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Qualitative disagreement between AdS
gravitational field theory/perturbative string theory 

and exact, unitary Conformal Field Theory.

What Paradoxes?

Two classes:

Easier = unambiguous discrepancies with CFT

Hard = potentially ambiguous questions
about AdS observables



Unambiguous Disagreement: 
Late Time Correlations

Late time behavior of 
correlation functions 
in an AdS black hole 

background.

Does                              decay 
forever?

Is the spectrum discrete?

OH(1)

OH(�1)

OL(t)

OL(0)

hOL(t)OL(0)iBH

{Maldacena]



Forbidden Singularities due to Euclidean-time 
periodicity (KMS) in pure state black holes:

How well do high-energy pure states 
mimic the canonical ensemble?

10

z

zsing = 1� en�

=)

Unambiguous Disagreement: 
Forbidden Singularities

OH(�1)

OH(1)

OL(0)

OL(t)

z = 1� e�t



“Hard” = Ambiguous (?)  
Problems

I. How ambiguous is bulk reconstruction?  
When/where/why/to what extent?

II. What do observers see near and across 
black hole horizons?

?!



Our Approach
1)  Identify the approximation within the CFT that 

agrees with the perturbative bulk description and 
produces (information loss) problems.

2) From the vantage point of this approximation, 
identify and compute the non-perturbative effects 

that resolve information loss problems.

3) Comparing 1 & 2, what are the bulk implications?

In the approximation of (1), expect no ambiguities or 
firewalls.  Both should come from effects in (2).



Old News  
about  

Heavy-Light  
Virasoro Blocks



What Observable  
(in AdS/CFT)?

OH(�1)

OH(1)

OL(0)

OL(t)

hOH(1)OH(1)OL(z)OL(0)i

Recall:

We’ll study light probes
of heavy pure states.

Always expand in the                          OPE channel.OL(z)OL(0)

GN =
3

2c
, mAdS ⇠ h



Building Blocks for Correlators

Natural to organize amplitudes into blocks, 
ie irreducible representations of the symmetry. 

In d>2 CFT, we have SO(d+1,1) conformal blocks
or conformal partial waves.

Flat space with Poincare symmetry, find partial waves.



Virasoro conformal blocks encapsulate
contributions from all states related by Virasoro:

Although we are focusing on the vacuum conformal block, general blocks also have their

own singularities as can be seen directly in equation (2.13) when 0 < h < 2hL. We expect that

these singularities must also be resolved within the structure of these more general Virasoro

blocks. We are not focusing on them because they are more complicated and less universal,

but they certainly warrant further study.

In summary, the vacuum conformal block, a function determined purely by Virasoro

symmetry, exactly matches AdS3 computations involving deficit angles and BTZ black holes

[]. In the large c limit it has forbidden singularities that are indicative of unitarity violation

and information loss; the large c result is analytic in r+, interpolating between the defifict

and black hole cases. At finite c the forbidden singularities must be resolved within the

structure of V0(z) itself. Thus we can study universal aspects of information loss in black

hole backgrounds by examining the analytic structure of V0(z) as a simultaneous function of

c and z. This will be our focus for the remainder of this work.

3 Exact Virasoro Blocks at Large Central Charge

In this section we will discuss a well-known infinite class of examples where exact information

can be obtained concerning heavy-light vacuum Virasoro blocks. First we will very briefly

review that status of Virasoro blocks and then degerate operators, in section 3.1. Then in

section 3.2 we will explain how the exact correlators that we can obtain analytically continue

to precisely reproduce our previous results at large c. Finally, in section 3.3 we will discuss

how the exact blocks resolve the forbidden singlarities at finite c, emphasizing that from the

point of view of 1/c perturbation theory, the resolution is non-perturbative.

3.1 Brief Review of Virasoro Blocks and Degenerate States

Any CFT2 correlator can be written as a sum over Virasoro conformal blocks

hO1(1)O2(1)O3(z)O4(0)i =
X

h,h̄

Ph,h̄Vhi,h,c(z)Vh̄i,h̄,c
(z̄) (3.1)

where we have chosen the 12 ! 34 channel derived from the OPE expansion of O3(z)O4(0).

The blocks, aka partial waves, encapsulate the contribution of an entire irreducible represen-

tation of the Virasoro algebra to the correlator.

The holomorphic part of the blocks Vhi,h,c(z) depends on the four external operator di-

mensions, the internal primary operator dimension h, the central charge c, and the kinematical

variable z in the plane. Ideally we would like to have an explicit, closed-form expression for

the general Virasoro conformal blocks. Such a formula would allow us to observe how the

forbidden singularities discussed in section 2.2 are resolved by non-perturbative e↵ects ⇠ e�c

in the large c expansion.

This is probably too much to hope for. Current tools provide recursion relations [] that

e�ciently compute the series expansion of the blocks inear z = 0 with generic hi, hint, c; closed

form results in the limit hint ! 1 []; and closed form results as c ! 1 in the heavy-light
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This is interesting because: gµ⌫(X) $ Tµ⌫(x)

T (z) =
X

n

z�2�nLnand in 2d CFTs:

Virasoro blocks know about quantum gravity.

