough N it will
reproduce correct density of eigenvalues

I keep arg t ∈]π2 , π[ fixed; changing |t|: eignevalues move in complex z-plane

I Stokes region: dominant structure is two-cut

I Anti-Stokes region: distributions along 3 cuts of comparable length

I Trivalent phase: tree-like configurations

I Organization of eigenvalues is markedly different, but do these lead to
different physical phases?



Sectorial solutions

0 parameter 1 parameter 2 parameter

Painlevé I

Tritronquée Tronquée General

Quartic MM

Stokes (1 and 2 cuts)

III

Anti-Stokes

III

Trivalent

III



The anti-Stokes phase: numerical evidence

I Numerically calculate the recursion coefficients rn with
the boundary condition corresponding to 1-cut
configuration

I Take N = 1000 arg t = π
12 fixed, change |t| from the

1-cut phase into anti-Stokes

I r : normalization factor (classical solution gs = 0)



The anti-Stokes phase: numerical evidence

I Perform optimal truncation to the one-parameter sectors of R (t, σ1, 0):

I perturbative R(0,0)(t)

I Compare to the numerical results for the rn

The summation of the perturbative expansion leads to very good results
in the Stokes region, but it stops at the anti-Stokes boundary, where the
instanton contributions become of the same order



The anti-Stokes phase: numerical evidence

I Perform optimal truncation to the one-parameter sectors of R (t, σ1, 0):

I perturbative R(0,0)(t) plus 1-instanton R(1,0)(t)

I Compare to the numerical results for the rn

Adding the first instanton correction to the R (t) has corrected part of the
first oscillation, still very close to the anti-Stokes boundary



The anti-Stokes phase: numerical evidence

I Perform optimal truncation to the one-parameter sectors of R (t, σ1, 0):

I perturbative R(0,0)(t) plus n-instantons R(n,0)(t) , for n = 1, 2, 3

I Compare to the numerical results for the rn

Adding the first three instanton correction to the R (t), has now produced
a very small difference, we can reach one extra data point: all instanton
contributions are of the same order and need to be included



The anti-Stokes phase

I Evidence that indeed the different phases are physical: they lead to
different asymptotics of the R (t) in different regions

I Still, we cannot yet reach far into the anti-Stokes region

I Can we do better? Perform analytic transseries summation (as in Marcel
Vonk’s talk)



Linear analytic transseries summation

I Learn from the example of Painlevé I (Marcel Vonk’s talk) and start by
doing linear analytic transseries summation

I Sum the leading terms in gs in the one-parameter transseries (σ2 = 0)

Leading gs linear transseries summation for R (t) shows definite improve-
ment, mostly for the absolute value results.



Linear analytic transseries summation

I Learn from the example of Painlevé I (Marcel Vonk’s talk) and start by
doing linear analytic transseries summation

I Leading and subleading terms in gs in the one-parameter transseries

Leading and subleading gs linear transseries summation for R (t) shows that
we can go further into the anti-Stokes region, but slow improvement.



Can we do better?

I Optimal truncation did not correctly recover the results in the anti-Stokes
phase. The sum over instanton corrections is insufficient as all corrections
are of the same order.

I Linear analytic transseries summation recovered results further into the
anti-Stokes region, but subleading gs corrections give slow improvement

I Can we do better? From Marcel Vonk’s talk, we should perform quadratic
analytic transseries summation or the partition function



Quadratic analytic transseries summation

I Perform quadratic analytic transseries summation for the one-parameter
partition function

I Sum the leading terms in gs for Z (t) (n−th instanton sector starts at

order gn2

s )

I Determine the R (t) from these results

Leading gs quadratic transseries summation for Z (t) follows the numerical
results far into the anti-Stokes region!



Zeroes of the partition function

Use the quadratic analytic transseries summation to predict Lee-Yang zeros?

I Left: prediction of zeros of Z (t) obtained from
quadratic analytic transseries summation with
N = 10 eigenvalues

I Down: numerical calculation of zeros from direct
calculation of the matrix integral (N = 100). The
grayscale is proportional to number of zeros

Leading gs quadratic transseries summation for Z (t) predicts analytic re-
sults deep into the anti-Stokes region!



Summary

Global solutions of Painlevé I

I ”Glue” the sectorial solutions with Stokes transitions

I Use resonance to determine geometric relations constraining Stokes data

Asymptotic large-N analysis of quartic matrix model

I Study of different asymptotics across the complex ’t Hooft coupling

I Summation of local solutions: optimal truncation, linear and quadratic
analytic transseries summation

I Lee-Yang zeros prediction in the anti-Stokes region



Current work

Stokes phenomena in Painlevé I:

I Full geometric structure of Stokes data

I Determining the residual Stokes data analytically

I Modular properties of the analytic transseries summation

Stokes phenomena in quartic matrix model:

I Stokes transitions connecting local results from different regions

I Trivalent phase: full 2-parameter transseries solutions



Future applications

I Our analysis only needed the weak coupling expansions for the transseries.

I Using analytic transseries summation we can recover results everywhere in
the ’t Hooft complex plane, for arbitrarily large coupling.

I The methods we used are generic, and could be applied to more complex
systems

I e.g. HAE: the transseries for topological strings in particular backgrounds is
already known[Couso-Santamaŕıa et al ’14,15,16], which can be matched to
non-perturbative definitions of string theory [Couso-Santamaŕıa,Mariño,Schiappa

’16][Codesido,Mariño,Schiappa].



Thank you!
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