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The idea of PT-symmetric quantum theory: 
 
 
 
Replace the mathematical condition of Hermiticity by the 

weaker and physical condition of PT symmetry, where  
               P = parity,   T = time reversal 
 
 
 
(Physical because P and T are elements of the Lorentz group.) 



A class of PT-symmetric Hamiltonians: 

CMB and S. Boettcher 
Physical Review Letters 80, 5243 (1998) 

Look! The energies are 
real, positive, and 
discrete for ε > 0 (!!) 

P: x ! -x,  p ! -p 
 
T: x ! x,  p !-p,  i ! -i 



These Hamiltonians 
have PT symmetry! 

Examples of PT-symmetric Hamiltonians 

An upside-down potential with 
real positive eigenvalues! 

cubic:  ε = 1 

quartic:  ε = 2 



Proof  of real eigenvalues: 
 
“ODE/IM Correspondence” 
P. Dorey, C. Dunning, and R. Tateo, 
J. Phys. A 40, R205 (2007) 



 

PT symmetry controls instabilities 
 
Physical systems that you might think are 
unstable become stable in the complex domain… 



Upside-down potential with 
real positive eigenvalues?! 

Z. Ahmed, CMB, and M. V. Berry, 
J. Phys. A: Math. Gen. 38, L627 (2005)  
[arXiv: quant-ph/0508117] 
 
 
CMB, D. C. Brody, J.-H. Chen, H. F. Jones, 
K. A. Milton, and M. C. Ogilvie, 
Phys. Rev. D 74, 025016 (2006) 
[arXiv: hep-th/0605066] 



Stability of the Higgs vacuum: 
 
“PT-symmetric interpretation of unstable effective potentials” 
CMB, D. W. Hook, N. E. Mavromatos, and S. Sarkar  
Journal of Physics A 49, 45LT01 (2016)  [arXiv: hep-th/1506.01970]  
 

Stability of the double-scaling limit in QM and QFT: 
 
“PT-symmetric Interpretation of double-scaling” 
CMB, M. Moshe, and S. Sarkar  
Journal of Physics A 46, 102002 (2013)  [arXiv: hep-th/1206.4943]  
 
“Double-scaling limit of the O(N)-symmetric anharmonic oscillator” 
CMB and S. Sarkar  
Journal of Physics A 46, 442001 (2013)  [arXiv: hep-th/1307.4348]  
 

Liouville quantum field theory: 
 
“Infinite class of PT-symmetric theories from one timelike Liouville Lagrangian’’ 
CMB, D. H. Hook, N. E. Mavromatos, and S. Sarkar 
Physical Review Letters 113, 231605 (2014)  [arXiv: hep-th/1408.2432] 



Instabilities associated 
with nonlinear 
eigenvalue problems... 
 
CMB, A. Fring, Q. Wang, and J. Komijani 



Linear eigenvalue problems... 



For linear problems WKB gives a good 
approximation for large eigenvalues 

Example 2: anharmonic oscillator 

Example 1: harmonic oscillator 

nth energy level grows 
like a constant times a 
power of n 



WKB works for PT-symmetric Hamiltonians as well: 



Asymptotics beyond all orders 
Leading asymptotic behavior of solutions to 
 
 
for large positive x: 

NOTE: There is only ONE arbitrary constant. 
 
Second arbitrary constant is invisible with Poincaré asymptotics 
because it is contained in the subdominant solution: 
 
 
 
Physical solution is Unstable under small changes in E. 



Eigenfunctions: 3 characteristic properties 

(1) Oscillatory in classically allowed region (nth  
      eigenfunction has n nodes) 
 
(2) Monotone decay in classically forbidden region 
 
(3) Transition at the boundary (turning point) 



Toy nonlinear eigenvalue problem 

Some references: 



Solutions for 50 initial conditions 
   Note: (1) oscillation    (2) monotone decay    (3) transition 



Asymptotic behavior for large x 

Solution behaves like: 

m = 0, 1, 2, 3, ... is an integer 



There’s a big problem here... 

m = 2 
m = 4 
m = 6 
m = 8 

m = 0 

m = 10 

Where are the odd-m solutions?!?  



Furthermore, no arbitrary constant appears 
in the asymptotic behavior!! 



Where is the arbitrary constant?!? 

Is it in higher order? 



Higher-order asymptotic behavior for large x 
still contains no arbitrary constant! 



Asymptotics beyond all orders 

Aha! K is the invisible arbitrary constant! 
Odd-m solutions are unstable;  
even-m solutions are stable. 

Difference of two solutions in one bundle: 



m = 9 

m = 5 

m = 1 

m = 7 

m = 3 

Eigenvalues correspond to odd-m initial values.  
Eigenfunctions are (unstable) separatrices, which 
begin at eigenvalues. 



We calculated up to m=500,001 

For large n the nth eigenvalue grows like the square root 
of n times a constant A, and we used Richardson  
extrapolation to show that 
           
                A= 1.7817974363... 
 
and then we guessed A. 

Let 



Result: 

This is a rather nontrivial problem... 



