Surprising simplicity of massive scattering amplitudes

Johannes M. Henn based on
[JHEP I406 (20|4)||4] [PRL II3 (20|4)|6] with S. Caron-Huot and work in progress with R. Brüser and S. Caron-Huot

Talk at KITP, April $17^{\text {th }} 2017$

Introduction

- Kepler problem and hydrogen atom are important classical and quantum mechanics problems that can be exactly solved they have a hidden symmetry
- will show that $\mathrm{N}=4$ super Yang-Mills is a natural QFT analogue of these systems

Outline

- Introduction - hidden symmetries
- Massive amplitudes in $\mathrm{N}=4$ sYM
- Simple structure of subleading Regge behavior
- Conjecture for an exact high-energy cross section

Kepler problem

$$
V=1 / r
$$

$$
V=1 / r^{0.9}
$$

- orbits do not precess
- conservation of Laplace-Runge-Lenz vector

$$
\vec{A}=\frac{1}{2}(\vec{p} \times \vec{L}-\vec{L} \times \vec{p})-\mu \frac{\lambda}{4 \pi} \frac{\vec{x}}{|x|}
$$

Hydrogen atom

- Hamiltonian

$$
H=\frac{1}{2 m} p^{2}-\frac{k}{r}
$$

- hidden symmetry:

Laplace-Runge-Lenz-Pauli vector

- conserved quantity in quantum mechanics

$$
\begin{aligned}
& {\left[H, L_{i}\right]=0 \quad\left[H, A_{i}\right]=0} \\
& {\left[A_{i}, A_{i}\right]=-i \hbar \epsilon_{i j k} L_{k} \frac{2}{m} H}
\end{aligned}
$$

- operator algebra allows to find spectrum

$$
E_{n}=-\frac{m k^{2}}{2 \hbar^{2}} \frac{1}{n^{2}} \quad n=1,2, \ldots
$$

- degeneracy n^{2}

extension to a relativistic QFT

- Wick and Cutcosky considered the following model:

- This is the ladder approximation to $e p \rightarrow e p$, ignoring the spin of the photon
- In the non-relativistic limit, this reduces to the hydrogen Hamiltonian

SO(4) symmetry of Wick-Cutcosky model

- This model possesses an exact O(4) symmetry, even away from the NR limit
- Consider just one rung
$\cdots \int \frac{d^{4} \ell_{2}}{\left(\ell_{2}-\ell_{1}\right)^{2}\left[\left(\ell_{2}-p_{1}\right)^{2}+m^{2}\right]\left[\left(\ell_{2}+p_{2}\right)^{2}+m^{2}\right]\left(\ell_{2}-\ell_{3}\right)^{2}} \cdot$
- The symmetry is non-obvious in this form, and is a conformal symmetry in momentum space
- The symmetry becomes evident if we use Dirac's embedding formalism
- Rewrite each vector as a 6 -vector, with $L^{2}=0$:

$$
L_{i}^{a} \equiv\left(\begin{array}{c}
\ell_{i}^{\mu} \\
L_{i}^{+} \\
L_{i}^{-}
\end{array}\right)=\left(\begin{array}{c}
\ell_{i}^{\mu} \\
\ell_{i}^{2} \\
1
\end{array}\right)
$$

and similarly for the external regions:

$$
Y_{1}^{a}=\left(\begin{array}{c}
p_{1}^{\mu} \\
p_{1}^{2}+m^{2} \\
1
\end{array}\right), \quad Y_{3}^{a}=\left(\begin{array}{c}
-p_{2}^{\mu} \\
p_{2}^{2}+m^{2} \\
1
\end{array}\right)
$$

- The 6D vector product gives:

$$
\begin{array}{ll}
L_{i} \cdot L_{j}=\left(\ell_{i}-\ell_{j}\right)^{2} & L_{i} \cdot Y_{1}=\left(\ell_{i}-p_{1}\right)^{2}+m^{2} \\
& L_{i} \cdot Y_{3}=\left(\ell_{i}+p_{2}\right)^{2}+m^{2}
\end{array}
$$

- The L's andY's 'live' in regions of the planar graph

$$
\cdots \int " d^{4} L_{2} " \frac{1}{\left(L_{1} \cdot L_{2}\right)\left(L_{2} \cdot Y_{1}\right)\left(L_{2} \cdot Y_{3}\right)\left(L_{2} \cdot L_{3}\right)} \cdots
$$