Building Blocks  
for 2d CFT Correlators



Example: Heavy-Light Vacuum 
Block as             .  

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

Semiclassical heavy-light Virasoro vacuum block:

TH =
1

2⇡

r
24

hH

c
� 1

on the Euclidean cylinder, with

c ! 1

OH(�1)

OH(1)

OL(0)

OL(t)

It knows the BTZ black hole temperature!

Let’s note two features of this semiclassical result…



Late Time Information Loss  
from Virasoro Blocks

It decays exponentially at late Lorentzian times.

expect to be able to understand the behavior of the correlator in the large Lorentzian time

regime without knowing all CFT data (the spectrum and the OPE coe�cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH / c ! 1, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI
(z) /

✓
1 � w

1 � z

◆hL

whI�2hL
2F1(hI , hI , 2hI , w), w ⌘ 1 � (1 � z)ir+ (2.13)

with r+ = 2⇡TH =
q

24hH
c � 1, and hH > c

24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1 � e�itL , in which case since ↵ is imaginary,

we have w = 1 � e2⇡TH tL . Furthermore, at large tL we have

2F1
�
hI , hI , 2hI , 1 � e2⇡TH tL

� / e�2⇡hITH tL (2.14)

so that overall, every block is proportional to e�2⇡hLTH tL as tL ! 1, regardless of the value

of hI ⌧ c. Notice that we have the same behavior as tL ! �1, as we should expect since the

two light operators OL in the correlator are identical. Thus all of the heavy-light, large central

charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian times. Since

we expect the sum over blocks to be convergent in CFT2 [14], this implies that correlators

constructed from such a sum must also vanish exponentially at large tL. Since we do not have

explicit expressions for the Virasoro blocks when hI / c, a loophole remains, as it is possible

that heavy-light blocks with heavy intermediate states do not vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times of

order SBH = ⇡2

3 cTH , the black hole entropy.

3 Exact Virasoro Blocks at Large Central Charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where exact

information can be obtained. First we will very briefly review degerate operators in section

3.1. We provide an illustrative example of the general story in section 3.1.2. Then in section

3.2 we explain how the correlators of degenerate operators can be analytically continued to

precisely reproduce all of our previous large c results. In section 3.3 we will discuss the non-

perturbative resolution of the forbidden singlarities at finite c. Motivated by these successes,

in section 3.4 we discuss the late Lorentzian time behavior of the vacuum block.
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All semiclassical blocks 
decay at the same 
exponential rate:
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Figure 2. This figure shows the time-dependence of leading semiclassical saddles contributing to
1
c log V, with di↵erent ↵I = 1, 3/5, i/2, 5i/4 (black, solid; gray, dot-dashed; red, dashed; and blue,
dotted, respectively) and fixed ↵L = 0.99 and TH = 2⇡. The solid black line corresopnds to ↵I = 1,
which is the vacuum Virasoro block. For ease of comparison we have made an overall constant shift in
each f to emphasize that the late-time exponential decay is completely independent of the intermediate
operator dimension. See fig. 13 for more details.

of this result is that the information loss problem must persist after including semiclassical

conformal blocks for heavy states with hI ⇠ O(c).

1.4 Summary of Results

Writing semiclassical contributions to the Virasoro blocks as e�
c
6f(⌘i,⌘I ,z) with z ⌘ 1 � e�it,

we find two discrete infinite classes of  = z(1 � z)@zf in the limit t ! ±1. All of the

sub-leading saddles may be interpreted as ‘additional angles’ in AdS
3

, as depicted in figure 4.

We define ↵X ⌘
q

1 � 24hX
c ; we will take ↵L to be real and ↵H = 2⇡iTH to be purely

imaginary, as this is the case of interest for correlators probing BTZ black holes. The first

infinite class are the decaying saddles, with asymptotic  of the form


dec

(n) = n(1 � n) � 1

2
+

✓
1

2
� n

◆
(↵L ± ↵H) ⌥ ↵L↵H

2
, (1.8)

where n must be an integer, as discussed near equation (2.43). The leading semiclassical

contribution to the Virasoro blocks is the case n = 0. For all values of n, the ± signs are

always dynamically chosen (by following the solutions from early to late times) so that

V(t)
|t|!1⇠ ei✓(t) exp

h
�⇡

6

⇣
|2n � 1| ± ↵L

⌘
cTH |t|

i
(1.9)

decyas as |t| ! 1 for real ↵L and real TH .
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tL

log |V|

V(tL) =
✓

⇡TH

sinh(⇡THtL)

◆2hL



Forbidden Singularities 
from Virasoro Blocks

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

It is periodic in Euclidean time, ie satisfies KMS.

10

z
This means that it has

forbidden singularities:

zsing = 1� en�

representing Unitarity violation



Virasoro Blocks Encapsulate 
Quantum Gravity and Info Loss

• BTZ Black Hole Thermodynamics from Blocks
• Information loss comes from the blocks, and 

occurs block-by-block, largely independent of 
CFT data (ie spectrum and OPE coefficients)

And we may not have to solve any particular theory.

