WKB analysis via topological recursion for（confluent） hypergeometric differential equations

Yumiko Takei
（based on a joint work with K．Iwaki and T．Koike）

Kobe University • D1

Resurgence in Gauge and String Theory KITP，UC Santa Barbara

November 1， 2017

Introduction

Topological recursion

$$
y^{2}-\left(\frac{x^{2}}{4}-E\right)=0
$$

$$
\left\{W_{g, n}\right\}_{g \geqq 0, n \geqq 1}
$$

Quantization ([EO1], [DM], [BE]) \downarrow

$$
\left[\hbar^{2} \frac{d^{2}}{d x^{2}}-\left\{\frac{x^{2}}{4}-E-\left(\nu-\frac{1}{2}\right) \hbar\right\}\right] \psi(x, \hbar)=0
$$

How can we study properties of solutions in terms of $W_{g, n}$?

Purpose

To report the result we recently obtain, i.e., there exist close relationships between Voros coefficients in the exact WKB analysis and free energies in the matrix model.

Outline of this talk

(1) Exact WKB analysis and Voros coefficients
(2) Topological recursion
(3) The expressions of WKB solutions in terms of the topological recursion

44 The relationship between Voros coefficients and free energies
(5) Other equations
(1) Exact WKB analysis and Voros coefficients

Exact WKB analysis

Consider a differential equation

$$
\left(-\hbar^{2} \frac{d^{2}}{d x^{2}}+\frac{x^{2}}{4}-E\right) \psi=0
$$

and its WKB solutions

$$
\begin{align*}
\psi_{ \pm}(x, \hbar) & =\exp \left(\int^{x} \sum_{j \geqq-1} \hbar^{j} S_{j}(x) d x\right) \tag{1}\\
& =\frac{1}{\sqrt{S_{\text {odd }}(x, \hbar)}} \exp \left(\pm \int_{2 \sqrt{E}}^{x} S_{\text {odd }}(x, \hbar) d x\right)
\end{align*}
$$

where $S=\sum \hbar^{j} S_{j}$ is a solution of

$$
\begin{equation*}
S^{2}+\frac{d S}{d x}=\hbar^{-2}\left(\frac{x^{2}}{4}-E\right) \tag{2}
\end{equation*}
$$

and $S_{\text {odd }}$ is its odd degree part with respect to \hbar.

Voros coefficient (for the Weber equation)

Then, the Voros coefficient is defined by

$$
V=\int_{\gamma}\left(S_{\mathrm{odd}}(x, \hbar)-\hbar^{-1} S_{-1}(x)\right) d x
$$

where γ is a path from a singular point to a singular point, so that the following holds:

$$
\begin{aligned}
\psi_{ \pm}(x, \hbar)= & \frac{1}{\sqrt{S_{\text {odd }}(x, \hbar)}} \exp \left(\pm \int_{2 \sqrt{E}}^{x} S_{\text {odd }}(x, \hbar) d x\right) \\
= & e^{v} \frac{1}{\sqrt{S_{\text {odd }}(x, \hbar)}} \exp \left(\pm \hbar^{-1} \int_{2 \sqrt{E}}^{x} S_{-1}(x) d x\right) \\
& \times \exp \left(\pm \int_{\infty}^{x}\left(S_{\text {odd }}(x, \hbar)-\hbar^{-1} S_{-1}(x)\right) d x\right) .
\end{aligned}
$$

A path of Voros coefficient

Stokes curves: $\Im \int_{a}^{x} \sqrt{x^{2}-4 E} d x=0 \quad(a= \pm 2 \sqrt{E})$

Figure: A path γ of Voros coefficient

(1) Exact WKB analysis and Voros coefficients

(2) Topological recursion

(3) The expressions of WKB solutions in terms of the topological recursion

4 The relationship between Voros coefficients and free energies
(5) Other equations

Topological recursion (cf. [EO1]) I

Let us consider an algebraic curve

$$
\begin{equation*}
\mathcal{C}: P(x, y)=p_{0}(x) y^{2}+p_{2}(x)=0 \tag{3}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
p_{0}(x)=1 \tag{4}\\
p_{2}(x)=-\frac{x^{2}}{4}+E .
\end{array}\right.
$$