- The integration measure is also important, but let me skip it for now.

$$
\cdots \int " d^{4} L_{2} " \frac{1}{\left(L_{1} \cdot L_{2}\right)\left(L_{2} \cdot Y_{1}\right)\left(L_{2} \cdot Y_{3}\right)\left(L_{2} \cdot L_{3}\right)} \cdots
$$

- Since everything (incl. measure) depends only on 6dimensional dot products, there is a natural $\mathrm{SO}(6)$ (really $\mathrm{SO}(4,2)$) symmetry
- The two vectors Y_{1}, Y_{3} obviously break it to SO(4).
- This $\mathrm{SO}(4)$ contains the usual $\mathrm{SO}(3) \vec{J}$ as a subgroup.
- What are the remaining three generators? The Runge-Lenz vector!
- Unfortunately, the ladder approximation is not consistent relativistically.
- (It lacks multi-particle channels and so has problems with unitarity)
- For this reason this symmetry appears to have been mostly abandoned, like a curiosity
- Wick and Cutkowski's study nonetheless left us the "'Wick rotation"
- The simplest way to imagine a consistent QFT with this symmetry requires a planar limit:

- The Feynman rules would have to respect the SO(6) symmetry, which acts in momentum space
- Can such a thing exist?

If such a theory exists, by unitarity surely it must contain massless particles.
Their self-interactions will have to respect the dual conformal symmetry.

$\mathrm{N}=4$ super Yang-Mills

fast-forward from I950's to 2000's
$\mathrm{N}=4 \mathrm{sYM}$ has dual conformal symmetry
[Drummond, JMH, Smirnov, Sokatchev; Alday, Maldacena; Drummond, JMH, Korchemsky, Sokatchev; ...]
in massless sector:

$$
\begin{aligned}
& p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu} \\
= & x_{13}^{2} x_{24}^{2} \int \frac{d^{D} x_{a}}{x_{1 a}^{2} x_{2 a}^{2} x_{3 a}^{2} x_{4 a}^{2}}
\end{aligned}
$$

invariant under $\mathrm{SO}(4,2)$ in dual space $x^{\mu} \rightarrow x^{\mu} / x^{2}$

Meanwhile, in Hollywood...

- Sheldon Cooper working on these problems
- this symmetry is at the heart of many developments
- duality Wilson loops/scattering amplitudes
- integrability of $N=4$ SYM theory
- and other recent developments
- we have just argued that it is a natural generalization of the hydrogen atom's $\mathrm{SO}(4)$, itself inherited from the Kepler problem
- but where are the massive particles?

introducing massive particles

gauge theory

string theory
Higgs mechanism
$\Phi \longrightarrow\langle\Phi\rangle+\varphi$
$U(N+M) \longrightarrow U(N) \times U(M)$

- e.g. four-particle scattering

$$
U(N+4) \longrightarrow U(N) \times U(4)
$$

consider scattering of $\operatorname{SU}(4)$ fields in large N limit

- infrared finite
- preserves dual conformal symmetry
- four-particle scattering (planar)

- dual conformal symmetry (planar) [Alday,JMH, Plefka,Schuster]

$$
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu} \quad p_{i}^{2}=-\left(m_{i}-m_{i+1}\right)^{2}
$$

$$
y_{i}^{A} \rightarrow \frac{y_{i}^{A}}{y_{i}^{2}}
$$

$$
y_{i}^{A}=\left(x_{i}^{\mu}, m_{i}\right)
$$

[proof of DCS for loop integrands: Dennen, Huang; Caron-Huot, O`Connell]

Massive 4-particle amplitudes in $\mathrm{N}=4 \mathrm{sYM}$

- scatter scalars from unbroken $\mathrm{SU}(4)$ part

$$
A_{Y \bar{Y} \rightarrow Y \bar{Y}}^{\mathrm{tree}}=-2 g_{\mathrm{YM}}^{2} \frac{s}{t}
$$

- loops: $\mathrm{SU}(4)$ particle interact via massive W bosons

$$
A_{Y \bar{Y} \rightarrow Y \bar{Y}}=A_{Y \bar{Y} \rightarrow Y \bar{Y}}^{\mathrm{tree}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)
$$