So gravity is very robust/generic.



Resolving 
Information 

Loss Problems



Exact Information about  
Virasoro Blocks and Gravity?

It is possible to get exact information using
analytic continuation of degenerate states.

A simpler approach is to just evaluate the blocks
numerically to very high precision using
the Zamolodchikov recursion relations.



l
o
g
|V
|

At late times the gravity prediction breaks down:

q-expansion, as one might hope to derive this asymptotic behavior for the coe�cients

using the Zamolodchikov recursion relations. One might also compute �2

h(E) directly

using the crossing relation [45, 46]. Finally we discuss the implication of our results for

the late time behavior of the correlator.
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Figure 8. Heavy-light Virasoro vacuum blocks switch from an initial exponential decay to

a slow, universal power law decay at roughly the time scale td = tD � b, where the constant

o↵set b depends on the choice of r in z = 1 � re�it. The vertical axis is log |V|, while the

horizontal axis is the Lorentzian time t. The black lines are full Virasoro vacuum blocks

computed to order q1200. This polynomial truncation stops converging in the shaded region.

The yellow dashed lines are the semiclassical vacuum blocks using methods of [5]. The red

dashed lines are the time scale (3.3). The blue dashed lines are the power law at�
3

2 with a

properly chosen to match the full blocks.

3.1 Numerical Results and Empirical Findings

3.1.1 Vacuum Virasoro Blocks

Using the methods discussed in section 2, we compute the vacuum Virasoro blocks at

late times. Figure 8 shows the result along with a comparison to the semiclassical blocks

computed using semi-analytic methods [5]. For numerical convenience we avoid certain

rational values of c to prevent singularities in intermediate steps of the computation.
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Exact vs Semiclassical: 
Late Time Behavior

time

Early:

expect to be able to understand the behavior of the correlator in the large Lorentzian time

regime without knowing all CFT data (the spectrum and the OPE coe�cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH / c ! 1, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI
(z) /

✓
1 � w

1 � z

◆hL

whI�2hL
2F1(hI , hI , 2hI , w), w ⌘ 1 � (1 � z)ir+ (2.13)

with r+ = 2⇡TH =
q

24hH
c � 1, and hH > c

24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1 � e�itL , in which case since ↵ is imaginary,

we have w = 1 � e2⇡TH tL . Furthermore, at large tL we have

2F1
�
hI , hI , 2hI , 1 � e2⇡TH tL

� / e�2⇡hITH tL (2.14)

so that overall, every block is proportional to e�2⇡hLTH tL as tL ! 1, regardless of the value

of hI ⌧ c. Notice that we have the same behavior as tL ! �1, as we should expect since the

two light operators OL in the correlator are identical. Thus all of the heavy-light, large central

charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian times. Since

we expect the sum over blocks to be convergent in CFT2 [14], this implies that correlators

constructed from such a sum must also vanish exponentially at large tL. Since we do not have

explicit expressions for the Virasoro blocks when hI / c, a loophole remains, as it is possible

that heavy-light blocks with heavy intermediate states do not vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times of

order SBH = ⇡2

3 cTH , the black hole entropy.

3 Exact Virasoro Blocks at Large Central Charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where exact

information can be obtained. First we will very briefly review degerate operators in section

3.1. We provide an illustrative example of the general story in section 3.1.2. Then in section

3.2 we explain how the correlators of degenerate operators can be analytically continued to

precisely reproduce all of our previous large c results. In section 3.3 we will discuss the non-

perturbative resolution of the forbidden singlarities at finite c. Motivated by these successes,

in section 3.4 we discuss the late Lorentzian time behavior of the vacuum block.
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Late:

Transition at                predicted analytically.

average absolute value at late times. If such features are present in Vh(t), then it is

natural to investigate the timescale where Vh(t) transitions from exponential decay to

some other late-time behavior.

The full CFT
2

correlator should not become much smaller than ⇠ e�S. Since

Virasoro blocks associated with light operators initially decay exponentially, one might

naively expect that Vh(t) should change qualitatively after a time of order S. More

specifically, for heavy-light correlators dominated by the vacuum block, we would expect

a departure from exponential decay by a time

tD =
⇡c

6hL

(3.3)

up to an unknown order one factor. This argument is rather weak, since the full

correlator might not behave like the light-operator Virasoro blocks. However, the same

prediction for tD was derived from an analysis of non-perturbative e↵ects [7] in the

vacuum block. We discuss the equation that led to that prediction in section 4.3.

We will see empirically that Virasoro blocks with small h do undergo a transition

at a timescale remarkably close to tD. Furthermore, at late times the behavior of the

heavy-light Virasoro blocks appears to be a universal power-law:

|VhL,hH ,h,c (t � tD) | / t�
3

2 , (3.4)

where we require hH � 1

24

, so that at least one external operator is heavy enough to

create a blackhole. When the intermediate dimension h & hH the late time power-

law behavior remains the same, although the transition time then also depends on h

(and we do not have an analytic prediction to compare to). This universal behavior

suggests a threshold
p
E � E⇤ in �2

h(E), which seems to correspond with random matrix

behavior [41, 44]. Our results indicate that the t�
3

2 power-law persists to timescales

⇠ eS, so individual heavy-light Virasoro blocks are not sensitive to the discreteness of

the spectrum.

