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The idea of combinatorial Hopf algebras

A product takes two things and puts them together into one thing.

A coproduct takes one thing and takes it apart into pairs of things.

Embody these compatibly on some combinatorial objects and you
have a combinatorial Hopf algebra.

Lots of details including the antipode.
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Hopf algebras of Feynman graphs

Say our things are Feynman diagrams.

A good product is disjoint union.

A good coproduct takes a diagram apart into divergent subgraphs
and cographs.

Δ(G ) =
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Examples
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The antipode

The antipode is given recursively.

S(G ) =
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The tree-like case: Connes-Kreimer

When the subdivergences have a tree-like structure (no overlapping
divergences), then the coproduct exists at the level of the tree.

Eg

Δ(t) =

This gives the Connes-Kreimer Hopf algebra. It is universal and
can take care of overlapping by sums.
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What about IR?

Some infrared divergences can also be captured Hopf algebraically
(arXiv:1512.06409, see “motic”)

The rest of the IR story is also very combinatorial, but the exact
structure is not so clear.
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Renormalization by renormalization Hopf algebra

The Hopf algebra encodes the structure of BPHZ renormalization.

Essentially S is renormalization, but it needs to be twisted with the
Feynman rules themselves and a regularization map.

Let

φ be the unrenormalized Feynman rules.

R be a regularization map.

Define

Sφ
R(G ) = −R(φ(G ))−

�

∅�=γ�G

Sφ
R(γ)R(φ(G/γ))

Compare this to S itself:
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Renormalization continued

Let

φ be the unrenormalized Feynman rules.

R be a regularization map.

Sφ
R(G ) = −R(φ(G ))−�

∅�=γ�G Sφ
R(γ)R(φ(G/γ))

Sφ
R is the twisted antipode. It gives the counterterms.

The renormalized Feynman rules are

φR = m(Sφ
R ⊗ φ)Δ

Depending on your taste you can view this more concretely or
more geometrically.
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Importance of primitivity and 1-cocycles

The Hopf algebra is more than just a mathematical underpinning
for BPHZ.

An element of a Hopf algebra is primitive if

Primitives generate everything. They are the physical skeletons.
Insertion into a primitive is algebraically priviliged.
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Physical identities and Hopf ideals

Physical identities become reasonable algebraic objects.

The Ward identities are a Hopf ideal.

The renormalization group equation becomes a combinatorial
decomposition.
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Dyson-Schwinger equations

Dyson-Schwinger equations are combinatorial specifications.
Eg (in QED):

Then apply Feynman rules.
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Dyson-Schwinger equations again

Applying Feynman rules one gets an integral equation.
Eg:

G (x , L) =

This the perturbative version of the usual physical
Dyson-Schwinger equations.



RHAs as combinatorial Hopf algebras Physics of RHAs Differential equations and RHAs

Rewriting them into pseudo-differential form

In the example

Expand out G (x , L) under the integral.

Use dk

dρk
yρ|ρ=0 = logk(y).

Swap freely.

The series has the same shape but with ρ derivatives in place of
powers of log q2. Get

G (x , L) =

This makes sense for formal power series, but . . .
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The P-equation

How to do better? One attempt: use the renormalization group
equation and a geometric series approximation.

Put the extra stuff thrown away from the approximation into a
series P(x).

Get

γ1(x) = P(x)− γ1(x)(1− sx∂x)γ1(x)

The example above was s = 2. Can do systems similarly.
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Resurgence view

Lutz Klaczynski in arxiv:1601.04140 looks at two cases where P is
not mysterious using transseries.

He concludes that the obvious transseries Ansatz is not the right
one for this problem, but why. . . .

Other people have looked too. Eg Marc Bellon and Pierre Clavier
in a Wess Zumino version arxiv:1612.07813.
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Chord diagram expansions

Another attempt, which I’m particularly excited about, is chord
diagram expansions. In the running example get (arXiv:1210.5457,
newer papers extend and enrich)

G (x , L) =