- we take Nc large
- mostly studied with the mass serving as a (dual-conformal-symmetry-preserving) regulator
[Alday, JMH, Plefka, Schuster 09][JMH, Naculich, Schnitzer, Spradlin I0]
- we started a systematic investigation of massive four-particle amplitudes in N=4 SYM
(to 3 loops)
[Caron-Huot \& JMH, 2014]
- e.g. one loop $M=1+g^{2} M^{(1)}+\mathcal{O}\left(g^{4}\right)$

$$
\begin{aligned}
M^{(1)}= & -\frac{2}{\beta_{u v}}\left\{2 \log ^{2}\left(\frac{\beta_{u v}+\beta_{u}}{\beta_{u v}+\beta_{v}}\right)+\log \left(\frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}\right) \log \left(\frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}}\right)-\frac{\pi^{2}}{2}\right. \\
& \left.+\sum_{i=1,2}\left[2 \operatorname{Li}_{2}\left(\frac{\beta_{i}-1}{\beta_{u v}+\beta_{i}}\right)-2 \operatorname{Li}_{2}\left(-\frac{\beta_{u v}-\beta_{i}}{\beta_{i}+1}\right)-\log ^{2}\left(\frac{\beta_{i}+1}{\beta_{u v}+\beta_{i}}\right)\right]\right\} .
\end{aligned}
$$

with $u=\frac{4 m^{2}}{-s}, \quad v=\frac{4 m^{2}}{-t}$,

$$
\beta_{u}=\sqrt{1+u}, \quad \beta_{v}=\sqrt{1+v}, \quad \beta_{u v}=\sqrt{1+u+v}
$$

- compact formula containing a lot of physics

Overview of interesting limits

Obtaining the expansions

- derive them from differential equations obtained in

$$
d f\left(s, t, m^{2}\right)=d\left[\tilde{A}\left(s, t, m^{2}\right)\right] f\left(s, t, m^{2}\right) \quad[\text { Caron-Huot, JMH, 2014] }
$$

- expansion in small parameter

$$
\begin{aligned}
& x f^{\prime}(x)=\bar{A}(x) f(x) \\
& \bar{A}(x)=\bar{A}_{0}+\bar{A}_{1} x+\ldots \\
& f(x)=\left[1+P_{1} x+\ldots\right] x^{\bar{A}_{0}} f_{0}
\end{aligned}
$$

- boundary value f_{0} : start from soft limit, transport it along the boundary of this square

Soft limit $\quad|s|,|t| \ll m^{2}$

- massive W bosons can be integrated out
- effective field theory description
- $1 / \mathrm{m}^{\wedge} 4$ term one-loop exact

$$
\frac{1}{s t} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=\frac{1}{s t}-\frac{g^{2}}{6 m^{4}}+\mathcal{O}\left(1 / m^{6}\right)
$$

in agreement with non-renormalization threorems, see e.g. [Buchbinder, Petrov, Tseytlin 01], and references therein

- we derive the expansion up to three loops, e.g.

$$
\begin{aligned}
& +\frac{s t}{m^{6}}\left(-\frac{g^{2}}{60}-\frac{g^{4}}{12}+\frac{g^{6}}{3}\right)+\frac{s t}{m^{8}}\left(-\frac{g^{2}}{840}-\frac{g^{4}}{180}\right) \\
& +\frac{s^{2}+t^{2}}{m^{8}}\left(-\frac{g^{2}}{420}-\frac{g^{4}}{45}+\frac{g^{6}}{24}\right)+\mathcal{O}\left(\frac{1}{m^{10}}, g^{4}\right)
\end{aligned}
$$

Note: Soft limit for $U(I)$ external states was discussed in [Bianchi, Morales, Wen I5]

High-energy limit $m^{2} / s \rightarrow 0, m^{2} / t \rightarrow 0$, with s / t fixed

- mass serves as a regulator for infrared/collinear divergences

$$
M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=1+g^{2}\left[-2 \log \left(\frac{m^{2}}{-s}\right) \log \left(\frac{m^{2}}{-t}\right)+\pi^{2}\right]+\mathcal{O}\left(g^{4}\right)
$$

- structure of IR-divergent terms known
- finite part fixed by dual conformal Ward identity for Wilson loops [Drummond, Korchemsky, JMH, Sokatchev, 07] [Alday, JMH, Plefka, Schuster 09]

$$
\begin{gather*}
\log M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=-\frac{1}{8} \gamma\left(g^{2}\right)\left[\log ^{2}\left(\frac{-s}{m^{2}}\right)+\log ^{2}\left(\frac{-t}{m^{2}}\right)\right]-\tilde{\mathcal{G}}_{0}\left[\log \left(\frac{-s}{m^{2}}\right)+\log \left(\frac{-t}{m^{2}}\right)\right] \\
+\frac{1}{8} \gamma\left(g^{2}\right)\left[\log ^{2}\left(\frac{-s}{-t}\right)+\pi^{2}\right]+\tilde{c}\left(g^{2}\right)+\mathcal{O}\left(m^{2}\right) \tag{2.15}
\end{gather*}
$$

