Transport coefficients and spectral functions from the lattice? Gort Aarés (OSU) hep-ph/0203177 with Jose Haría Martinee Resco JHEP hep-ph/0108125 PCB	 fransport coefficients spectral functions → lattice correlators shear viscosity λφ⁸ shear viscosity λφ⁸ su(w) clevance for other problems: thermal dilepton rate classical Piela approximation: 	Constraint
---	---	------------

(year)

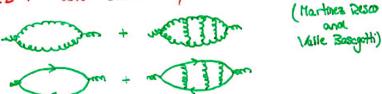
Transport coefficients

- · RHIC : nonioleal hydrodynamics (ideal hydro works extrevely well...)
- · field theory calculation: highly nontrivial What has been computed? (using Kubo relations and diagrams)

- Realars: Shear viscosity

ladder diagrams

- QCD : color conductivity



other transport coefficients in gauge theories (viscosity, electrical conductivity, Flavor difficion) computed using kinetic theory (Arnold Moore to leading log yaffe)

Fully nonperturbative computation of transport coefficient with lattice QCD ?

- · first attempt: Karsen & Wylol
- · continued: Nakenura et.al. (1986-..)

How: Kubo relation: Shear vierosity

with Tij = Tij - 3 Sij Tuk . Tij energy-mamentum tensor

spectral function:

relation with euclidean correlator:

Dispersion relation:

$$G_{\pi\pi}^{\bar{\nu}}(\omega_n) = \int \frac{d\omega}{2\pi} \frac{\rho_{\pi\pi}(\omega)}{\omega_{-i\omega_n}}$$

$$\Rightarrow G_{m}^{\epsilon}(\tau) = \int_{0}^{\infty} \frac{d\upsilon}{2\pi} \left[\langle \tau, \upsilon \rangle \rho_{m}(\upsilon) \right]$$
with kernel: $K(\tau, \upsilon) = T \sum_{n=1}^{\infty} \frac{i\upsilon_{n}\tau}{\omega^{2} + \upsilon_{n}^{2}}$

$$= e^{\omega \tau} \rho(\upsilon) + e^{-\omega \tau} [1 + \rho(\upsilon)]$$

lattice program:

- · compute GF (T) numerically
- · reconstruct PT(1) from integral equation
 - using ansate for for the bus

(Karsch & Wyld)

- wairy Maximal Entropy Method
- · find 1 ~ 20 Pm (4) \w=0

obvious questions:

- · P == (u) at high T?
- · 6 10 of high T?
- · how does η or more generally ρπτω at acct, manifest itself in Gn (T)?

How does of or more generally print(w) at use T, manifest itself in GE (T)?

Cosy: $G_{\pi\pi}(r) = \int_{r}^{\infty} \frac{dr}{dr} K(r_{r}u) p_{\pi\pi}(r)$ $K(r_{r}u) = n(u) e^{-ur} + [1+n(u)] e^{ur}$

 $\Rightarrow G_{\pi\pi}(\nabla) = \int_{2\pi}^{\omega_{\Lambda}} \frac{d\omega}{\omega} \frac{2T}{\omega} P_{\pi\pi}(\omega) \qquad \omega_{\Lambda}(cT)$

determined by integral of Phr (U)/U

hw-frequency region on soft olynamics

— transport coefficient

D

single constant term in G(t) - Jau proje

ane-loop expression i

(Jean)

with one-particle spectral function p(x-y) = ([\$(x) \$(y)])

· guasi particles :

HTL plasmon mass
$$M^2 = \frac{\lambda T^2}{24}(A+...)$$

Pinite width $J_{k} = -\frac{1}{2}M \sum_{k} (u_{k}, k)$

$$= \sqrt[3]{\pm} B(k/T) \qquad \sqrt[3]{\pm} \frac{\lambda^2 T}{1636\pi}$$

· frite width essential when and:

