
Transseries

Transseries –viz. multi-instanton expansions, occur in singularly perturbed
equations in mathematics and physics as combinations of formal power series
and small exponentials. In normalized form, the simplest nontrivial transseries
is

∞∑
k=0

e−kxΦk(x); Φk =
∞∑
j=0

ckj
x j

(1)

(xkβ log x je−kx , more generally) where the ckj grow factorially in j.

In physics Φ0 is known as the perturbative series, e−kxΦk are the nonperturba-
tive terms and Φk are the fluctuations in the various instanton sectors.

In mathematics, Φ0 is the asymptotic expansion and the Φk are the higher
series in the transseries; e−x , 1/x are called transmonomials; in math, the whole
transseries is a perturbative expansion and the nonperturbative object is the
generalized Borel sum of the transseries. General transseries involve iterated
exponentials, but these very rarely show up in practice.

Typically transseries are resurgent, in particular resummable.
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Why are transseries & resurgence so universal?

Mathematically, transseries are provably closed under all operations (we) used
in perturbative expansions [10]. While no similarly general theorem exists yet
for summability, the proofs in the known types of problems almost fit one tem-
plate.

Closure ⇒ universality. To remain in the space of convergent Taylor series
(“viz.” analytic functions) you must avoid divisions. If we allow for division we
get (one-sided) Laurent expansions. But now we have to avoid integration, or
allow for the log. If we allow for the log we need to avoid division+integration,
since the asymptotic expansion of

∫
(1/log) is factorially divergent.

The miracle is that the proliferation of new objects stops here. Allowing also
for exp = log−1, nothing qualitatively new happens if we keep closing under
operations (including infinite iterations involved in perturbation expansions).
“In the limit” we get the transseries. Transseries are formally sentences in a lan-
guage where the words are 1/x, e−x , log x, with an asymptotic rule of formation:
terms are ordered decreasingly.

To go beyond transseries, one has to exit all operations used for solving ODEs,
PDEs, integral equations, di�erence equations etc. (or regularity domain)
Transasymptotics [9] deals with the la�er.
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Resurgent transseries

Transseries arising in applications in analysis, mathematical physics and, at
this stage conjecturally, numerically corroborated, in QCD, QFT, path integrals
etc are resurgent. In particular this means that the series Φk are generalized
Borel summable, and a�er generalized summation the transseries converges in
the usual sense, giving a unique answer.

Mathematically, resurgence has been proven for transseries solutions of most
finite dimensional problems we encountered in analysis, more about this later.

A resurgent function (in “p plane”, “Borel plane” or the “convolutive model”)
is the Borel transform (≈ inverse Laplace transform) of a resurgent series. The
Laplace transform of a resurgent function is also called resurgent (in the phys-
ical domain or “geometric model”).
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Figure: ◦ The red dots are singularities of a typical Borel transform of a resurgent
series, L−1Φ0: poles or algebraic or logarithmic branch points. The Borel sum in
direction α is the Laplace transform along a ray of angle −α [2].
◦ The branch jump ∆kL−1Φ0 at the k-th is ∼ L−1Φk , the Borel transform of the
fluctuations in the k-th sector [2].
◦ Along singular lines there is a universal average of the analytic continuations (me-
dianization) whose Laplace transform has all the good properties of the usual one
(e.g., transforms convolution to product) [1,2]
◦ Resurgence⇒ linear relations among all singularities subject to Alien calculus.
[1,2,13]. Example: ∆jΦk =

(k+j
j

)
SjΦ−k+j
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Some (of many known) results

ODEs: resurgence of the transseries is known for systems of the type y ′ =
f (1/x, y), y ∈ Cn, x →∞, f analytic at 0 in (1/x, y) under a genericity condi-
tion (weaker than): the Jacobian ∂f

∂(1/x,y) |0,0 has nonresonant eigenvalues over
Q. The structure of singularities in Borel plane is known rigorously, as well as
the resurgent relations among instantons, and medianization [2]. The resonant
case is dealt with by Écalle acceleration (Braaksma-Ramis [4]) @ similarly
general results for resonant cases, but no conceptual di�iculty is expected.

Similar results have been proved for di�erence equations (Braaksma [5]).

Parametric resurgence: exact WKB (Voros, Kawai-Takei · · · ) [6].

Finite dimensional integrals with saddles are also fairly well understood (Howls,
Delabaere [3]). The resurgent structure comes from the Jacobian, when passing
to the action as a variable. Boundaries of the manifold introduce subtleties.

PDEs Resurgence in t , of the propagator of time-periodic Schrödinger equa-
tions (ionization se�ings) [4] is well understood. Borel resummation of diver-
gent expansions has been shown for fairly general systems of nonlinear evolu-
tion PDEs [5] ∂t f = E(1/x, f )f + L, f ∈ Cd , x ∈ Cn, E elliptic (N-S [8]).

Integro-di�erential equations in hydrodynamics (Tanveer, [])
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Some outstanding questions where resurgence was instrumental: Non-
linear stability of self-similar singularity formation in supercritical1 Wave Maps
and Yang Mills [8], the solution of the time-periodic Schrödinger equation in
external fields which areO(1) [4] proof of Dubrovin’s conjecture (pole positions
of special solutions of Painlevé P1) [9].