$\gamma(g)$ light-like cusp [Beisert, Eden, Staudacher, 07]

- confirms a previous conjecture [Bern, Dixon, Smirnov, 05]
- note: formula is Regge exact:
$\log M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=\frac{\gamma(g)}{8}\left[-2 \log \left(\frac{m^{2}}{-s}\right) \log \left(\frac{m^{2}}{-t}\right)+\pi^{2}\right]+\tilde{\mathcal{G}}_{0}(g)\left[\log \left(\frac{m^{2}}{-s}\right)+\log \left(\frac{m^{2}}{-t}\right)\right]+\tilde{c}(g)+\mathcal{O}\left(m^{2}\right)$.
[Drummond, Korchemsky, Sokatchev, 07] [Naculich, Schnitzer, 07]

Regge limit and cusp anomalous dimension

- expected Regge behavior

$$
\begin{gathered}
\lim _{s \rightarrow \infty} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=r_{0}(t)\left(\frac{-s}{m^{2}}\right)^{j_{0}(t)+1}+\mathcal{O}(1 / s) \\
j_{0}(t)+1=\frac{2 g^{2}}{\beta_{v}} \log \frac{\beta_{v}-1}{\beta_{v}+1}+\mathcal{O}\left(g^{4}\right) \\
r_{0}(s)=1+\mathcal{O}\left(g^{2}\right)
\end{gathered}
$$

- in planar N=4 sYM, Regge trajectory is related to cusp anomalous dimension

- subleading powers I / s in limit poorly studied
- we observe that I/s term is given by a single power law
- we make a conjecture for its exponent

An implication of dual conformal symmetry

 $M_{4}\left(s, t ; m_{1}, m_{2}, m_{3}, m_{4}\right)=M(u, v)$ [Alday, JMH, Plefka,Schuster 09]$$
u=\frac{4 m_{1} m_{3}}{-s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{4 m_{2} m_{4}}{-t+\left(m_{2}-m_{4}\right)^{2}}
$$

- implies equivalence [JMH, Naculich, Schnitzer, Spradlin I0]

$$
m_{i}=m
$$

$$
m_{2}=m_{4}=m \quad m_{1}=m_{3}=\Lambda \gg m
$$

$$
M \sim_{t \rightarrow \infty} t^{(j(s)+1)}
$$

$$
M \sim_{m \rightarrow 0} m^{\Gamma_{\mathrm{cusp}}(\phi)}
$$

$$
j(s)+1=-\Gamma_{\text {cusp }}(\phi) \quad \text { where } \quad s=4 m^{2} \sin ^{2} \frac{\phi}{2}
$$

Anomalous dimension $\Gamma_{\text {cusp }}(\phi)$ of a Wilson loop with cusp

- known in QCD up to 3 loops
[Polyakov 1980] [Korchemsky, Radyushkin, 1987] [Grozin, JMH,Korchemsky, Marquard, 2016]
- known in planar $\mathrm{N}=4$ sYM up to 4 loops
[Drukker, Forini 06] [Correa, JMH, Maldacena, Sever I2] [JMH, Huber I3]
- exact result

$$
\Gamma_{\mathrm{cusp}}(\phi)=-B \phi^{2}+\mathcal{O}\left(\phi^{4}\right)
$$

[Correa, JMH, Maldacena, Sever I2]

$$
B=\frac{1}{4 \pi^{2}} \frac{\sqrt{\lambda} I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})} \approx g^{2}-\frac{2}{3} \pi^{2} g^{4}+\frac{2}{3} \pi^{4} g^{6}+\ldots
$$

- planar case governed by integrability
[Drukker I2] [Correa, Maldacena, Sever I2]
- strong coupling computation from
a minimal surface [Drukker, Gross,Ooguri, 1999]

power suppressed terms in Regge limit

- we find only one 'daughter' trajectory

$$
\lim _{s \rightarrow \infty} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=\left(\frac{-s}{m^{2}}\right)^{j_{0}(t)+1}\left(1+\frac{c_{1}(t)}{s}\right)+\frac{c_{2}(t)}{s}\left(\frac{-s}{m^{2}}\right)^{g^{2} c_{3}(t)}+\mathcal{O}\left(1 / s^{2}\right)
$$