To parametrize this curve, we use

$$
\left\{\begin{array}{l}
x=x(z)=\sqrt{E}\left(z+\frac{1}{z}\right) \tag{5}\\
y=y(z)=\frac{\sqrt{E}}{2}\left(z-\frac{1}{z}\right)
\end{array}\right.
$$

with $z \in \mathbb{P}^{1}$. Then,

$$
d x(z)=\sqrt{E}\left(1-\frac{1}{z^{2}}\right) d z=\frac{\sqrt{E}(z+1)(z-1)}{z^{2}} d z
$$

Topological recursion (cf. [EO1]) II

We first define

$$
W_{0,1}(z)=y(z) \frac{d x}{d z}(z) d z, \quad W_{0,2}\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right)=\frac{d z_{1} d z_{2}}{\left(z_{1}-z_{2}\right)^{2}}
$$

For $g \geqq 0, n \geqq 0$ and $2 g-2+n \geqq 0$, we construct meromorphic differentials $W_{g, n}\left(z_{1}, \ldots, z_{n}\right)$ on Σ^{n} by the following recursive formulas.

$$
\begin{aligned}
& W_{g, n+1}\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\sum_{a: \text { branch point }} \operatorname{Res}_{z=a} \frac{\left(\frac{1}{z_{0}-z}\right) d z_{0}}{(y(z)-y(\bar{z})) d x(z)} \\
& \times\left\{W_{g-1, n+2}\left(z, \bar{z}, z_{1}, \ldots, z_{n}\right)+\sum_{\substack{g_{1}+g_{2}=g \\
I \sqcup J=\{1,2, \ldots, n\}}}^{\prime} W_{g_{1}, 1+|I|}\left(z, z_{l}\right) W_{g_{2}, 1+|J|}\left(\bar{z}, z_{J}\right)\right\} .
\end{aligned}
$$

- branch points are zeros of $d x(z)$ (assume that all branch points are simple);
- \bar{z} is a local conjugate point of z near a branch point (i.e. $x(\bar{z})=x(z)$).

Topological recursion (cf. [EO1]) III

In the case of (3), branch points are $z= \pm 1, \bar{z}$ is given by $1 / z$, and $W_{0,1}$, $W_{0,2}, W_{1,1}$ and $W_{0,3}$ can be explicitly calculated as follows:

$$
\begin{aligned}
W_{0,1}(z)= & \frac{E\left(z^{2}-1\right)^{2}}{2 z^{3}} d z \\
W_{0,2}\left(z_{1}, z_{2}\right)= & \frac{d z_{1} d z_{2}}{\left(z_{1}-z_{2}\right)^{2}}, \\
W_{1,1}(z)= & \frac{1}{32 E}\left\{\frac{z^{2}-4 z+1}{(z-1)^{4}}-\frac{z^{2}+4 z+1}{(z+1)^{4}}\right\} d z, \\
W_{0,3}\left(z_{1}, z_{2}, z_{3}\right)= & \frac{1}{2 E}\left\{\frac{1}{\left(z_{1}+1\right)^{2}\left(z_{2}+1\right)^{2}\left(z_{3}+1\right)^{2}}\right. \\
& \left.-\frac{1}{\left(z_{1}-1\right)^{2}\left(z_{2}-1\right)^{2}\left(z_{3}-1\right)^{2}}\right\} d z_{1} d z_{2} d z_{3} .
\end{aligned}
$$

(1) Exact WKB analysis and Voros coefficients

(2) Topological recursion
(3) The expressions of WKB solutions in terms of the topological recursion

44 The relationship between Voros coefficients and free energies
(5) Other equations

Theorem 1 (for the Weber equation ; cf. [BE])

