Generalized Thimble Method 2: The Return of the Thimbles

Paulo Bedaque
University of Maryland

A. Alexandru, G. Basar, S. Lawrence,
H. Lamm, G. Ridgway, N. Warrington

Central idea: deform the contour into the complex plane:

Cristoforetti, DiRenzo, Scorzato, '12

How to find good deformations ?

new integration manifold

(real) field space

$$
\frac{d \phi_{i}}{d t}=\overline{\frac{\partial S}{\partial \phi_{i}}} \Rightarrow
$$

$$
\begin{aligned}
& \frac{d \phi_{i}^{R}}{d t}=\frac{\partial S^{R}}{\partial \phi_{i}^{R}}=\frac{\partial S^{I}}{\partial \phi_{i}^{I}} \\
& \frac{d \phi_{i}^{I}}{d t}=\frac{\partial S^{R}}{\partial \phi_{i}^{I}}=-\frac{\partial S^{I}}{\partial \phi_{i}^{R}}
\end{aligned}
$$

hamiltonian
flow of SI, keeps integral keeps phase fixed well defined

How to find good deformations?

S_{R} under the flow

How to find good deformations ?

1) homology class preserved by the flow

How to find good deformations?

S_{R} grows under the flow

How to find good deformations?

S_{R} grows under the flow
SI stays constant

How to find good deformations?

2) sign fluctuations are reduced

The algorithm

The algorithm

$$
\begin{aligned}
&\langle\mathcal{O}\rangle=\frac{\int d \phi_{i} \mathcal{O} e^{-S_{R}-i S_{I}}}{\int d \phi_{i} e^{-S_{R}-i S_{I}}}=\frac{\int d \tilde{\phi}_{i} \operatorname{det}\left(\frac{\partial \phi_{i}}{\partial \tilde{\phi}_{i}}\right)}{J} \mathcal{O} e^{-S_{R}-i S_{I}} \\
& \int d \tilde{\phi}_{i} \operatorname{det}\left(\frac{\partial \phi_{i}}{\partial \tilde{\phi}_{i}}\right) e^{-S_{R}-i S_{I}} \\
&=\frac{\int d \tilde{\phi}_{i} \mathcal{O} e^{-i S_{I}+i \operatorname{Im} J} e^{-} \overbrace{\left(S_{R}-\operatorname{Re} J\right)}^{S_{e f f}}}{\int d \tilde{\phi}_{i} e^{-i S_{I}+i \operatorname{Im} J} e^{-\left(S_{R}-\operatorname{Re} J\right)}}=\frac{\left\langle\mathcal{O} e^{-i S_{I}+i \operatorname{Im} J}\right\rangle_{S_{e f f}}}{\left\langle e^{-i S_{I}+i \operatorname{Im} J}\right\rangle_{S_{e f f}}}
\end{aligned}
$$

our algorithm

$$
=
$$

Metropolis in the real space, action $S_{\text {eff }}$ and reweighted phase $\mathrm{e}^{\mathrm{i} \operatorname{Im}(\ln) \text {)-i } \operatorname{Im}(S)}$

Application: Real Time Dynamics

Viscosities, conductivities, ... require:

$$
\left\langle\phi(t) \phi\left(t^{\prime}\right)\right\rangle_{\beta}=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta H} \phi(t) \phi\left(t^{\prime}\right)\right)=\frac{1}{Z} \int D \phi e^{i S_{c}[\phi]} \phi(t) \phi\left(t^{\prime}\right)
$$

Real Time: The Mother of All Sign Problems

field at a point in the real axis does not contribute to the damping factor in $\mathrm{e}^{\mathrm{iSc}}$

$$
\left\langle e^{i \operatorname{Im}\left(i S_{c}\right)}\right\rangle=0
$$

Problems

-tangent space in wrong homology class - large flow needed (from R${ }^{\mathrm{N}}$)
-jacobian expensive (no known estimator) - anisotropic proposals
"Grady algorithm" for the jacobian (Grady '85, Creutz '92)

$$
J \eta=\tilde{\eta} \quad \tilde{\eta}_{\|}=J \operatorname{Re}(\eta)
$$

- isotropic proposal
-no need to compute $\operatorname{det}(\mathrm{J})$

$1+1$ D $\varphi^{4}: n_{t}=10, n_{x}=10, n_{\beta}=2, \lambda=0.1$

weak coupling

$\mathrm{p}=2 \pi / \mathrm{L}$

$1+1$ D $\varphi^{4}: n_{t}=10, n_{x}=10, n_{\beta}=2, \lambda=0.1$

weak coupling

$\mathrm{p}=0$

$p=2 \pi / L$

$1+1$ D $\varphi^{4}: n_{t}=10, n_{x}=10, n_{\beta}=2, \lambda=0.1$

weak coupling

$\mathrm{p}=0$

$$
\mathrm{p}=2 \pi / \mathrm{L}
$$

$1+1 \mathrm{D} \varphi^{4}: \mathrm{n}_{\mathrm{t}}=10, \mathrm{n}_{\mathrm{x}}=10, \mathrm{n}_{\beta}=2, \lambda=1.0$

strong coupling

$$
\mathrm{p}=2 \pi / \mathrm{L}
$$

$1+1 \mathrm{D} \varphi^{4}: \mathrm{n}_{\mathrm{t}}=10, \mathrm{n}_{\mathrm{x}}=10, \mathrm{n}_{\beta}=2, \lambda=1.0$

strong coupling

$$
\mathrm{p}=2 \pi / \mathrm{L}
$$

$1+1 \mathrm{D} \varphi^{4}: \mathrm{n}_{\mathrm{t}}=10, \mathrm{n}_{\mathrm{x}}=10, \mathrm{n}_{\beta}=2, \lambda=1.0$

strong coupling

$\mathrm{p}=0$

$\mathrm{p}=2 \pi / \mathrm{L}$

Application: Real Time Dynamics

- Currently limited to small times : $t<5 / T$
- Cost increases sharply with t
- There has to be a catch:
simulation of a quantum computer performing the Schor algorithm
$=$ nonsense
classical $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$ time factorization

Bypassing the flow: machine learning

Bypassing the flow: machine learning

Bypassing the flow: machine learning

$\mathscr{L}_{T}=($ rough? $)$ interpolation of points of m_{T}

Bypassing the flow: machine learning

 feed-forward neural net (supervised training)inputs:

$\operatorname{Re} A_{\mu}(x)$

Bypassing the flow: machine learning

Bypassing the flow: machine learning

feed-forward neural net

 (supervised training)
flowed configurations \gg training \gg sampling

Bypassing the flow: machine learning

isolated modes: trapping

Bypassing the flow: machine learning

continuous map between manifolds:

$$
\phi=\tilde{\phi}_{R}+t \phi_{I}
$$

Bypassing the flow: machine learning

 Wilson, 20×10 lattice, $\mathrm{N}_{\mathrm{F}}=2$, $\mathrm{am}_{\mathrm{f}}=0.3$

Why stop there: let the network find a manifold with a "good" sign

- It finds the shift to tangent plane in the 1 st minute; then it finds a better "renormalized tangent plane"
- It doesn't get terribly better fast

Why stop there: let the network find a manifold with a "good" sign

-It finds the shift to tangent plane in the 1 st minute; then it finds a better "renormalized" thimble
-It doesn't get terribly better fast

To take home:

- Deforming the integration on complex space is a good thing
- Thimbles are just one possibility
- Jacobians are expensive: estimators, "Grady-style" algorithm, ansatze, alternative flows, machine learned manifolds, ...