- tested up to 3 loops
- dual conformal symmetry suggests $O(4)$ partial wave expansion

The first two terms in the Regge limit are pure powers, when using O(4) variables!

$$
\lim _{s \rightarrow \infty} \frac{1+e^{-\rho}}{1-e^{-\rho}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=r_{0}(t) e^{\left(j_{0}(t)+1\right) \rho}+r_{1}(t) e^{\left(j_{1}(t)+1\right) \rho}+\mathcal{O}\left(e^{-2 \rho}\right) .
$$

$$
\left(\cosh \rho=1+\frac{2 s}{t}-\frac{s}{2 m^{2}}\right)
$$

O(4) partial wave expansion

$$
\lim _{s \rightarrow \infty} \frac{1+e^{-\rho}}{1-e^{-\rho}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=r_{0}(t) e^{\left(j_{0}(t)+1\right) \rho}+r_{1}(t) e^{\left(j_{1}(t)+1\right) \rho}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

-3-loop result agrees with this form!
$\cosh \rho=1+\frac{2 s}{t}-\frac{s}{2 m^{2}}$

- We find $\left(\frac{\beta_{v}-1}{\beta_{v}+1}=e^{-\varphi}, \quad \xi=\frac{1}{\beta_{v}}\right)$

sub-leading trajectory:

$$
\begin{aligned}
j_{1}= & -2-4 g^{2}+g^{4}\left(16-\frac{4}{3 \xi} \varphi^{3}+8(\varphi-2 \xi)\left(\varphi-\frac{1}{\xi} \zeta_{2}\right)\right) \\
+g^{6}[& \frac{24}{\xi} \operatorname{Li}_{4}\left(e^{-2 \varphi}\right)+\left(64+\frac{16 \varphi}{\xi}\right) \operatorname{Li}_{3}\left(e^{-2 \varphi}\right)+64(\varphi+\xi) \operatorname{Li}_{2}\left(e^{-2 \varphi}\right)-128 \varphi \xi \log \left(1-e^{-2 \varphi}\right) \\
& +\frac{8}{5 \xi} \varphi^{5}-\frac{8}{3} \varphi^{4}\left(5+\frac{1}{\xi}\right)+\frac{16}{3} \varphi^{3}\left(4+7 \xi+\frac{1+4 \zeta_{2}}{\xi}\right)-16 \varphi^{2}\left(3+6 \zeta_{2}+4 \xi+2 \xi^{2}+\frac{\zeta_{2}}{\xi}\right) \\
& \left.+16 \varphi\left(4 \zeta_{2}+6 \xi\left(2+\zeta_{2}\right)+\frac{11 \zeta_{4}-\zeta_{3}+2 \zeta_{2}}{\xi}\right)-24 \zeta_{4}\left(10+\frac{1}{\xi}\right)+32 \zeta_{3}-64 \zeta_{2}(1+\xi)-128\right]
\end{aligned}
$$

residue:

$$
r_{1}=2+8 g^{2}\left(2 \log \frac{1+e^{-\phi}}{1-e^{-\phi}}-1\right)+\mathcal{O}\left(g^{4}\right)
$$

Subleading Regge trajectory from an anomalous dimension

- leading Regge trajectory is cusp anomalous dimension j_{0}

- we conjecture that the first subleading trajectory is computed from the anomalous dimension of a j_{1} Wilson loop with a scalar insertion at the cusp
- two-loop test underway
[Brueser, Caron-Huot, JMH]

Forward limit and cross section

- optical theorem relates $A_{Y \bar{Y} \rightarrow Y \bar{Y}}$ to

$$
\begin{aligned}
& \sigma_{\text {tot }}=\sigma_{Y} \bar{Y} \rightarrow W W+\text { gluons } \\
& \sigma_{\text {tot }}=\frac{1}{2 E_{\mathrm{cm}} p_{\mathrm{cm}}} \lim _{t \rightarrow 0} \operatorname{Im}(A)=\frac{1}{s} \lim _{t \rightarrow 0} \operatorname{Im}(A)
\end{aligned}
$$

- one-loop example:

$$
\sigma_{\mathrm{tot}}=\frac{32 \pi^{3} g^{2}}{N_{c} m^{2}} \sqrt{1-4 m^{2} / s}+\mathcal{O}\left(g^{4}\right)
$$

- cross section goes to a constant at high energies

$$
\lim _{s \rightarrow \infty} \sigma_{\text {tot }}=\frac{32 \pi^{3} g^{2}}{N_{c} m^{2}}+\mathcal{O}\left(g^{4}\right)
$$

- we will make a conjecture for this limit at any coupling!