We define

$$
\begin{aligned}
\psi(x, \hbar)= & \exp \left[\hbar^{-1} \int^{z} W_{0,1}(z)+\frac{1}{2!} \int_{D} \int_{D} \frac{d z_{1} d z_{2}}{\left(z_{1} z_{2}-1\right)^{2}}\right. \\
& \left.+\sum_{m=1}^{\infty} \hbar^{m}\left\{\sum_{\substack{2 g+n-2=m \\
g \geq 0, n \geq 1}} \frac{1}{n!} \int_{D} \cdots \int_{D} W_{g, n}\left(z_{1}, \ldots, z_{n}\right)\right\}\right]\left.\right|_{z=z(x)}
\end{aligned}
$$

where $z=z(x)$ is an inverse function of $x=x(z)$ and

$$
\int_{D}=\nu \int_{0}^{z}+(1-\nu) \int_{\infty}^{z} .
$$

Here, ν is a parameter. Then, $\psi(x, \hbar)$ is a solution of

$$
\begin{equation*}
\left[\hbar^{2} \frac{d^{2}}{d x^{2}}-\left\{\frac{x^{2}}{4}-E-\left(\nu-\frac{1}{2}\right) \hbar\right\}\right] \psi(x, \hbar)=0 \tag{W}
\end{equation*}
$$

which has a WKB-type expansion.

A path of Voros coefficient

Stokes curves: $\Im \int_{a}^{x} \sqrt{x^{2}-4 E} d x=0 \quad(a= \pm 2 \sqrt{E})$

Figure: Weber equation (x-plane)

Figure: Weber equation (z-plane)

(1) Exact WKB analysis and Voros coefficients

(2) Topological recursion
(3) The expressions of WKB solutions in terms of the topological recursion

44 The relationship between Voros coefficients and free energies
(5) Other equations

Free energy (cf. [CEO])

We define $F_{g}=W_{g, 0}$, called free energies, by the following ([EO1], [CEO]):

$$
\begin{aligned}
F_{0} & =-\frac{1}{2} \sum_{\alpha: \text { pole of } y d x} \operatorname{Res}_{z=\alpha} V_{\alpha}(z) y(z) d x(z)-\frac{1}{2} \sum_{\alpha: \text { pole of } y d x} t_{\alpha} \mu_{\alpha}, \\
F_{1} & =-\frac{1}{2} \log \left(\tau_{B}(\{x(a)\})\right)-\frac{1}{24} \log \left(\prod_{a: \text { branch point }} y^{\prime}(a)\right), \\
F_{g} & =\frac{1}{2-2 g} \sum_{a: \text { branch point }} \operatorname{Res}_{z=a}^{\operatorname{Re}} \Phi(z) W_{g, 1}(z) \quad(g \geqq 2) .
\end{aligned}
$$

- t_{α} is a residue of $y(z) d x(z)$ at $z=\alpha$;
- τ_{B} is the Kokotov-Korotkhon's Bergman τ-function;
- $\Phi(z)$ is any function satisfying $\frac{d \Phi}{d z}=y(z) d x(z)$.
(Weber: $\quad F_{0}(E)=-\frac{3}{4} E^{2}+\frac{1}{2} E^{2} \log E, \quad F_{1}(E)=-\frac{1}{12} \log E$.)

Theorem 2 (for the Weber equation)

Let $F_{g}(E)$ be free energies for the spectral curve corresponding to the Weber equation and

$$
F(E, \hbar)=\sum_{g=0}^{\infty} F_{g}(E) \hbar^{2 g-2}
$$

be the generating function of $F_{g}(E)$. Then, we obtain

$$
\begin{align*}
V(E, \nu, \hbar)= & F(E+\nu \hbar, \hbar)-F(E+(\nu-1) \hbar, \hbar) \\
& -\frac{\partial F_{0}}{\partial E} \hbar^{-1}-\frac{2 \nu-1}{2} \frac{\partial^{2} F_{0}}{\partial E^{2}}, \tag{6}
\end{align*}
$$

where $V(E, \nu, \hbar)$ is the Voros coefficient for the Weber equation.

Concrete form of free energies (Weber equation)

Lemma 3 (Weber equation)

For the Weber equation, the following relation holds:

$$
\begin{equation*}
V(E, 0, \hbar)=V(E, 1, \hbar) \tag{7}
\end{equation*}
$$

From Lemma 3, $F(E, \hbar)$ satisfies the following difference equation:

$$
\begin{equation*}
F(E+\hbar, \hbar)-2 F(E, \hbar)+F(E-\hbar, \hbar)=\frac{\partial^{2} F_{0}}{\partial E^{2}} \tag{8}
\end{equation*}
$$

We solve this equation to obtain the concrete form of free energies.
Concrete form of free energies (Weber equation)

$$
\begin{equation*}
F_{g}(E)=\frac{B_{2 g}}{2 g(2 g-2)} E^{2-2 g} \quad(g \geqq 2) \tag{9}
\end{equation*}
$$

where $B_{2 g}$ designates the $2 g$-th Bernoulli number.
Note: [HZ], [CEO].