These results show that the time-dependence of the heavy-light Virasoro blocks

has some qualitative similarities with that of the Virasoro vacuum character after an

S transformation and the analytic continuation � ! � + it [42]. Both the heavy-light

blocks with small h and the vacuum character have an initial exponential-type decay,

though the precise time-dependence is rather di↵erent. The heavy-light blocks and the

vacuum character have the same power-law decay at late times, though non-vacuum

characters decay with a di↵erent late-time power-law [42].

In what follows we will study the heavy-light blocks Vh(t) empirically to establish

the robust features of their time-dependence. We also translate the late-time t�3/2

behavior into a statement about the coe�cients of qN in Vh(q) at large orders in the

– 17 –

t�3/2
L



Late Time Punchlines
• Non-perturbative corrections are universal and 

qualitatively change late-time behavior of blocks
• Behavior of individual Virasoro blocks 

ameliorates but does not resolve late time decay

We understand the exponential early decay,
but we do not have an analytic derivation of the 

universal late-time power-law, or a detailed 
understanding of the transition region.  

Resurgence???
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Figure 15. In this plot, we compare the exact and semiclassical blocks. One can see that at

the positions of the semiclassical forbidden singularities, the exact blocks are smooth. Fixing

hL and hH
c as we increase c, the exact blocks approach the semiclassical block in the region

between the origin and the first forbidden singularity. However, beyond the first forbidden

singularity the exact blocks deviate greatly as we increase c. This indicates that we have

passed a Stokes line (emanating from the forbidden singularity) and some other semiclassical

saddle dominates the exact blocks in the large c limit. The gray line is the position of t = i�
2

.

We compare the exact and semiclassical blocks at finite time in figure 16. We see

that the semiclassical blocks remain a good approximation to correlators of O(t + i�
2

)

as long as we avoid the long-time region of t / S that was discussed in section 3. In

particular, there is not a significant di↵erence between the quality of the semiclassical

approximation to correlators of O(t + i�
2

) and O(t). The most naive interpretation of

this fact is that non-perturbative quantum gravitational e↵ects do not obstruct local

physics across the horizon of pure, energy-eigenstate black holes. A qualitatively similar

conclusion was reached for late-time deviations [53] from the semiclassical limit. This

result was also anticipated by the analytic analysis of [7], which only suggested large

non-perturbative corrections within 1p
c
of the forbidden singularites. In the next section

we will discuss that analysis and compare it with our numerical results.

4.3 Fate of the Semiclassical Approximation from Analytics and Numerics

We do not have to rely entirely on numerics to explore the regime of validity of the

semiclassical limit. It has been shown that the vacuum block’s forbidden singularities

have a universal resolution due to non-perturbative e↵ects in central charge. Specifi-

cally, the heavy-light vacuum block (with hL and hH

c
held fixed at large c) should obey
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Euclidean-Time Periodicity  
and Forbidden Singularities

Semiclassical and exact blocks on the real axis:

Semiclassical approximation breaks down completely
beyond               due to Stokes phenomena. t ⇡ 1

TH



Figure 16. In this figure we compare the semiclassical and exact blocks associated with

O(t) and O(t + i�
2

). The plot suggests that the semiclassical approximation remains valid for

correlators of O(t + i�
2

). We implement time dependence via z = 1 � re�it and so a shift by
i�
2

simply corresponds to a di↵erent choice of r. Corresponding trajectories in the unit q disk

are pictured in figure 6. Apparently the semiclassical approximation works well at t + i�
2

.

Contours of

����⌃H
V ��

V �

���� in ⇢ Unit Disk Contours of
|Vexact � Vsemi|
|Vexact| + |Vsemi| in ⇢

Figure 17. The figure on the left shows a contour plot of the function |⌃H
V 00

V 0 | from equation

(4.2) in the ⇢ unit disk with hL = 1 and hH = c
4

. The figure on the right is the deviation of

the exact and semiclassical Virasoro vacuum blocks with the same parameters and c = 60.

The positions of the forbidden singularities are indicated with black dots. The plot on the

left can be viewed as a kind of analytic prediction for the deviation plotted on the right.
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Contours of

����⌃H
V ��

V �

���� in ⇢ Unit Disk Contours of
|Vexact � Vsemi|
|Vexact| + |Vsemi| in ⇢

Figure 18. The figure on the left shows a contour plot of the function |⌃H
V 00

V 0 | from equation

(4.2) in the ⇢ unit disk with hL = 1 and hH = c
30

. In this case hH < c
24

, so the heavy-

light block does not include a black hole – instead it corresponds to a light probe interacting

with a deficit angle in AdS
3

. Thus there are no forbidden singularities, and the semiclasssical

approximation is reliable in a much larger region as compared to figure 17 (note the di↵erence

in scales). The figure on the right is the deviation of the exact and semiclassical Virasoro

vacuum blocks with the same parameters and c = 60. The plot on the left can be viewed as

a kind of analytic prediction for the deviation plotted on the right.

heavy background state does not correspond to a black hole, the original semiclassical

approximation remains good throughout the Euclidean region. We demonstrate this

explicitly in figure 18. So the breakdown of the semiclassical limit exhibited in figure

17 really does depend on the presence of a black hole, and is not a general feature of

all Virasoro blocks at large central charge.