Pinch singularities

$$\frac{1}{8} + \frac{1}{2} = \frac{1}{8}$$

Pinch singularities

 $\frac{1}{8} + \frac{1}{2} = \frac{1}{8}$
 $\frac{1}{8} + \frac{1}{8} = \frac{1}{8}$

Pinch singularities

 $\frac{1}{8} + \frac{1}{8} = \frac{1}{8}$

· ladder diagrams contribute at some order

interested in all as 's [much easier] CI = 0 Z

0000 To pinch singularity . HILL colculation sufficient no need for ladder series =>T bare calculation

• a>> one-particle spectral function prp) = 278(p)d(p-2-up)

$$\Rightarrow \qquad \rho_{\pi\pi}(\omega) = \qquad \Theta(\omega-2m) \qquad \frac{(\omega^2-4m^2)^{5/2}}{48\pi\omega} \left[\Omega(\omega/2) + \frac{1}{2} \right]$$

· threshold from HTL . large frequencies: $p_{\pi} = \frac{24}{96\pi}$ zero temperature decay

· WEM pinching poles

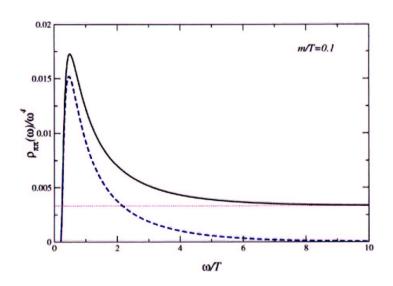
$$P_{BW}(p) = \frac{1}{20p} \left[\frac{2\delta p}{(p^{0} - 0p)^{2} + \delta p^{2}} - \frac{2\delta p}{(p^{0} + 0p)^{2} + \delta p^{2}} \right]$$

$$Poles at p^{0} = \pm (0p \pm i\delta p)$$

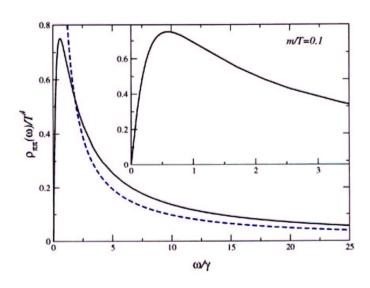
$$\Rightarrow \frac{1}{2} \int_{\infty} \frac{1}{2\pi} \left(\frac{1}{2\pi} \right)^3 \frac{1}{2\pi} \int_{\infty}^{\infty} \frac{1}{2\pi$$

· anticipated expression: - distance between the poles we+482 - 6-0 : Parto - 0/84

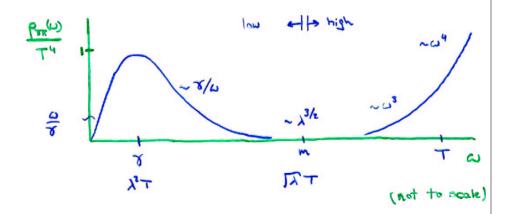
a sufficiently large no pinda singularity



with width
$$\delta_{k} = \frac{8}{3} \int \frac{d^3k}{(2\pi)^3} \frac{|\vec{x}|^4}{\omega_k^2} n'(\omega_k) \frac{\omega \delta_k}{\omega^2 + 4\delta_k^2}$$
with width $\delta_{k} = \delta \frac{\pi}{2} \mathbb{E}(\vec{x}/\tau, m/\tau)$ (Wang & Heise)



Complete result for spectral function:



- · arm: both contributions match parametrically $e_{\pi\pi}/T^4 \sim \lambda^{3/2}$
- · higher loops

changes details, not characteristic shape

 $7 \in U \subseteq M$: $\rho_{\pi\pi}(U) / T^4 \sim 7/U$ three loop diagram contributes as well $\sim \lambda^2 T/U$