Concrete form of Voros coefficient (Weber equation)

The relation

$$
\begin{align*}
V(E, \nu, \hbar)= & F(E+\nu \hbar, \hbar)-F(E+(\nu-1) \hbar, \hbar) \\
& -\frac{\partial F_{0}}{\partial E} \hbar^{-1}-\frac{2 \nu-1}{2} \frac{\partial^{2} F_{0}}{\partial E^{2}} \tag{6}
\end{align*}
$$

and (9) give the concrete form of Voros coefficient $V(E, \nu, \hbar)$:

Concrete form of Voros coefficient (Weber equation)

$$
\begin{equation*}
V(E, \nu, \hbar)=\sum_{n=2}^{\infty} \frac{B_{n}(1-\nu)}{n(n-1)}\left(\frac{\hbar}{E}\right)^{n-1} \tag{10}
\end{equation*}
$$

where $B_{n}(X)$ designates the n-th Bernoulli polynomial.
Note: [T].

Proof of Theorem 2 I

Variation formula (cf. [EO2])

We assume that there exist an integration path γ on Σ and an analytic function $\Lambda\left(z^{\prime}\right)$ defined near γ satisfying

$$
d \Omega(z)=\int_{z^{\prime} \in \gamma} B\left(z, z^{\prime}\right) \wedge\left(z^{\prime}\right),
$$

where $d \Omega$ denotes the first variation of $y d x$ defined by

$$
y(z ; \lambda+\epsilon) d x(z ; \lambda+\epsilon)=y(z ; \lambda) d x(z ; \lambda)+\epsilon d \Omega+O\left(\epsilon^{2}\right) .
$$

(Here λ is a parameter.) Then, the following relation holds:

$$
\begin{equation*}
\frac{\partial W_{g, n}}{\partial \lambda}=\int_{z_{n+1} \in \gamma} W_{g, n+1}\left(z_{1}, \ldots, z_{n}, z_{n+1}\right) \wedge\left(z_{n+1}\right) . \tag{11}
\end{equation*}
$$

From this formula, the following relation holds:

$$
\begin{equation*}
\frac{\partial W_{g, n}}{\partial E}=\int_{0}^{\infty} W_{g, n+1}\left(z_{1}, \ldots, z_{n}, z_{n+1}\right) . \tag{12}
\end{equation*}
$$

Proof of Theorem 2 II

Recall that $\int_{D}=\nu \int_{0}^{z}+(1-\nu) \int_{\infty}^{z}$, then we find

$$
\begin{aligned}
V(E, \nu, \hbar) & =\sum_{m=1}^{\infty} \hbar^{m} \int_{0}^{\infty}\left\{\sum_{2 g+n-2=m} \frac{1}{n!} \frac{d}{d z} \int_{D} \cdots \int_{D} W_{g, n}\left(z_{1}, \ldots, z_{n}\right)\right\} d z \\
& =\sum_{m=1}^{\infty} \hbar^{m} \sum_{2 g+n-2=m} \frac{\nu^{n}-(\nu-1)^{n}}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} W_{g, n}\left(z_{1}, \ldots, z_{n}\right) .
\end{aligned}
$$

On the other hand, (12) gives

$$
\begin{equation*}
\frac{\partial^{n} F_{g}}{\partial E^{n}}=\int_{0}^{\infty} \cdots \int_{0}^{\infty} W_{g, n}\left(z_{1}, \ldots, z_{n}\right) \tag{13}
\end{equation*}
$$

From these two formulas we obtain

$$
\begin{aligned}
V(E, \nu, \hbar) & =\sum_{m=1}^{\infty} \hbar^{m} \sum_{2 g+n-2=m} \frac{\nu^{n}-(\nu-1)^{n}}{n!} \frac{\partial^{n} F_{g}}{\partial E^{n}} \\
& =\sum_{n=1}^{\infty} \frac{\nu^{n}-(\nu-1)^{n}}{n!} \hbar^{n} \frac{\partial^{n} F(E, \hbar)}{\partial E^{n}}-\frac{\partial F_{0}}{\partial E} \hbar^{-1}-\frac{2 \nu-1}{2} \frac{\partial^{2} F_{0}}{\partial E^{2}} \frac{\bar{訁}}{21}
\end{aligned}
$$