5 Discussion

We would eventually like to resolve the black hole information paradox by doing the

right calculation. In the context of AdS/CFT, this means discerning under what cir-

cumstances, if any, bulk reconstruction is possible near and behind black hole horizons.

If firewalls [52] are completely generic, or if bulk reconstruction is su�ciently am-

biguous, then this could be a fools errand. But even in this case, one can still hope

for a more constructive argument rather than various reductio ad absurdums [34]. For

example, one would like to reconstruct the ‘experience’ of a collapsing spherical shell,

and explicitly compute the timescale beyond which subsequent infallers will not see a

smooth (or well-defined) geometry.
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Without a Black Hole With a Black Hole

Semiclassical Approximation 
in the Euclidean Region

⇢ =
z

(z +
p
1� z)2

Contour plots in 



How can we obtain 
an Analytic 

Undersanding of 
Virasoro Blocks?



Degenerate Operators
Special primaries have null Virasoro descendants, e.g.

limit, including 1/c correction [] to that limit. The heavy-light limit displays the blocks’

forbidden singularities at large c, but none of these results provide information about how

those singularities are resolved at finite c. The relation of the general large c semi-classical

blocks to the Painlevé VI equation [37], which can only be solved in terms of its own special

function, does not seem to encourage those who might seek a closed form expression for V.

However, as has been known since the early days of CFT2 [38], for certain special values

of the parameters hi, h, c we can obtain exact information about the Virasoro blocks.5 These

are cases where one of the external operators is degenerate, meaning that some of its Virasoro

descendants are null states, ie states with vanishing norm. When discussing degenerate states

it is useful to use a parameter b so that

c = 1 + 6

✓
b +

1

b

◆2

(3.2)

We can take the c ! 1 limit via either b ! 0 or b ! 1. In this notation, the simplest

example of a null state is the second level descendant

�
L2
�1 + b2L�2

� |h1,2i = 0 (3.3)

One can check using the Virasoro algebra of equation (2.12) that the matrix of level two inner

products
 

hh|L2
1L

2
�1|hi hh|L2

1L�2|hi
hh|L2L2

�1|hi hh|L2L�2|hi

!
(3.4)

has a vanishing determinant when the holomorphic dimension h1,2 = �1
2 � 3

4b2 ; the level two

descendant in equation (3.3) is the corresponding null vector. In general, degenerate states

can only occur for holomorphic dimensions satisfying the Kac formula

hr,s =
b2

4
(1 � r2) +

1

4b2
(1 � s2) +

1

2
(1 � rs) (3.5)

for positive integers r, s, which determines the values of h where the Kac determinant vanishes.

Notice that r $ s simply corresponds with b $ 1/b.

Once inserted into a correlator, the relation (3.3) becomes a very useful di↵erential equa-
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a relation that follows from the OPE of the stress energy tensor. For example, applying these
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5For a thorough review see [39] or [40].
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You could discover by studying the determinant of:
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Via stress tensor Ward identities, Virasoro generators

act as differential operators inside correlators:
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In the simplest case, the null state correlators satisfy:

Figure 3. This figure provides a visualization of a space with an ‘additional angle’ totaling 4⇡
around the origin. This suggests the spatial geometry created by a heavy degenerate operator with
dimension h2,1 = � c

8 at large c. The hr,1 cases always have a total angle of the integer r times 2⇡.

to canonical positions, in the case of O1,2 one finds verify this is the eqn we want before

posting
✓

@2
z +

✓
2
1 + b2

z
+

b2

1 � z

◆
@z � bhH

(1 � z)2

◆
hOH(1)OH(1)O1,2(z)O1,2(0)i = 0 (3.7)

where hH is the dimension of OH . This is a version of the hypergeometric di↵erential equation;

it is an exact relation for this correlator and its conformal blocks. One of its solutions, the

vacuum conformal block, was mentioned in equation (1.5).

In general, one obtains an (rs)th order di↵erential equation for correlators of Or,s(z). For

the fairly wide range of cases of degenerate states with dimension hr,1, the null descendant

can be written in closed form as [39]

X

pi

[(r � 1)!]2
�
b2
�r�k

Qk�1
i=1 (p1 + · · · + pi)(r � p1 � · · · � pi)

L�p1 · · · L�pk |hr,1i (3.8)

where the sum is over partitions of r into k positive integers pi. In later sections we will use

this relation to generate di↵erential equations that must be obeyed by Virasoro conformal

blocks involving degenerate operators.