SU(No) gauge theory: same story, more involved

nona Bellah dilapara

higher order

with

 $\Delta_{\tau}(P) = -\int \frac{d\upsilon}{2\pi} \frac{P_{\tau}(\upsilon,\vec{P})}{p^{\circ}_{-} \upsilon} \qquad \Delta_{\varepsilon}(P) = \frac{1}{\vec{p}^{\circ}_{-}} + \int \frac{d\upsilon}{2\pi} \frac{P_{\varepsilon}(\upsilon,\vec{P})}{P^{\circ}_{-} \upsilon}$

$$P_{NR}(\omega) = \frac{8}{3} (N_{c}^{3}-1) \int \frac{d^{4}k}{(2\pi)^{4}} \left[n(k^{9}-n(k^{9}+\omega)) \right] \times$$

$$\times \left\{ V_{1}(k,\omega) P_{T}(k^{9},\vec{k}) P_{T}(k^{9}+\omega,\vec{k}) + V_{2}(k) P_{C}(k^{9},\vec{k}) P_{T}(k^{9}+\omega,\vec{k}) + V_{3}(k) P_{C}(k^{9},\vec{k}) P_{C}(k^{9},\vec{k}) \right\}$$

with V₁(k,ω) = 71k14 - 10 k2 k3(k3+ω) + 7 k32(k3+ω)2
etc..

- Single particle spectral functions: (HTL) $\rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k^{\circ} + \omega_{+}(k)) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \left[d(k^{\circ} \omega_{+}(k)) d(k) \right] + \beta_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_{+}(k) \\
 \rho_{+}(k) = 2\pi Z_$
- transverse gluons [pok-pole] dominate when $\omega \gtrsim T$ $P_{TR}(\omega) = \frac{\omega_c^2 1}{4\pi} \omega^4 \left[n(\omega/2) + \frac{1}{4} \right]$
- · w~ gT pok-cut contribution dominates
- · smaller frequencies: pinchity poles from transverse gluens

Smaller frequencies: Pinch singularity

· use finite gluon damply rate $J = \frac{3^2 N_c}{4\pi} \ln \frac{1}{3}$

[+ gauge invariance & ladder diagram]

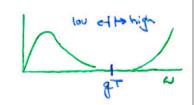
- · 1-loop viscosity 2, loop ~ (N2-1) T ~ (N2-1) T ~ (N2-1) T ~ Nc g2/n 1/g
- · wrong parametrically:

 Kinetic theory predicts: 7 Not 7 T3 (AMY)
 - = contribution from ladders larger than 1 loop result f gauge invariant summation of subclass of oliograms unsolved problem
- . However, does not affect the characteristic shape of PMM much

only here

and does not affect the euclidean correlator

Euclidean correlator



- · split contributions
- high: $G_{\pi\pi}(t) = \frac{\pi^2 T^5}{3 \sin^5 u} \left[(\pi u) (\pi \cos u + \cos s u) + 6 \sin u + 2 \sin s u \right] + O(m^2/t^2)$ $u = 2\pi \pi T$

$$= \frac{1}{8\pi^2} \left[\frac{1}{\tau^6} + \frac{1}{(1/\tau - \tau)^5} + \frac{2}{(3/2\tau - \tau)^5} + \frac{2}{(1/2\tau + \tau)^6} \right]$$
Maxwell-Boltzmann statistics, $n(\omega) \sim e^{-\omega/\tau}$

- · simple result: ~ 1 + reflection symmetry => 1/2
- central value: $G_{RW}(\tau = \frac{1}{2\tau}) = \frac{4\pi^2}{45} T^5 \left(1 \frac{25}{8\pi^2} \frac{m^2}{T^2}\right)$

. low; art expond kernel

$$G_{\pi\pi}(E) = \frac{-\frac{9}{3} \int \frac{d^3k}{(2\pi)^3} \frac{|k|^k}{\omega_k^2} \int (\omega_k) \int \frac{d\omega}{2\pi} \frac{27}{\omega} \frac{\nabla \omega_k^2}{\omega_k^2 + 40k}$$