(1) Exact WKB analysis and Voros coefficients

(2) Topological recursion
(3) The expressions of WKB solutions in terms of the topological recursion

4 The relationship between Voros coefficients and free energies
(5) Other equations

Theorem 4 (cf. [BE]) I

For $P(x, y)=p_{0}(x) y^{2}+p_{2}(x)=0$, we define

$$
\begin{align*}
\psi(x, \hbar)= & \exp \left[\hbar^{-1} \int^{z} W_{0,1}(z)+\frac{1}{2!} \int_{D} \int_{D} \frac{d z_{1} d z_{2}}{\left(z_{1} z_{2}-1\right)^{2}}\right. \\
& +\left.\sum_{m=1}^{\infty} \hbar^{m}\left\{\sum_{\substack{2+n-2=m \\
g \geq 0, n \geq 1}} \frac{1}{n!} \int_{D} \cdots \int_{D} W_{g, n}\left(z_{1}, \ldots, z_{n}\right)\right\}\right|_{z=z(x)}, \tag{14}
\end{align*}
$$

where $z=z(x)$ is an inverse function of $x=x(z)$ and

$$
\int_{D}=\sum_{i}\left(\nu_{\beta_{i}} \int_{\beta_{i}}^{z}\right)+\sum_{j}\left(\nu_{\gamma_{j}} \int_{\gamma_{j}}^{z}\right) .
$$

Here, β_{i} is a simple pole of $x(z), \gamma_{j}$ is a zero of $p_{0}(x(z))$, and $\nu_{\beta_{i}}$ and $\nu_{\gamma_{j}}$ are parameters satisfying

$$
\sum_{i} \nu_{\beta_{i}}+\sum_{j} \nu_{\gamma_{j}}=1
$$

Theorem 4 (cf. [BE]) II

Then, $\psi(x, \hbar)$ is a WKB solution of

$$
\begin{equation*}
\left[\hbar^{2} p_{0}(x) \frac{d^{2}}{d x^{2}}+\hbar^{2} Q(x) \frac{d}{d x}+\left\{p_{2}(x)+\hbar R(x)\right\}\right] \psi(x, \hbar)=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
Q(x)= & \frac{1}{2} \frac{d p_{0}(x)}{d x}-\sum_{j} \frac{\nu_{\gamma_{j}} p_{0}(x)}{x-x\left(\gamma_{j}\right)} \\
R(x)= & {\left[\frac { y (z) p _ { 0 } (x (z)) } { \frac { d x } { d z } (z) } \left\{\sum_{i}\left\{\nu_{\beta_{i}}\left(\frac{1}{z-\beta_{i}}-\frac{1}{z-\overline{\beta_{i}}}\right)\right\}\right.\right.} \\
& \left.\left.+\sum_{j}\left\{\nu_{\gamma_{j}}\left(\frac{1}{z-\gamma_{j}}-\frac{1}{z-\overline{\gamma_{j}}}\right)\right\}\right\}\right]\left.\right|_{z=z(x)} .
\end{aligned}
$$

Note: β_{i} is a simple pole of $x(z)$, and γ_{j} is a zero of $p_{0}(x(z))$.

Kummer equation

Let us consider the following algebraic curve

$$
\begin{equation*}
P(x, y)=4 x^{2} y^{2}-\left(x^{2}+4 t_{0} x+4 t_{1}^{2}\right)=0 \tag{16}
\end{equation*}
$$