Exact cross section at high energies

- leading Regge behavior

$$
\lim _{s \rightarrow \infty} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-s}\right)=r_{0}(t)(-s-i 0)^{1+j_{0}(t)}+\mathcal{O}(1 / s)
$$

- analytically continue and take imaginary part, take forward limit

$$
\lim _{t \rightarrow 0} \lim _{s \rightarrow \infty} \frac{1}{-t} \operatorname{Im} M(s, t)=\left.\pi \frac{d}{d t} j_{0}(t)\right|_{t=0}
$$

- the slope is given by the 'Bremsstrahlung function'

$$
\left.\frac{d}{d t} j_{0}(t)\right|_{t=0}=\frac{B}{m^{2}}, \quad B=\frac{1}{4 \pi^{2}} \frac{\sqrt{\lambda} I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})} \approx g^{2}-\frac{2}{3} \pi^{2} g^{4}+\frac{2}{3} \pi^{4} g^{6}+\ldots
$$

- Assuming the above limits commute, we obtain

$$
\lim _{s \rightarrow \infty} \sigma_{Y \bar{Y} \rightarrow W W+X}=\frac{2 \pi^{2} g^{2}}{m^{2}} B
$$

- confirmed by explicit calculation up to 3 loops

Perturbative check to 3 loops

- we find $\quad \sigma_{\text {tot }}=\frac{32 \pi^{3} g^{2}}{N_{c} m^{2}}\left[g^{2} X_{1}+g^{4} X_{2}+g^{6} X_{3}+\mathcal{O}\left(g^{8}\right)\right]$

$$
\begin{aligned}
X_{1}= & \frac{1+x}{1-x} \\
X_{2}= & 16 \operatorname{Li}_{2}(-x)+8 \log (-x) \log (x+1)-\frac{2 \pi^{2}}{3}, \\
X_{3}= & -48 H_{-3,0}(-x)+64 H_{3,0}(-x)+48 H_{-2,0,0}(-x)-64 H_{2,0,0}(-x) \\
& -48 \zeta_{2} H_{-2}(-x)+64 \zeta_{2} H_{2}(-x)+32 \zeta_{4} \\
& +\frac{1+x}{1-x}\left[16 H_{-3,0}(-x)+96 H_{-2,2}(-x)-32 H_{2,2}(-x)+128 H_{3,1}(-x)\right. \\
& +64 H_{-2,0,0}(-x)+32 H_{-2,1,0}(-x)+32 H_{2,-1,0}(-x)-80 H_{2,0,0}(-x) \\
& \left.-96 H_{2,1,0}(-x)-112 \zeta_{2} H_{-2}(-x)+96 \zeta_{2} H_{2}(-x)+28 \zeta_{4}\right] .
\end{aligned}
$$

- here $x=\frac{\left.\sqrt{1-4 m^{2} / s}-1\right)}{\sqrt{1-4 m^{2} / s}+1}$ and $-1<x<0$; H are harmonic polylogarithms
- high-energy limit $\quad x \rightarrow 0$

$$
X_{1} \rightarrow 1, \quad X_{2} \rightarrow-\frac{2 \pi^{2}}{3}, \quad X_{3} \rightarrow \frac{2 \pi^{4}}{3} .
$$

- perfectly agrees with conjectured formula!

$$
\lim _{s \rightarrow \infty} \sigma_{Y \bar{Y} \rightarrow W W+X}=\frac{2 \pi^{2} g^{2}}{m^{2}} B
$$

Conclusion

- studied massive amplitudes on the Coulomb branch of $\mathrm{N}=4 \mathrm{sYM}$
- many limits governed by integrability, or exact results available, at leading order in expansion

New results:

- We found hints for a systematic expansion in the Regge limit
- only one daughter trajectory at I/s
- conjectured an exact formula for a high-energy cross section