Analytic calculation of the constant A 
Construct moments of z(t): 

Moments are associated with a semi-infinite 
linear one-dimensional random walk in which 
random walkers become static as they reach n=1  

CMB, A. Fring, and J. Komijani 
J. Phys. A: Math. Theor. 47, 235204 (2014) 
[arXiv: math-ph/1401.6161] 

Solve the random walk problem exactly and get 



Possible connection with 
the power series constant P??? 

W. K. Hayman, Research Problems in Function theory 
 [Athlone Press (University of London), London, 1967] 

(Remember the numerical constant A = 1.7818) 



Three nontrivial second-order 
nonlinear eigenvalue problems 

separatrix 



 
Painlevé equations 

 

Paul Painlevé  
(1863-1933) 

Six Painlevé equations known as Painlevé I – VI 
 
Only spontaneous singularities are poles  



Painlevé I 
 
Painlevé II 
 
Painlevé III 
 
Painlevé IV 
 
 
Painlevé V 
 
 
 
Painlevé VI 
 
 



Solution y(x) must choose between two possible 
asymptotic behaviors as x gets large and negative: 

(1) First Painlevé transcendent 



Example of a difficult choice ... 



Two possible asymptotic behaviors 

Lower square-root branch is stable: 

Upper square-root branch is unstable: 



Two possible kinds of solutions (NOT eigenfunctions): 

Stable branch 

Unstable branch 

Unstable branch 

Stable branch 



Stable 

Unstable 

Unstable 

Stable 

First four separatrix (eigenfunction) solutions: 

Initial slope is the eigenvalue, initial value y(0) = 0 



Tenth and eleventh separatrix (eigenfunction) solutions:  

Initial slope is the eigenvalue, initial value y(0) = 0 



First four separatrix solutions with 0 initial slope: 



Numerical calculation of eigenvalues 
(nonlinear semiclassical large-n limit) 



    Analytical asymptotic calculation of eigenvalues 



Obtained by using WKB to calculate the large eigenvalues of the 

cubic PT-symmetric Hamiltonian 

(Do you remember 
the cubic PT-symmetric  
Hamiltonian?!) 

Painlevé I corresponds to ε = 1 



    Analytical asymptotic calculation of eigenvalues 

Multiply Painlevé I equation by  y’(t); 
Then integrate from t = 0 to t = x: 
 
 
      
          where  
 
Take |x| large at an angle of π/4, I(x) ! 0, and we get the 
PT-symmetric Hamiltonian for ε = 1. 

D. Masoero noted connections between 
Painlevé I  and   





(2) Second Painlevé transcendent 

Now, both solutions 
 
 
 
are unstable and  0  is stable. 



Unstable 

Unstable 

Unstable 

Unstable 

Stable 

Stable 

Two types of solutions (not eigenfunctions): 



First four separatrix solutions with y(0)=0: 



20th and 21st separatrix solutions: 



Unstable 

Unstable 

First four separatrices with vanishing initial slope y’(0)=0: 



13th and 14th separatrices: 



Numerical calculation of eigenvalues 

CMB and J. Komijani 
J. Physics A: Math. Theor. 48, 475202 (2015)  



             Analytical calculation of eigenvalues 



Obtained by using WKB to calculate the large eigenvalues of the 

quartic PT-symmetric Hamiltonian 

(Do you remember the 
quartic upside-down 
PT-symmetric 
Hamiltonian?!) 

Painlevé II corresponds to ε = 2 



(3) Fourth Painlevé transcendent 



Two possible kinds of solutions (NOT eigenfunctions): 

Stable branch 

Unstable branch 

Unstable branch 

Stable branch 



Stable 

Unstable 

Unstable 

Stable 

First four separatrix (eigenfunction) solutions [ y(0)=1 ]: 



Tenth and eleventh separatrix (eigenfunction) solutions:  

Slope is the eigenvalue, initial value y(0) = 1 



Stable 

Unstable 

Unstable 

Stable 

First four separatrix (eigenfunction) solutions [ y’(0)=0 ]: 



Tenth and eleventh separatrix (eigenfunction) solutions:  

y(0) is the eigenvalue, initial slope is 0 



Large n behaviour of eigenvalues: 

Numerical results using Richardson extrapolation: 

Analytic results using  

Obtained by using WKB to calculate the large eigenvalues of the 

sextic PT-symmetric Hamiltonian 



Note: 
 
 
Painlevé I, II, and IV 
correspond to ε = 1, 2, and 4 



This analysis extends to huge classes of 
equations beyond Painlevé. For example: 

Super Painlevé: 
 
 











Hyperfine splitting 

The new hyperfine solutions initially follow                . 
 
Then they deviate from              and oscillate m times about the curve                   . 
 
Finally, they level off for large x as    



The initial values of      are the hyperfine eigenvalues. 
 
For example, for the lowest eigenfunction 
 
 
 
 
The hyperfine oscillation separates at the negative values 



We hope we have opened a window 
to a new area of nonlinear 

semiclassical asymptotic analysis 

Thanks for listening! 


