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Introduction

y2 −
(
x2

4
− E

)
= 0 {Wg ,n}g≧0,n≧1

[
ℏ2

d2

dx2
−

{
x2

4
− E − (ν −

1

2
)ℏ
}]

ψ(x , ℏ) = 0

Topological recursion
([EO1], [CEO])

Quantization
([EO1], [DM], [BE]) How can we study

properties of solutions
in terms of Wg ,n ?

Purpose

To report the result we recently obtain, i.e., there exist close relationships
between Voros coefficients in the exact WKB analysis and free energies in
the matrix model.

2 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

Outline of this talk

1 Exact WKB analysis and Voros coefficients

2 Topological recursion

3 The expressions of WKB solutions in terms of the topological recursion

4 The relationship between Voros coefficients and free energies

5 Other equations

3 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

1 Exact WKB analysis and Voros coefficients

2 Topological recursion

3 The expressions of WKB solutions in terms of the topological recursion

4 The relationship between Voros coefficients and free energies

5 Other equations

4 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

Exact WKB analysis

Consider a differential equation(
−ℏ2 d2

dx2
+

x2

4
− E

)
ψ = 0,

and its WKB solutions

ψ±(x , ℏ) = exp

∫ x ∑
j≧−1

ℏjSj(x) dx


=

1√
Sodd(x , ℏ)

exp

(
±
∫ x

2
√
E
Sodd(x , ℏ) dx

)
,

(1)

where S =
∑

ℏjSj is a solution of

S2 +
dS

dx
= ℏ−2

(
x2

4
− E

)
, (2)

and Sodd is its odd degree part with respect to ℏ.
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Voros coefficient (for the Weber equation)

Then, the Voros coefficient is defined by

V =

∫
γ
(Sodd(x , ℏ)− ℏ−1S−1(x)) dx ,

where γ is a path from a singular point to a singular point, so that the
following holds:

ψ±(x , ℏ) =
1√

Sodd(x , ℏ)
exp

(
±
∫ x

2
√
E
Sodd(x , ℏ) dx

)
= eV

1√
Sodd(x , ℏ)

exp

(
±ℏ−1

∫ x

2
√
E
S−1(x) dx

)
× exp

(
±
∫ x

∞
(Sodd(x , ℏ)− ℏ−1S−1(x)) dx

)
.
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A path of Voros coefficient

Stokes curves : ℑ
∫ x

a

√
x2 − 4E dx = 0 (a = ±2

√
E )

Figure: A path γ of Voros coefficient

7 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

1 Exact WKB analysis and Voros coefficients

2 Topological recursion

3 The expressions of WKB solutions in terms of the topological recursion

4 The relationship between Voros coefficients and free energies

5 Other equations

8 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

Topological recursion (cf. [EO1]) I

Let us consider an algebraic curve

C : P(x , y) = p0(x)y
2 + p2(x) = 0 (3)

with p0(x) = 1

p2(x) = −
x2

4
+ E .

(4)

To parametrize this curve, we use
x = x(z) =

√
E (z +

1

z
)

y = y(z) =

√
E

2
(z − 1

z
)

(5)

with z ∈ P1. Then,

dx(z) =
√
E (1− 1

z2
)dz =

√
E (z + 1)(z − 1)

z2
dz .
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Topological recursion (cf. [EO1]) II

We first define

W0,1(z) = y(z)
dx

dz
(z)dz , W0,2(z1, z2) = B(z1, z2) =

dz1 dz2
(z1 − z2)2

For g ≧ 0, n ≧ 0 and 2g − 2 + n ≧ 0, we construct meromorphic differentials
Wg ,n(z1, . . . , zn) on Σn by the following recursive formulas.