Outlook

- confirm conjecture for subleading Regge trajectory?
- Wilson loop with scalar insertion from integrability?
[Gromov, Kazakov,Leurent,Volin, I3; Gromov, Levkovich-Maslyuk I5]
- for massless amplitudes, expansion derived around collinear limit using integrability; can the same be done for the Regge limit?
[Alday, Gaiotto, Maldacena, Sever,Vieira 06; Basso, Sever,Vieira I3]
- amplitudes at strong coupling: so far, minimal areas computed only for small mass; it would be interesting to extend this to finite mass, at least in Regge limit
[Drukker, Gross, Oguuri 1999;Alday, Maldacena 07]

Thank you!

forward limit, total cross section $t=0$
$s, t \rightarrow 0$
soft limit
effective action

threshold expansion $s \sim 4 m^{2}$ relation to hydrogen-like system

$$
s, t \rightarrow \infty
$$

high energy limit exact result infrared/collinear divergences regulated by mass

Extra slides

Extra slide: functions

- canonical form of differential equations for finite integrals
transcendental
weight

2

[Caron-Huot \& JMH, 2014]

0

- makes symbol and weight structure manifest

$$
\begin{aligned}
& g_{6}=\int_{\gamma} d \log \frac{\beta_{u}-1}{\beta_{u}+1} d \log \frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}+\int_{\gamma} d \log \frac{\beta_{v}-1}{\beta_{v}+1} d \log \frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}} \\
& u=\frac{4 m^{2}}{-s}, \quad v=\frac{4 m^{2}}{-t}, \quad \beta_{u}=\sqrt{1+u}, \quad \beta_{v}=\sqrt{1+v}, \quad \beta_{u v}=\sqrt{1+u+v}
\end{aligned}
$$

Extra slide: functions

- massive four-point alphabet at 2 loops in $D=4$

$$
\begin{aligned}
& u, 1+u, v, 1+v, u+v, \quad \text { [Caron-Huot \& JMH, 20।4] } \\
& \frac{\beta_{u}-1}{\beta_{u}+1}, \frac{\beta_{v}-1}{\beta_{v}+1}, \frac{\beta_{u v}-1}{\beta_{u v}+1}, \frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}, \frac{\beta_{u v}-\beta_{v}}{\beta_{u v}+\beta_{v}}
\end{aligned}
$$

- additional letters at 2 loops for arbitrary D

$$
\begin{aligned}
& \left\{1+u+v, \frac{4-v+\beta}{4-v-\beta}, \frac{4+v+\beta}{4+v-\beta}, \frac{\left(4 \beta_{u}+\beta\right)\left(4 \beta_{u}+\beta_{u} v+\beta\right)}{\left(4 \beta_{u}-\beta\right)\left(4 \beta_{u}+\beta_{u} v-\beta\right)}, \frac{\left(4 \beta_{u v}+\beta\right)\left(4 \beta_{u v}-\beta_{u v} v+\beta\right)}{\left(4 \beta_{u v}-\beta\right)\left(4 \beta_{u v}-\beta_{u v} v-\beta\right)},\right. \\
& \beta=\sqrt{16+16 u+8 v+v^{2}} .
\end{aligned}
$$

- additional letters at 3 loops in $\mathrm{D}=4$

$$
u^{2}-4 v, v^{2}-4 u, \frac{2-2 \beta_{u v}+u}{2+2 \beta_{u v}+u}, \frac{2-2 \beta_{u v}+v}{2+2 \beta_{u v}+v}
$$

- $\mathrm{D}=4$ alphabets can be made rational by changing variables

Transporting the boundary value

- boundary value f_{0} : start from soft limit, transport it along the boundary of this square

- choice of analytic continuation path

- extra step at three loops:

$$
\gamma_{\delta}(t)=(u, v)=(\delta(1-t), \delta t), \quad t \in[0,1]
$$

$$
\{\log (u), \log (v), \log (u+v)\} \longrightarrow\{\log (\delta), \log (t), \log (1-t)\}
$$

bound state energy of pair of W bosons

- Regge theory: extract spectrum from

$$
\Gamma_{\text {cusp }}\left(\phi_{n}\right)=-n \quad E_{n}=2 m \sin \frac{\phi_{n}}{2}
$$

n integer

- obtain bound state energy from cusp anomalous dimension

$$
\begin{aligned}
& \Gamma_{\text {cusp }}(\phi)=-\frac{\lambda}{8 \pi^{2}} \phi \tan \frac{\phi}{2}+\mathcal{O}\left(\lambda^{2}\right) . \\
& \Gamma_{\text {cusp }}(\pi-\delta) \approx-\frac{\lambda}{4 \pi \delta}
\end{aligned}
$$