Example of resurgent analysis: P1 2 In normalized form, a modified Boutroux
form, P1 reads

h′′ − 1
x
h′ − h− 1

2
h2 − 392

625x4 = 0 (∗)

When possible, instead of Borel transforming the asymptotic series we Borel
transform the source of the series. The Borel transform of (*) is

H = (p2 − 1)−1
(

196
1875

p3 −
∫ p

0
sH(s)ds +

1
2

∫ p

0
H(s)H(p− s)ds

)
(∗∗)

We “see” that p = ±1 are singular points. Looking more carefully, both are 1/√
branch points. If we iterate (**), convolution spreads these two singularities at
all nonzero integers. Generated by convolution, the singularities are related to
each-other. The above is mechanism is typical of any order ODEs.

1(sub-super critical)↔(irrelevant-relevant)
2Resurgence is well understood in Painlevé systems.
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General (small) transseries in P1

The general solution decaying along R+ (the tronquées) depends on a con-
stant C and has the transseries

h(C, x) =
∑
k≥0

Ckhkx−k/2e−kx

where hk are (generalized) Borel sums of divergent series; the hk satisfy linear
nonhomogeneous second order ODEs. Across a Stokes line C → C + S, where
S = i

√
6/(5π) is the Stokes constant 3.

Resurgence. Let Hk = L−1hk . The Borel plane jump at the j singularity of Hk

is related to Hk+j through a formula independent of the ODE

(H+
k − H−k )j =

(
k + j
j

)
SjH−k+j

In particular, the whole structure of H0 on the universal covering of C \ N 4 is
contained in Hk . Since it’s all reduced to the first sheet, endless continuation
also follows.

3Calculated in closed form by isomonodromic deformations, recently by resur-
gence techniques; numerically, there are many methods.

4of forward continuations
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Transasymptotics 5, [9] a sketch

We can view the transseries

h(x) =
∑
j,k

ckjC
kx−k/2e−kxx−j

as a formal function of two variables ξ = Cx−1/2e−x , η = 1/x ,

h(x) = F (ξ, η) =
∑
k,j

ck,jξ
kηj (∗)

When ξ � η (e−x � 1/x), (*) was conveniently wri�en in the standard
“multiinstanton” form ∑

k≥0

hk(η)ξk

5Instanton condensation!
O Costin, R D Costin, G Dunne Resurgence 8 / 14



However, when an antistokes line is approached (here ±iR+, where the expo-
nential becomes oscillatory), it is natural to write it in the form

(∗)
∑
j

Fj(ξ)ηk

Plugging (*) in P1 and solving perturbatively in η we get

F0(ξ) =
ξ

(ξ/12− 1)2

and all Fk are rational functions. We see formation of singularities near
antistokes lines, at the points Ce−xx−1/2 ≈ 12, infinitely many of them due to
the periodicity of e−x .

More complex transasymptotic phenomena occur in PDEs [14].

O Costin, R D Costin, G Dunne Resurgence 9 / 14
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A simple PDE example [15]

Simplest example: the heat equation, ft = fxx . Because the equation is
parabolic, if we solve the initial value problem by a series expansion
f =

∑
tkfk(x), f0 = f (0, x), the PDE implies fk+1(x) = f ′′k (x)/k, that is

f (x, t) =
∑
k≥0

f (2k)0 (x)

k!
tk

which diverges factorially even if f0 is analytic (but not entire). Instead of
Borel transforming the solution it is much be�er to Borel transform the
equation, in 1/t . This gives be�er analytic control, and more importantly we
can allow non-analytic initial conditions. With f (t, x) = t−1/2g(1/t, x) and
L−1

1
t
g(q) = q−1/2G(x, 2q1/2), 2q1/2 = p, the equation becomes

Gpp − Gxx = 0

the wave equation, for which power series solutions converge.

O Costin, R D Costin, G Dunne Resurgence 10 / 14



Cont, and more general PDEs

Using the elementary solution of the wave equation G1(x +p) +G2(x−p) and
the initial and boundary conditions, one gets, a�er returning to f by Laplace
transform and changes of variables,

f (t, x) = t−1/2
∫ ∞
−∞

f (0, s) exp(−(x − s)2/(4t))ds

The point here, of course, is not to solve the heat equation in closed form. It
is, rather, like in most applications of resurgence, to transform divergent series
into convergent ones, more generally singular perturbations into regular per-
turbations. This approach allows f (0, s) to be general, say in L1 and also shows
when resurgence is obtained: essentially i� f (0, s) is analytic.
A conceptually similar approach applies to very general systems of nonlin-
ear PDEs (Navier-Stokes included) [11,8], resulting in Laplace representations
of actual solutions, proving (at least local) existence of solutions and the possi-
bility to control solutions more globally.
Because of dependence on initial conditions, one studies resurgence of the
Green’s function or of the unitary propagator. Fairly well understood for
time-periodic d-dim Schrödinger equations. In these models, the Borel sum of
the series is insu�icient; one needs the full transseries. [16]
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