Wg ,n+1(z0, z1, . . . , zn) =
∑

a : branch point

Res
z=a

( 1
z0−z ) dz0

(y(z)− y(z̄)) dx(z)

×

Wg−1,n+2(z , z̄ , z1, . . . , zn) +
′∑

g1+g2=g
I⊔J={1,2,...,n}

Wg1,1+|I |(z , zI )Wg2,1+|J|(z̄ , zJ)

 .

branch points are zeros of dx(z) (assume that all branch points are simple);

z̄ is a local conjugate point of z near a branch point (i.e. x(z̄) = x(z)).
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Topological recursion (cf. [EO1]) III

In the case of (3), branch points are z = ±1, z̄ is given by 1/z , and W0,1,
W0,2, W1,1 and W0,3 can be explicitly calculated as follows:

W0,1(z) =
E (z2 − 1)2

2z3
dz ,

W0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
,

W1,1(z) =
1

32E

{
z2 − 4z + 1

(z − 1)4
− z2 + 4z + 1

(z + 1)4

}
dz ,

W0,3(z1, z2, z3) =
1

2E

{
1

(z1 + 1)2(z2 + 1)2(z3 + 1)2

− 1

(z1 − 1)2(z2 − 1)2(z3 − 1)2

}
dz1 dz2 dz3.
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Theorem 1 (for the Weber equation ; cf. [BE])

We define

ψ(x , ℏ) = exp

[
ℏ−1

∫ z

W0,1(z) +
1

2!

∫
D

∫
D

dz1 dz2
(z1z2 − 1)2

+
∞∑

m=1

ℏm


∑

2g+n−2=m
g≥0, n≥1

1

n!

∫
D
· · ·
∫
D
Wg ,n(z1, . . . , zn)



∣∣∣∣∣∣∣∣
z=z(x)

,

where z = z(x) is an inverse function of x = x(z) and∫
D
= ν

∫ z

0
+(1− ν)

∫ z

∞
.

Here, ν is a parameter. Then, ψ(x , ℏ) is a solution of[
ℏ2

d2

dx2
−
{
x2

4
− E −

(
ν − 1

2

)
ℏ
}]

ψ(x , ℏ) = 0 (W)

which has a WKB-type expansion. 13 / 30
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A path of Voros coefficient

Stokes curves : ℑ
∫ x

a

√
x2 − 4E dx = 0 (a = ±2

√
E )

Figure: Weber equation (x-plane)

x =
√
E (z +

1

z
)

←→

Figure: Weber equation (z-plane)
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Free energy (cf. [CEO])

We define Fg = Wg ,0, called free energies, by the following ([EO1], [CEO]):

F0 = −
1

2

∑
α : pole of ydx

Res
z=α

Vα(z)y(z) dx(z)−
1

2

∑
α : pole of ydx

tαµα,

F1 = −
1

2
log(τB({x(a)}))−

1

24
log

 ∏
a : branch point

y ′(a)

 ,

Fg =
1

2− 2g

∑
a : branch point

Res
z=a

Φ(z)Wg ,1(z) (g ≧ 2).

tα is a residue of y(z) dx(z) at z = α;
τB is the Kokotov-Korotkhon’s Bergman τ -function;
Φ(z) is any function satisfying dΦ

dz = y(z) dx(z).

(
Weber : F0(E ) = −

3

4
E 2 +

1

2
E 2 log E , F1(E ) = −

1

12
log E .

)
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Theorem 2 (for the Weber equation)

Let Fg (E ) be free energies for the spectral curve corresponding to the
Weber equation and

F (E , ℏ) =
∞∑
g=0

Fg (E )ℏ2g−2

be the generating function of Fg (E ). Then, we obtain

V (E , ν, ℏ) = F (E + νℏ, ℏ)− F (E + (ν − 1)ℏ, ℏ)

− ∂F0
∂E

ℏ−1 − 2ν − 1

2

∂2F0
∂E 2

,
(6)

where V (E , ν, ℏ) is the Voros coefficient for the Weber equation.
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Concrete form of free energies (Weber equation)

Lemma 3 (Weber equation)

For the Weber equation, the following relation holds:

V (E , 0, ℏ) = V (E , 1, ℏ). (7)

From Lemma 3, F (E , ℏ) satisfies the following difference equation:

F (E + ℏ, ℏ)− 2F (E , ℏ) + F (E − ℏ, ℏ) =
∂2F0
∂E 2

. (8)

We solve this equation to obtain the concrete form of free energies.

Concrete form of free energies (Weber equation)

Fg (E ) =
B2g

2g(2g − 2)
E 2−2g (g ≧ 2), (9)

where B2g designates the 2g -th Bernoulli number.