we find

$$
E_{n}-2 m=-\frac{\lambda^{2} m}{64 \pi^{2} n^{2}}+O\left(\lambda^{3}\right) .
$$

as expected from

$$
H=\frac{p^{2}}{2 \mu}-\frac{\lambda}{4 \pi} \frac{1}{|x|}
$$

higher orders

- resummation required (ultrasoft effects) ${ }_{\text {Pineda 2007] }}^{\text {[systematic EFT, }}$

$$
\begin{aligned}
& \Gamma_{\mathrm{cusp}}(\pi-\delta)=\frac{-\lambda}{4 \pi \delta}\left(1-\frac{\delta}{\pi}\right)+\frac{\lambda^{2}}{8 \pi^{3} \delta} \log \frac{\epsilon_{\mathrm{uv}}}{2 \delta} \\
& \quad-\frac{\lambda}{4 \pi^{2}} \int_{\epsilon_{\mathrm{uv}}}^{\infty} \frac{d \tau}{\cosh (\tau)-1}\left(e^{-\tau \frac{\lambda}{4 \pi \delta}}-1\right)+\mathcal{O}\left(\lambda^{3}\right) . \begin{array}{l}
\text { SCorrea, JMH, Maldacena, } \\
\text { Sever, 20I2] }
\end{array}
\end{aligned}
$$

- result for energy

$$
\left.\left(E_{n}-2 m\right)\right|_{\lambda^{3}}=\frac{-\lambda^{3} m}{64 \pi^{4} n^{2}}\left[S_{1}(n)+\log \frac{\lambda}{2 \pi n}-1-\frac{1}{2 n}\right] \quad S_{1}(n)=\sum_{k=1}^{n} \frac{1}{k}
$$

- checks
- [...] bounded for any n
- n large correctly gives quark-antiquark potential
[Ericksson, Semenoff, Szabo Zarembo, 1999; Pineda 2007]
- confirmed by standard 'Coulomb resummation’ [Caron-Huot, JMH]
[see Beneke, Kiyo \& Schuller 1312.4791]

Strong coupling check

- cusp anomalous dimension $\Gamma_{\text {cusp }}(\phi)$ at strong coupling was computed from minimal surface
[Drukker, Gross, Ooguri, 1999]
- spectrum of 'mesons' was computed at strong coupling in 2003
[Kruczensky, Mateos, Myers,Winters, 2003]
- the two curves agree perfectly, once one uses the correct dictionary!

$$
E_{n}=2 m \sin \frac{\phi_{n}}{2}
$$

Regge trajectories of Hydrogen-like states

$\lambda=5,10,10,30,100 \quad$ (bottom to top)
solid/blue: based on weak-coupling formulas dashed/red: based on strong-coupling formulas

- exact spectrum should be computable
from TBA for $\Gamma_{\text {cusp }}(\phi)$
[Correa, Maldacena, Sever; Drukker]

O(4) partial wave expansion

- variables $\quad e^{-\rho}=\frac{\beta_{u v}-\beta_{u}}{\beta_{u v}+\beta_{u}}, \quad \cosh \rho=1+\frac{2 t}{s}-\frac{t}{2 m^{2}}$.

$$
\frac{t}{s} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=\sum_{j=0}^{\infty} P_{j}^{(4)}(\cosh \rho) C_{j}\left(\frac{4 m^{2}}{-t}\right) .
$$

- Legendre polynomials $P_{j}^{(4)}(\cosh \rho)=\frac{\sinh (j+1) \rho}{(j+1) \sinh \rho}$
- Sommerfeld-Watson representation

$$
\frac{1+e^{-\rho}}{1-e^{-\rho}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=\int_{-i \infty}^{i \infty} \frac{d j}{2 \pi i \sin \pi j} e^{(j+1) \rho} C_{j}\left(\frac{4 m^{2}}{-t}\right)
$$

- Regge limit, $s \sim e^{\rho} \rightarrow \infty$, assuming no daughter trajectories:

$$
\lim _{s \rightarrow \infty} \frac{1+e^{-\rho}}{1-e^{-\rho}} M\left(\frac{4 m^{2}}{-s}, \frac{4 m^{2}}{-t}\right)=r_{0}(t) e^{\left(j_{0}(t)+1\right) \rho}+r_{1}(t) e^{\left(j_{1}(t)+1\right) \rho}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

