Generalized Thimble Method 2: The Return of the Thimbles

Paulo Bedaque University of Maryland

A. Alexandru, G. Basar, S. Lawrence, H. Lamm, G. Ridgway, N. Warrington

Central idea: deform the contour into the complex plane:

Cristoforetti, DiRenzo, Scorzato, '12

 S_R under the flow

1) homology class preserved by the flow

The algorithm

 \mathbb{C}^{N}

this is the expensive part

The algorithm

our algorithm

Metropolis in the real space, action S_{eff} and reweighted phase $e^{i \operatorname{Im}(\ln J) - i \operatorname{Im}(S)}$

Application: Real Time Dynamics

Viscosities, conductivities, ... require:

$$\langle \phi(t)\phi(t')\rangle_{\beta} = \frac{1}{Z} \operatorname{Tr}(e^{-\beta H}\phi(t)\phi(t')) = \frac{1}{Z} \int D\phi \ e^{iS_{c}[\phi]}\phi(t)\phi(t')$$

$$-i\beta \int_{\mathsf{Tmax}} \mathsf{Tmax}$$

Schwinger-Keldysh
contour
(works also out of equilibrium)

Real Time: The Mother of All Sign Problems

Problems

- tangent space in wrong homology class
 large flow needed (from R^N)
- jacobian expensive (no known estimator)anisotropic proposals

"Grady algorithm" for the jacobian (Grady '85, Creutz '92)

$$J\eta = \tilde{\eta} \quad \tilde{\eta}_{\parallel} = JRe(\eta)$$

isotropic proposalno need to compute det(J)

1+1D ϕ^4 : $n_t=10, n_x=10, n_\beta=2, \lambda=0.1$

weak coupling

 $p=2\pi/L$

p=0

1+1D ϕ^4 : $n_t=10, n_x=10, n_\beta=2, \lambda=0.1$

weak coupling

р=0

 $p=2\pi/L$

___ t 2∎0

1+1D ϕ^4 : n_t=10, n_x=10, n_{\beta}=2, λ =0.1

weak coupling

1+1D ϕ^4 : $n_t=10, n_x=10, n_\beta=2, \lambda=1.0$

strong coupling

 $p=2\pi/L$

1+1D ϕ^4 : $n_t=10, n_x=10, n_\beta=2, \lambda=1.0$

strong coupling

 $p=2\pi/L$

1+1D ϕ^4 : $n_t=10, n_x=10, n_\beta=2, \lambda=1.0$

strong coupling

 $p=2\pi/L$

Application: Real Time Dynamics

- Currently limited to small times : t < 5/T
- Cost increases sharply with t
- There has to be a catch:
 simulation of a quantum computer performing the Schor algorithm

 nonsense
 classical O(log²N) time factorization

 \mathcal{L}_T =(rough?) interpolation of points of \mathcal{M}_T

Bypassing the flow: machine learning feed-forward neural net (supervised training)

Bypassing the flow: machine learning feed-forward neural net (supervised training)

flowed configurations >> training >> sampling

isolated modes: trapping

between manifolds:

Bypassing the flow: machine learning Wilson, 20 x10 lattice, N_F=2, am_f=0.3

Why stop there: let the network find a manifold with a "good" sign

- It finds the shift to tangent plane in the 1st minute; then it finds a better "renormalized tangent plane"
- It doesn't get terribly better fast

Why stop there: let the network find a manifold with a "good" sign

•It finds the shift to tangent plane in the 1st minute; then it finds a better "renormalized" thimble

•It doesn't get terribly better fast

To take home:

- Deforming the integration on complex space is a good thing
- Thimbles are just one possibility
- Jacobians are expensive: estimators, "Grady-style" algorithm, ansatze, alternative flows, machine learned manifolds, ...