At large c, the degenerate dimensions hr,s become

hr,s
c!1⇡ c

24
(1 � r2) +

1 � s

2
+

(r � 1)(13 + 13r � 12s)

24
+

3
�
r2 � s2

�

2c
+ · · · (3.9)
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Solution is hypergeometric; interesting 
non-perturbative effects in large               expansion.b2 / c
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Let’s study the general case:

h1,s ⇡
1� s

2
hr,1 ⇡ � c

24
(r2 � 1)

So there are heavy and light examples:

Infinite class of examples where we can obtain exact 
information (      order differential equation)

about the Virasoro vacuum block.

and

rth



Connecting 
Degenerate State 
Correlators to 
Large C Results 



Heavy Degenerate Blocks 
at Large Central Charge

block V can be written as the ansatz7

V = exp

2

4hL

1X

n,m=0

✓
1

c

◆m✓
hL

c

◆n

fmn

✓
hH

c
, z

◆3

5 (3.12)

Then the functions fmn can be determined by expanding the exact results for degenerate

external operators and matching [43]. We have used this method to verify that the degenerate

states match onto results for the vacuum block [25, 44] to first order in 1/c perturbation theory.

3.2.2 Heavy Degenerate States

We can also study the limit where the light probe operator dimension hL is a free variable,

while the heavy operators are degenerate states with dimension hr,1. In fact, this case will

be of greater interest in the sections to follow, because the associated vacuum blocks have

forbidden singularities and interesting non-perturbative structure in the ‘e�c’. For now we

will focus on the connection between these correlators and the general heavy-light large c

Virasoro blocks.

When the hH = hr,1, we find that r+ = 2⇡r with positive integer r, and so the heavy-light

large c vacuum block becomes

V(t) =
ehLt(1 � e�t)2hL

⇥
sinh

�
r
2 t
�⇤2hL

(3.13)

where we recall t = � log(1 � z). This has r singularities at t = ⇡ik
r for k = 0, 1, · · · , r � 1,

where the case k = 0 is the OPE and the others are forbidden.

This result can also be obtained from the large c limit of the rth order null state dif-

ferential equation obtained from the operator of equation (3.8), as we now show. In fact,

when expanded at large c, we find that the di↵erential equations become first order, with the

universal form

(@t � hLgr(t)) V(t) = 0, (3.14)

where

gr(t) = coth

✓
t

2

◆
� r coth

✓
rt

2

◆
(3.15)

This equation has the heavy-light vacuum block with hH = hr,1 as its unique solution. As a

first example, for the case r = 2 the exact degenerate state di↵erential equation is

V 00(t) + (1 + b2) coth

✓
t

2

◆
V 0(t) + b2hLV(t) = 0 (3.16)

7Until recently it was not clear whether such an ansatz would be valid, but [19] provides a derivation for

the case of the vacuum block. However, a similar expansion of general Virasoro blocks in the intermediate

operator dimension hI
c

would not be valid, as the large c limit with hI fixed is not equivalent to the large c

limit with hI/c fixed.
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In general, at large c we obtain a differential equation:

solved by heavy-light result, since we have:

An        order equation has become first order!rth

This case will be more relevant for information loss.



Heavy Degenerate States

Heavy degenerate states have
additional angle, total is:

for r = 2,3,4,…

V(t) = 1
⇥
sinh

�
r
2 t
�⇤2hL

Can be seen in the large central charge block:

But hr,1 ⇡ � c

24
(r2 � 1) is negative…

⇥r,1

2⇡
= r



Heavy Degenerate States

10

z

Forbidden singularities at large central charge:

r=6 case

z = 1� e
2⇡ik

r

k = 1, · · · , r � 1

for integers:

So it’s interesting to see how they are resolved,
and to connect to the general case with Black Holes.
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Singularity Resolution: 
Some Data
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Figure 5. This figure shows the behavior of a degenerate Virasoro vacuum block near a forbidden
singularity for various values of the central charge c. We have specifically plotted log |V2,1| with hL = 1
as a function of the variable log(z � 1) in the vicinity of z = 2.

As before, the large c di↵erential equation is most e↵ectively extracted from the operators

arranged as follows:

0 = h |Or,1(0)OL(x1)OL(x2)i

⇡
*

hr,1

������
Or,1(0)

2

4Lr +
6

c

r�1X

j=1

1

j(r � j)
LjLr�j , OL(x1)OL(x2)

3

5
+

(3.27)

where the four-point function in this configuration is related to the function V(z) by (3.19).