Note: [HZ], [CEO].
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Concrete form of Voros coefficient (Weber equation)

The relation

V (E , ν, ℏ) = F (E + νℏ, ℏ)− F (E + (ν − 1)ℏ, ℏ)

− ∂F0
∂E

ℏ−1 − 2ν − 1

2

∂2F0
∂E 2

(6)

and (9) give the concrete form of Voros coefficient V (E , ν, ℏ):

Concrete form of Voros coefficient (Weber equation)

V (E , ν, ℏ) =
∞∑
n=2

Bn(1− ν)
n(n − 1)

(
ℏ
E

)n−1

, (10)

where Bn(X ) designates the n-th Bernoulli polynomial.

Note: [T].
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Proof of Theorem 2 I

Variation formula (cf. [EO2])

We assume that there exist an integration path γ on Σ and an analytic function
Λ(z ′) defined near γ satisfying

dΩ(z) =

∫
z′∈γ

B(z , z ′)Λ(z ′),

where dΩ denotes the first variation of ydx defined by

y(z ;λ+ ϵ)dx(z ;λ+ ϵ) = y(z ;λ)dx(z ;λ) + ϵdΩ+ O(ϵ2).

(Here λ is a parameter.) Then, the following relation holds:

∂Wg ,n

∂λ
=

∫
zn+1∈γ

Wg ,n+1(z1, . . . , zn, zn+1)Λ(zn+1). (11)

From this formula, the following relation holds:

∂Wg ,n

∂E
=

∫ ∞

0

Wg ,n+1(z1, . . . , zn, zn+1). (12)
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Proof of Theorem 2 II

Recall that

∫
D

= ν

∫ z

0

+(1− ν)
∫ z

∞
, then we find

V (E , ν, ℏ) =
∞∑

m=1

ℏm
∫ ∞

0

{ ∑
2g+n−2=m

1

n!

d

dz

∫
D

· · ·
∫
D

Wg ,n(z1, . . . , zn)

}
dz

=
∞∑

m=1

ℏm
∑

2g+n−2=m

νn − (ν − 1)n

n!

∫ ∞

0

· · ·
∫ ∞

0

Wg ,n(z1, . . . , zn).

On the other hand, (12) gives

∂nFg

∂E n
=

∫ ∞

0

· · ·
∫ ∞

0

Wg ,n(z1, . . . , zn). (13)

From these two formulas we obtain

V (E , ν, ℏ) =
∞∑

m=1

ℏm
∑

2g+n−2=m

νn − (ν − 1)n

n!

∂nFg

∂E n

=
∞∑
n=1

νn − (ν − 1)n

n!
ℏn
∂nF (E , ℏ)
∂E n

− ∂F0

∂E
ℏ−1 − 2ν − 1

2

∂2F0

∂E 2
.
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Theorem 4 (cf. [BE]) I

For P(x , y) = p0(x)y
2 + p2(x) = 0, we define

ψ(x , ℏ) = exp

[
ℏ−1

∫ z

W0,1(z) +
1

2!

∫
D

∫
D

dz1 dz2
(z1z2 − 1)2

+
∞∑

m=1

ℏm


∑

2g+n−2=m
g≥0, n≥1

1

n!

∫
D

· · ·
∫
D

Wg ,n(z1, . . . , zn)



∣∣∣∣∣∣∣∣
z=z(x)

,

(14)

where z = z(x) is an inverse function of x = x(z) and∫
D

=
∑
i

(
νβi

∫ z

βi

)
+
∑
j

(
νγj

∫ z

γj

)
.

Here, βi is a simple pole of x(z), γj is a zero of p0(x(z)), and νβi and νγj are
parameters satisfying ∑

i

νβi +
∑
j

νγj = 1.
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Theorem 4 (cf. [BE]) II

Then, ψ(x , ℏ) is a WKB solution of[
ℏ2p0(x)

d2

dx2
+ ℏ2Q(x)

d

dx
+ {p2(x) + ℏR(x)}

]
ψ(x , ℏ) = 0, (15)

where

Q(x) =
1

2

dp0(x)

dx
−
∑
j

νγjp0(x)

x − x(γj)

R(x) =

[
y(z)p0(x(z))

dx
dz (z)

{∑
i

{
νβi

(
1

z − βi
− 1

z − βi

)}

+
∑
j

{
νγj

(
1

z − γj
− 1

z − γj

)}}]∣∣∣∣∣
z=z(x)

.