In this case, we choose

$$
\left\{\begin{array}{l}
x=x(z)=\sqrt{t_{0}^{2}-t_{1}^{2}}\left(z+\frac{1}{z}\right)-2 t_{0}=\frac{\sqrt{t_{0}^{2}-t_{1}^{2}}\left(z-s_{1}\right)\left(z-s_{2}\right)}{z} \tag{17}\\
y=y(z)=\frac{z^{2}-1}{2\left(z-s_{1}\right)\left(z-s_{2}\right)},
\end{array}\right.
$$

where $z \in \mathbb{P}^{1}, s_{1}=\sqrt{t_{0}+t_{1}} / \sqrt{t_{0}-t_{1}}$ and $s_{2}=\sqrt{t_{0}-t_{1}} / \sqrt{t_{0}+t_{1}}$. From Theorem 4, the differential equation corresponding to (16) is

$$
\begin{align*}
& \quad\left[\hbar^{2} \frac{d^{2}}{d x^{2}}-\left\{R_{0}(x)+R_{1}(x) \hbar+R_{2}(x) \hbar^{2}\right\}\right] \psi(x, \hbar)=0, \tag{K}\\
& R_{0}(x)=\frac{x^{2}+4 t_{0} x+4 t_{1}^{2}}{4 x^{2}}, \quad R_{1}(x)=\frac{\left(\nu_{0}-\nu_{3}\right) x+2\left(\nu_{1}-\nu_{2}\right) t_{1}}{2 x^{2}}, \\
& R_{2}(x)=\frac{\left(\nu_{1}+\nu_{2}+1\right)\left(\nu_{1}+\nu_{2}-1\right)}{4 x^{2}} .
\end{align*}
$$

Theorem 5 (for the Kummer equation)

Let $F_{g}\left(t_{0}, t_{1}\right)$ be free energies for the spectral curve corresponding to the Kummer equation and

$$
F\left(t_{0}, t_{1}, \hbar\right)=\sum_{g=0}^{\infty} F_{g}\left(t_{0}, t_{1}\right) \hbar^{2 g-2}
$$

be the generating function of $F_{g}\left(t_{0}, t_{1}\right)$. Then, we obtain

$$
\begin{align*}
V^{(0)}\left(t_{0}, t_{1}, \nu, \hbar\right)= & F\left(t_{0}+A \hbar, t_{1}+\left(B+\frac{1}{2}\right) \hbar, \hbar\right)-F\left(t_{0}+A \hbar, t_{1}+\left(B-\frac{1}{2}\right) \hbar, \hbar\right) \\
& -\frac{\partial F_{0}}{\partial t_{1}} \hbar^{-1}-A \frac{\partial^{2} F_{0}}{\partial t_{0} \partial t_{1}}-B \frac{\partial^{2} F_{0}}{\partial t_{1}{ }^{2}}, \tag{18}\\
V^{(\infty)}\left(t_{0}, t_{1}, \nu, \hbar\right)= & F\left(t_{0}+\left(A-\frac{1}{2}\right) \hbar, t_{1}+B \hbar, \hbar\right)-F\left(t_{0}+\left(A+\frac{1}{2}\right) \hbar, t_{1}+B \hbar, \hbar\right) \\
& +\frac{\partial F_{0}}{\partial t_{0}} \hbar^{-1}+B \frac{\partial^{2} F_{0}}{\partial t_{0} \partial t_{1}}+A \frac{\partial^{2} F_{0}}{\partial t_{0}^{2}}, \tag{19}
\end{align*}
$$

where $V^{(0)}\left(t_{0}, t_{1}, \nu, \hbar\right)$ and $V^{(\infty)}\left(t_{0}, t_{1}, \nu, \hbar\right)$ are Voros coefficients for the Kummer quation and $A=\left(\nu_{3}-\nu_{0}\right) / 2, B=\left(\nu_{2}-\nu_{1}\right) / 2$ and $\nu=\left(\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}\right)$.

Concrete form of F_{g} (Kummer equation)

Therefore, we obtain the concrete form of $F_{g}\left(t_{0}, t_{1}\right)$.