It is straightforward though tedious to work out the commutator of any individual factor

LjLr�j above. However, our main interest is in the behavior near the forbidden singularities,

at z = 1 � e
2⇡in
r . To explore the behavior around this singularity, we take x1 = 1, x2 = 1 � z

in a scaling limit

1 � z = e
� 2⇡in

r
� xp

T , (3.28)

where |T | ! 1, and T is defined conventionally by c = 13�6(T +1/T ). At fixed x and large

|T |, this scaling limit therefore zooms in on the singularity and allows us to see explicitly how

the divergence is cut o↵ by finite c e↵ects. The correction terms in (3.26) survive in this large

T limit, and the new resulting leading order di↵erential equation is

0 = 2hLg(x) + xg0(x) � g00(x)�2n(r), (3.29)

where V(z) = g(x), and

�2n(r) ⌘ 4
r�1X

j=1

sin2
⇣
jn⇡
r

⌘

rj(r � j)
. (3.30)
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Simplest example is the (2,1) case, with exact block:

c!1! 1

sinh2(t)

where              .  In the vicinity of z = 2

V2,1 = 2F1(2, b2 + 1, 2b2 + 2, z)

z2

hL = 1



Singularity Resolution 
in General

Singularities are resolved in a universal way.
Let’s scale towards a singularity at large b as:

�

2
n(r)V 00(x)� xV 0(x)� 2hLV(x) = 0

We obtain a universal differential equation:

Figure 5. This figure shows the behavior of a degenerate Virasoro vacuum block near a forbidden
singularity for various values of the central charge c. We have specifically plotted log |V2,1| with hL = 1
as a function of the variable log(z � 1) in the vicinity of z = 2.

As before, the large c di↵erential equation is most e↵ectively extracted from the operators

arranged as follows:

0 = h |Or,1(0)OL(x1)OL(x2)i

⇡
*

hr,1

������
Or,1(0)

2

4Lr +
6

c

r�1X

j=1

1

j(r � j)
LjLr�j , OL(x1)OL(x2)

3

5
+

(3.27)

where the four-point function in this configuration is related to the function V(z) by (3.19).

It is straightforward though tedious to work out the commutator of any individual factor

LjLr�j above. However, our main interest is in the behavior near the forbidden singularities,

at z = 1 � e
2⇡in
r . To explore the behavior around this singularity, we take x1 = 1, x2 = 1 � z

in a scaling limit

1 � z = e
� 2⇡in

r
� xp

T , (3.28)

where |T | ! 1, and T is defined conventionally by c = 13�6(T +1/T ). At fixed x and large

|T |, this scaling limit therefore zooms in on the singularity and allows us to see explicitly how

the divergence is cut o↵ by finite c e↵ects. The correction terms in (3.26) survive in this large

T limit, and the new resulting leading order di↵erential equation is

0 = 2hLg(x) + xg0(x) � g00(x)�2n(r), (3.29)

where V(z) = g(x), and

�2n(r) ⌘ 4
r�1X

j=1

sin2
⇣
jn⇡
r

⌘

rj(r � j)
. (3.30)

– 21 –

where the coefficient can be computed:

zn(x) = 1� e

� 2⇡in

r

+ x

b



Singularity Resolution 
in General

�

2
n(r)V 00(x)� xV 0(x)� 2hLV(x) = 0

Differential equation for correlators near singularities: 

Putting c back, it can be solved by the function:

S(x) =

Z 1

0
dp p

2hL�1
e

�px��2
n(r)

2c p

2

It’s a natural toy model for an entire
function that has a singularity at large c…

but this is a physical result.



A Prediction for 1/c 
Perturbation Theory

Consider expanding this function in 1/c:

S(x) =

Z 1

0
dp p

2hL�1
e

�px��2
n(r)

2c p

2

/ 1

x

2hL
+

�

2
n(r)(2hL + 1)hL

c x

2hL+2
+ · · ·

If this resolves the singularities, it makes a prediction 
about 1/c corrections for general heavy-light blocks.

We computed them, and they match.



What about the 
HARD problem: 

Bulk  
Reconstruction? 



Exact Bulk 
Reconstruction in d=2

In                       Virasoro acts as asymptotic symmetry.AdS3/CFT2

If we fix the gauge, we fix the symmetry generators.
Then demanding scalar field transformations

uniquely determines the bulk field:

Each operator �N(z, z̄) can be defined by first translating z ! 0 and then applying the

operator/state correspondence to study the state |�iN = �N(0, 0)|0i. These states are

then defined by the bulk primary conditions

Lm |�iN = 0, Lm |�iN = 0, for m � 2. (2.3)

along with a normalization condition

LN
1

L
N

1

|�iN = (�1)N N ! (2h)N |Oi (2.4)

These conditions have a unique solution [1]. This solution can be conveniently written

�(y, 0, 0) =
X

N

y2h+2N�NLN L̄NO(0) (2.5)

where �N ⌘ (�1)

N

(2h)NN !

and the LN are a certain linear combination of holomorphic Vira-

soro generators2 at level N , and similarly for the anti-holomorphic L̄N . When c ! 1
with other parameters held fixed, our prescription reduces to the definition of � that

can be obtained from the ‘HKLL kernel’ [8–10], and LN ! LN
�1

.

This prescription for � can be motivated in a number of ways; for details see [1].

When Virasoro transformations are realized as bulk di↵eomorphisms preserving the

gauge choice in equation (2.1), our definition emerges by demanding that �(y, z, z̄)

transform as a bulk scalar field. Alternatively, one can arrive at our prescription by

studying correlators of � with O(x) and any number of stress tensors T (zi) and T̄ (z̄i).