Note: βi is a simple pole of x(z), and γj is a zero of p0(x(z)).
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Kummer equation

Let us consider the following algebraic curve

P(x , y) = 4x2y2 −
(
x2 + 4t0x + 4t1

2
)
= 0 (16)

In this case, we choose
x = x(z) =

√
t02 − t12(z +

1

z
)− 2t0 =

√
t02 − t12(z − s1)(z − s2)

z

y = y(z) =
z2 − 1

2(z − s1)(z − s2)
,

(17)

where z ∈ P1, s1 =
√
t0 + t1/

√
t0 − t1 and s2 =

√
t0 − t1/

√
t0 + t1.

From Theorem 4, the differential equation corresponding to (16) is[
ℏ2

d2

dx2
−
{
R0(x) + R1(x)ℏ+ R2(x)ℏ2

}]
ψ(x , ℏ) = 0, (K)

R0(x) =
x2 + 4t0x + 4t1

2

4x2
, R1(x) =

(ν0 − ν3)x + 2(ν1 − ν2)t1
2x2

,

R2(x) =
(ν1 + ν2 + 1)(ν1 + ν2 − 1)

4x2
.
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Theorem 5 (for the Kummer equation)

Let Fg (t0, t1) be free energies for the spectral curve corresponding to the Kummer
equation and

F (t0, t1, ℏ) =
∞∑
g=0

Fg (t0, t1)ℏ2g−2

be the generating function of Fg (t0, t1). Then, we obtain

V (0)(t0, t1, ν, ℏ) = F
(
t0 + Aℏ, t1 + (B +

1

2
)ℏ, ℏ

)
− F

(
t0 + Aℏ, t1 + (B − 1

2
)ℏ, ℏ

)
− ∂F0

∂t1
ℏ−1 − A

∂2F0
∂t0∂t1

− B
∂2F0
∂t12

, (18)

V (∞)(t0, t1, ν, ℏ) = F
(
t0 + (A− 1

2
)ℏ, t1 + Bℏ, ℏ

)
− F

(
t0 + (A+

1

2
)ℏ, t1 + Bℏ, ℏ

)
+

∂F0
∂t0

ℏ−1 + B
∂2F0
∂t0∂t1

+ A
∂2F0
∂t02

, (19)

where V (0)(t0, t1, ν, ℏ) and V (∞)(t0, t1, ν, ℏ) are Voros coefficients for the Kummer
quation and A = (ν3 − ν0)/2, B = (ν2 − ν1)/2 and ν = (ν0, ν1, ν2, ν3).
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Concrete form of Fg (Kummer equation)

Therefore, we obtain the concrete form of Fg (t0, t1).

Concrete form of Fg (t0, t1) (Kummer equation)

Fg (t0, t1) =
B2g

2g(2g − 2)

{
1

(t0 − t1)2g−2
+

1

(t0 + t1)2g−2

− 1

(2t1)2g−2

}
(g ≧ 2).

27 / 30



Exact WKB analysis Topological recursion WKB solution The relationship Other equations

Theorem 6 (for the Gauss hypergeometric equation)

Let us consider the following algebraic curve

P(x , y) = x2(1− x)2y2 − {t02x2 − (t0
2 + t1

2 − t2
2)x + t1

2} = 0 (20)

Then, the corresponding equation is the Gauss hypergeometric differential equation.
Let Fg (t0, t1, t2) be free energies for the spectral curve corresponding to (20) and

F (t0, t1, t2, ℏ) =
∑
g

Fg (t0, t1, t2)ℏ2g−2

be the generating function of Fg (t0, t1, t2). Then, we obtain

V (0)(t0, t1, t2, ν, ℏ) = F (t0 + Aℏ, t1 + (B +
1

2
)ℏ, t2 + Cℏ, ℏ)

− F (t0 + Aℏ, t1 + (B − 1

2
)ℏ, t2 + Cℏ, ℏ)

− 1

2

∂F0

∂t1
ℏ−1 − A

2

∂2F0

∂t0∂t1
− B

2

∂2F0

∂t12
− C

2

∂2F0

∂t1∂t2
, (21)

where V (0)(t0, t1, t2, ν, ℏ) is Voros coefficient for the Gauss hypergeometric
differential equation and A = (ν5 − ν0)/2, B = (ν3 − ν1)/2, C = (ν4 − ν2)/2 and
ν = (ν0, ν1, ν2, ν3, ν4, ν5). Other Voros coefficients can be expressed similarly.28 / 30
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