Concrete form of $F_{g}\left(t_{0}, t_{1}\right)$ (Kummer equation)

$$
\begin{aligned}
F_{g}\left(t_{0}, t_{1}\right)= & \frac{B_{2 g}}{2 g(2 g-2)}\left\{\frac{1}{\left(t_{0}-t_{1}\right)^{2 g-2}}+\frac{1}{\left(t_{0}+t_{1}\right)^{2 g-2}}\right. \\
& \left.-\frac{1}{\left(2 t_{1}\right)^{2 g-2}}\right\} \quad(g \geqq 2) .
\end{aligned}
$$

Theorem 6 (for the Gauss hypergeometric equation)

Let us consider the following algebraic curve

$$
\begin{equation*}
P(x, y)=x^{2}(1-x)^{2} y^{2}-\left\{t_{0}^{2} x^{2}-\left(t_{0}^{2}+t_{1}^{2}-t_{2}^{2}\right) x+t_{1}^{2}\right\}=0 \tag{20}
\end{equation*}
$$

Then, the corresponding equation is the Gauss hypergeometric differential equation. Let $F_{g}\left(t_{0}, t_{1}, t_{2}\right)$ be free energies for the spectral curve corresponding to (20) and

$$
F\left(t_{0}, t_{1}, t_{2}, \hbar\right)=\sum_{g} F_{g}\left(t_{0}, t_{1}, t_{2}\right) \hbar^{2 g-2}
$$

be the generating function of $F_{g}\left(t_{0}, t_{1}, t_{2}\right)$. Then, we obtain

$$
\begin{align*}
V^{(0)}\left(t_{0}, t_{1}, t_{2}, \nu, \hbar\right)= & F\left(t_{0}+A \hbar, t_{1}+\left(B+\frac{1}{2}\right) \hbar, t_{2}+C \hbar, \hbar\right) \\
& -F\left(t_{0}+A \hbar, t_{1}+\left(B-\frac{1}{2}\right) \hbar, t_{2}+C \hbar, \hbar\right) \\
& -\frac{1}{2} \frac{\partial F_{0}}{\partial t_{1}} \hbar^{-1}-\frac{A}{2} \frac{\partial^{2} F_{0}}{\partial t_{0} \partial t_{1}}-\frac{B}{2} \frac{\partial^{2} F_{0}}{\partial t_{1}^{2}}-\frac{C}{2} \frac{\partial^{2} F_{0}}{\partial t_{1} \partial t_{2}} \tag{21}
\end{align*}
$$

where $V^{(0)}\left(t_{0}, t_{1}, t_{2}, \nu, \hbar\right)$ is Voros coefficient for the Gauss hypergeometric differential equation and $A=\left(\nu_{5}-\nu_{0}\right) / 2, B=\left(\nu_{3}-\nu_{1}\right) / 2, C=\left(\nu_{4}-\nu_{2}\right) / 2$ and $\nu=\left(\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, \nu_{5}\right)$. Other Voros coefficients can be expressed similarbe / 30

References I

[AKT] T. Aoki, T. Kawai and Y. Takei: The Bender-Wu analysis and the Voros theory. II, Adv. Stud. in Pure Math., Vol. 54, Math. Soc. Japan, Tokyo, 2009, pp. 19-94.
[ATT] Aoki, T., Takahashi, T. and Tanda, M. : Borel sums of Voros coefficients of Gauss' hypergeometric differential equations with a large parameter and confluence, to appear in RIMS Kôkyûroku Bessatsu.
[BE] V. Bouchard and B.Eynard : Reconstructing WKB from topological recursion, arXiv:1606.04498v1 [math-ph].
[CEO] L. Chekhov, B.Eynard and N. Orantin : Reconstructing WKB from topological recursion, arXiv:1606.04498v1 [math-ph].
[DM] O. Dumitrescu and M. Mulase : Quantum curves for Hitchin fibrations and the Eynard-Orantin theory, Lett. Math. Phys., 104 (2014), 635-671.

References II

[EO1] B. Eynard and N. Orantin : Invariants of algebraic curves and topological expansion, Comm. in Number Theory and Phys., 1 (2007), 347-452.
[EO2] B. Eynard and N. Orantin : Algebraic methods in random matrices and enumerative geometry, arXiv:0811.3531 [math-ph].
[HZ] J. Harer and D. Zagier: The Euler characteristic of the moduli space of curves, Invent. Math., 85 (1986), 457-485.
[Ta] Takahashi, T. : The confluent hypergeometric function and WKB solutions, Docter thesis, 2017.
[T] Y. Takei : Sato's conjecture for the Weber equation and transformation theory for Schrödinger equations with a merging pair of turning points, RIMS Kokyuroku Bessatsu, B10 (2008), 205-224.