After gauge fixing, Virasoro symmetry appears to determine these correlators exactly

[1, 11], and their specification is equivalent to our definition of �. In more conventional

terms, our definition of � should agree with bulk gravitational perturbation theory to

all orders in GN = 3

2c
, and this has been verified explicitly to order 1/c3.

Solution for � Using Quasi-Primaries

For various purposes it is useful to solve for �N explicitly in terms of quasi-primary

states, which are annihilated by L
1

but not Lm. Importantly, we will take the quasi-

primaries to be orthogonal, and we fix their overall normalizationby demanding that a

level M quasi-primary includes the term LM
�1

with overall coe�cient 1. In this basis,

2For example, the explicit solution at level 2 is

L�2 =
(2h+ 1)(c+ 8h)

(2h+ 1) c+ 2h(8h� 5)

✓
L2
�1 �

12h

c+ 8h
L�2

◆
(2.6)

with L̄�2 only di↵ering by L�n ! L̄�n.
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in the gauge (coordinate system):

• Set the stage for breakdown of bulk locality in words

2 Structure of �(X) Correlators

In recent work [1] we provided an exact definition for the bulk scalar proto-field �(y, z, z̄)

as a linear combination of a primary CFT
2

scalar O and its Virasoro descendants. We

refer to � as (merely) a proto-field because its existence follows entirely from symmetry

considerations in AdS
3

/CFT
2

. We believe the proto-field is nevertheless quite interest-

ing because it encodes an infinite sum of quantum gravitational e↵ects, which involve

Virasoro (CFT stress tensor) matrix elements. One might expect that full scalar fields1

can be represented as infinite sums of proto-fields [2–5]. The proto-field is labeled by

a bulk point (y, z, z̄) written in a specific gauge (or coordinate system) where vacuum

metrics take the form [6, 7]

ds2 =
dy2 + dzdz̄

y2
� 6T (z)

c
dz2 � 6T̄ (z̄)

c
dz̄2 + y2

36T (z)T̄ (z̄)

c2
dzd̄z (2.1)

for holomorphic functions T (z), T̄ (z̄). We emphasize that the proto-field operator de-

pends in an essential way on this gauge choice; were we to choose a di↵erent gauge,

we would obtain a di↵erent bulk operator. The dependence on the gauge will appear

explicitly later on, where we will see that in our gauge, the propagator h�(X)�(Y )i is
not spherically symmetric.

We will briefly review the definition of � in section 2.1; for detailed explanations

and derivations we refer the reader to [1]. The operator � and its correlators do not

factorize into a product of holomorphic and anti-holomorphic parts, but � correlators

have a similar, more subtle property that is extremely useful, and that forms the basis

for most of the technical developments in this paper. We explain these facts and define

a ‘holomorphic part’ of � in section 2.2.

2.1 Review of �

We can define the operator �(y, z, z̄) using a Boundary Operator Expansion (BOE)

� (y, z, z̄) =
1X

N=0

y2h+2N�N(z, z̄) (2.2)

1Full bulk scalar fields may not exist, and to the extent that they do exist, their definition may not
be ambiguous. These are interesting issues but we will not be addressing them here, as we will only
be studying proto-fields and their correlators.
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gauge choice in equation (2.1), our definition emerges by demanding that �(y, z, z̄)

transform as a bulk scalar field. Alternatively, one can arrive at our prescription by

studying correlators of � with O(x) and any number of stress tensors T (zi) and T̄ (z̄i).

After gauge fixing, Virasoro symmetry appears to determine these correlators exactly

[1, 11], and their specification is equivalent to our definition of �. In more conventional

terms, our definition of � should agree with bulk gravitational perturbation theory to

all orders in GN = 3

2c
, and this has been verified explicitly to order 1/c3.

Solution for � Using Quasi-Primaries

For various purposes it is useful to solve for �N explicitly in terms of quasi-primary

states, which are annihilated by L
1

but not Lm. Importantly, we will take the quasi-

primaries to be orthogonal, and we fix their overall normalizationby demanding that a

level M quasi-primary includes the term LM
�1

with overall coe�cient 1. In this basis,

2For example, the explicit solution at level 2 is

L�2 =
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L2
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12h
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with L̄�2 only di↵ering by L�n ! L̄�n.
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Non-Perturbative  
Fate of Locality

Let’s study (work in progress) the propagator.
Lore - no local observables in quantum gravity…

We find a divergent expansion at short distances:

h�(X)�(Y )i ⇡
X

n

(4n� 1)!!

n!

✓
12

c�4

◆n

Bulk locality appears to breakdown at short
distances due to non-perturbative effects…

we also have significant numerical evidence.



Summary
I.  Information loss in                          arises from the 

semiclassical expansion of Virasoro blocks       

II. Many information loss problems are ameliorated 
or resolved by computable non-perturbative 

effects within Virasoro blocks; a better 
understanding of resurgence very useful here!

III. These non-perturbative effects have implications 
for the breakdown of bulk locality and 

(presumably) the physics near & beyond horizons

AdS3/CFT2