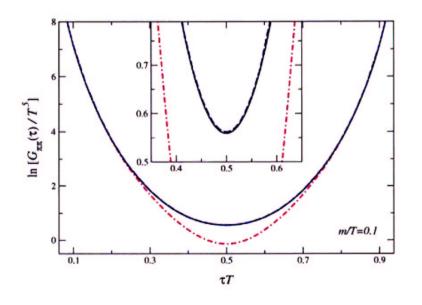
$$= \frac{4\pi^2}{46} + O(8^{2}\lambda)$$

and the state of t

Euclidean correlator:

G(E)
$$\simeq \frac{1}{8\pi^2} \left[\frac{1}{\tau s} + \frac{1}{(\sqrt{\tau - \tau})^s} + \frac{2}{(3/2\tau - \tau)^s} + \frac{2}{(\sqrt{2\tau + \tau})^s} \right]$$

$$+ \frac{4\pi^2}{4s} + s$$
contribution from interesting low frequencies



characteristic

olepenolence dominated Prequencies frequency part

Relevance for other correlators:

thermal dilepton rate

in terms of spectral function:

recent lattice calculation using Kaximal Entropy Method (Karsch et.al.)

- · pinch singularities
- · complicated behaviour at very small accomme
- · difficult to analyse from the lattice

· pii : clectrical conductivity

one loop: pii(u) = Ne = [1-2ne (u/z)] + Ne 2 = T 2 ud(u)

pinching pole identities ward ward with a ladders

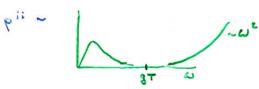
•
$$\rho^{00}(u) = u_e \frac{2\pi}{3} T^2 u \delta(u)$$

• charge conservation

$$\rho^{00}(t) = \frac{1}{V} \langle [Q(t), Q(0)] \rangle \quad \partial t Q(t) = 0$$

⇒ $\rho^{00}(u) \sim u \sigma(u)$ always!

Simple test on respecting Ward Id in Summahim schemes.



challenge for MEM to disentangle the low-frequency domain

Spectral functions and the classical approximation

- · classical field approximation: nonperturbative approach to real-time olynamics of soft, highly populated fields
- · spectral functions:
 - " equilibrium QFT ([(x)to ,10) = ((1)1) F(x-y) = { ((O(x), 0+4)]+> KMS condition: F(p) = -iln(p)+1]p(p)
 - . classical fields at finite T

with Poisson bracket

$$\{A(x), B(y)\} = \int a^{d}z \int \frac{dA(x)}{d\rho(z)} \frac{dB(y)}{d\sigma(z)} - \dots \}$$

(difficult to compute)

classical KMS condition:

or in

Example: 2+1D scalar field: plesmon H = fax [= T+ = (04)2 + = w242 + = 444]

one-particle spectral function (0.0+= 4)

P = i < [\$\psi(\mathreal{\psi}\) \psi(\psi) = \psi(\psi^2 - \psi^2 - \mi)

> S[x-y)= < \$(x)\$(y)\$(y)&(; Po (x-y)=-< \(\x \p (x) \), \$(\y) \(\x \).

KMS: 61 = - + 245

TT (t,x) = 24 4(t,x)

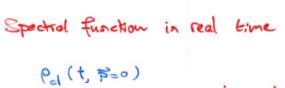
→ | Pel(t, x)= - + < π(t, x) β(0, ō) >cl

Numerical calculation:

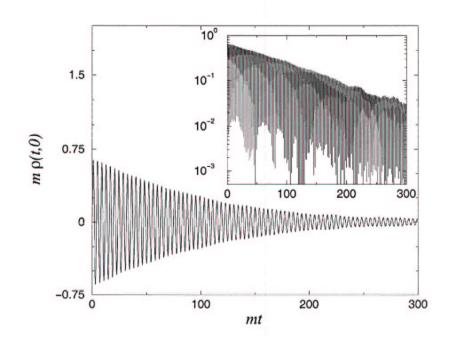
- · spatial lattice NXN, periodic la.c.
- · lattice spacing a , ma=0.2
- · leapfrog, time step ao, ao/a=0.1
- · symmetric definition:

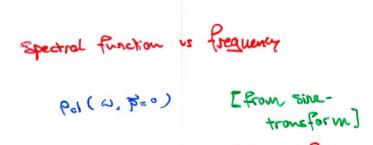
Pollar (tx)= -+ < Tr(++200,x) =[\$\phi(0,0) + \phi(00,0)]>_{el}

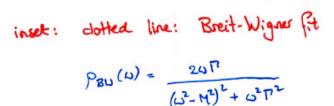
- · temperature T= a2(T2)
- · classical theory: x can be scaled act (hT/n2) without loss of openesality 1/m=1
- · therual initial configuration
 - · real-time (Hamiltonian) evolution ~ 2000 x

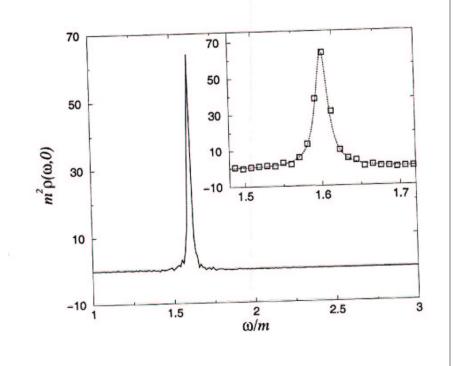


temperature T/m= 7.2



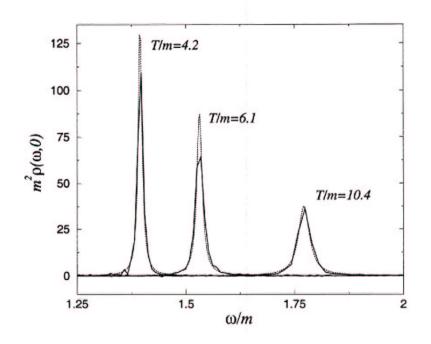






Spectral functions for different temperatures

dotted lines are Breit-Wigner Pils



Perturbative expectation: the plasmon

$$P = \frac{-\text{Im } \text{Ie}}{\left(\omega^2 - \vec{p}^2 - \kappa^2 - \text{Re} \Sigma_R\right)^2 + \left(\text{Im} \Sigma_R\right)^2}$$

$$= \frac{\text{iIm } \Sigma_R}{\text{retorded selfengy}}$$

weak coupling:

~ Breit-Wigner spectral function (at 2000 momentum)

Perturbation theory (one-loop resummed) [2+10)

•
$$M^2 = M^2 + \frac{\lambda}{2} \int \frac{d^2p}{(2\pi)^2} \frac{T}{p^2+M^2}$$
 (classical)

1 lattice gap equation for M

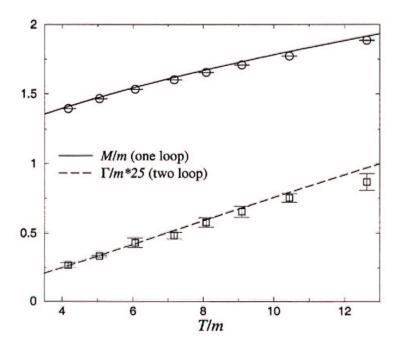
• IT : Onshell 2->2 scattering (quantum)

$$\Gamma = c \frac{\lambda^2 T^2}{M^3} \quad c = \frac{3-2\sqrt{2}}{32\pi} \sim 0.0017$$
[rew calculation]

- Compare with nanperturbative plasmon mass and

Temperature dependence of perturbative and nanperturbative classical plasman was M and width 1

[Olata paints from RW-Fit, error from Jackbriff Perturbation theory is applicable



Conclusions

- transport coefficients:
 analytical calculation in field theory mantrivial
- euclidean correlators insensitive to transport coefficients and to details of soft dynamics (wet) in general
- ex: thermal dilepton rate
- e spectral function directly in real time:

 classical approximation

 ex: plasmon