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A tutorial
How does a (large) system reach equilibrium or

what does it do while it evolves out of equilibrium

• Dynamics in one dimensional energy landscapes

• " in the simplest free-energy landscapes

• " in complex free-energy landscapes

In all cases, discussion of time scales, thermalisation, fluctuations
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A tutorial
How does a (large) system reach equilibrium or

what does it do while it evolves out of equilibrium

• Dynamics in one dimensional energy landscapes

Conservative dynamics : Newton

Dissipative dynamics : Langevin

Equilibrium vs. out of equilibrium

White (Markov) vs. coloured (memory) noises

Exponential vs. non-exponential relaxation

Relaxation, diffusion & activation

• Dynamics in the simplest free-energy landscapes

• Dynamics in complex free-energy landscapes

In all cases, discussion of time scales, thermalisation, fluctuations
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Newton equation
Motion of a particle in one dimension

A particle with mass M and time-dependent position r(t) evolves

according to Newton’s eq.

Mr̈(t)︸ ︷︷ ︸
inertia

= F (t)︸︷︷︸
force

Inertia: mass times acceleration

Force:
gradient descent F (r(t)) = − dV (r)

dr

∣∣∣∣
r=r(t)

in d = 1

but other options in higher dimensions

or generic F (t)
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Newton equation
Conservative dynamics in a one dimensional harmonic potential

A particle with mass M and time-dependent position r(t) evolves

according to Newton’s eq.

Mr̈(t)︸ ︷︷ ︸
inertia

= F (r(t))︸ ︷︷ ︸
force

Force F (r(t)) = − dV (r)

dr

∣∣∣∣
r(t)

⇒

Constant energy E = (p(t))2

2M + V (r(t))

and confinement rleft < r < rright

V

rleft r rright

∞
↗

p(t)≡Mṙ(t)
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Langevin equation
Effects of an environment : dissipation and noise

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= F (t)︸︷︷︸
force

+ ξ(t)︸︷︷︸
noise

Gaussian white noise,

zero mean 〈 ξ(t) 〉 = 0 and correlation 〈 ξ(t)ξ(t′) 〉 = 2γkBTδ(t− t′)
γ is the friction coefficient, T is the temperature of the equilibrium bath and

kB the Boltzmann constant. β = (kBT )−1

The noise is delta-correlated, factor 2γ ensures equilibration of the bath
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Langevin equation
Relaxation dynamics in a one dimensional harmonic potential

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= −Mω2
0 r(t)︸ ︷︷ ︸

potential force

+ ξ(t)︸︷︷︸
noise

Friction/Dissipation Fd(t) = −γṙ(t) ⇒

Energy decay
d〈H(t)〉
dt

= −γ〈ṙ2(t)〉

Relaxation 〈r(t)〉 → rmin + c e−t/τ f(ωt)

Time-scale τover = γ
Mω2

0
and τunder = M

γ

V

r
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Langevin equation
Relaxation dynamics in a one dimensional harmonic potential

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= −Mω2
0 r(t)︸ ︷︷ ︸

potential force

+ ξ(t)︸︷︷︸
noise

Bath+Potential ⇒ Equilibration

P (p, r, t) → PGB(p, r) =
e−βH(p,r)

Z

H(p, r) =
p2

2M
+
Mω2

0 (r − rmin)2

2

V

r
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Newton equation
Conservative dynamics in a one dimensional double-well potential

A particle with mass M and time-dependent position r(t) evolves

according to Newton’s eq.

Mr̈(t)︸ ︷︷ ︸
inertia

= F (r(t))︸ ︷︷ ︸
potential force

Force F (t) = − dV (r)

dr

∣∣∣∣
r(t)

⇒

Constant energy E = M
2 ṙ

2(t) + V (r(t))

V

E

r

∞
↗
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Langevin equation
Thermal activation over finite barriers

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= µ r(t)− gr3(t)︸ ︷︷ ︸
double well force

+ ξ(t)︸︷︷︸
noise

Friction/Dissipation Fd(t) = −γṙ(t) ⇒
d〈H(t)〉
dt

= −γ〈ṙ2(t)〉

Activation over the barrier tA = τ0 e
β∆V

V

r
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Langevin equation
Thermal activation over finite barriers

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= µ r(t)− gr3(t)︸ ︷︷ ︸
double well force

+ ξ(t)︸︷︷︸
noise

Five independent runs r(t)

Bath+Potential⇒ Equilibration

P (p, r, t) → PGB(p, r) =
e−βH(p,r)

Z

r

t
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Dynamics in equilibrium
Two properties

• One-time quantities reach their equilibrium values:

〈A({~r}ξ)(t) 〉 → 〈A({~r}) 〉GB

• All time-dependent correlations are stationary (steady state)

〈A1({~r}ξ)(t1)A2({~r}ξ)(t2) · · ·An({~r}ξ)(tn) 〉 =

〈A1({~r}ξ)(t1 + ∆)A2({~r}ξ)(t2 + ∆) · · ·An({~r}ξ)(tn + ∆) 〉

for any n and ∆. In particular, C(t, tw) = C(t− tw)

• The fluctuation-dissipation theorem (FDT), a model independent relation bet-

ween linear responses (susceptibilities) and correlation functions, holds.

In particular, χ(t, tw) = (kBT )−1[C(t, t)− C(t, tw)] (thermal)
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Langevin equation
Out of equilibrium diffusion due to flatness of potential

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= ��
���:0

F (r(t))︸ ︷︷ ︸
flat potential

+ ξ(t)︸︷︷︸
noise

Friction/Dissipation Fd(t) = −γṙ(t) ⇒
〈H(t)〉 → 〈p2〉GB/(2M) τunder = M

γ

Normal diffusion

∆r(t, t
′) ≡ 〈(r(t)−r(t′))2〉 → 2D|t−t′|

V

r
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Langevin equation
Out of equilibrium diffusion due to flatness of potential

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= ��
���:0

F (r(t))︸ ︷︷ ︸
flat potential

+ ξ(t)︸︷︷︸
noise

Friction/Dissipation Fd(t) = −γṙ(t) ⇒
〈H(t)〉 → 〈p2〉GB/(2M) τunder = M

γ

Self-correlation

Cr(t, t
′) ≡ 〈r(t)r(t′)〉 → min(t, t′)

V

r
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Langevin equation
Out of equilibrium diffusion due to flatness of potential

A particle with mass M and time-dependent position r(t) coupled to a

memory-less equilibrium environment evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+ γṙ(t)︸ ︷︷ ︸
friction

= ��
���:0

F (r(t))︸ ︷︷ ︸
flat potential

+ ξ(t)︸︷︷︸
noise

Bath+flat potential

P (p, r, t) → e−β
p2

2M

Zp
× unbounded

momenta equilibrate but coordinates do not

V

r
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Statements
One dimensional Markov (white noise) Langevin dynamics

Under an environment in equilibrium,

a confining potential limr→±∞ V (r) =∞
and finite barriers ∆V (r) <∞

equilibration of both p and r.

exponential approach to equilibrium e−t/τ (different τ )

Arrhenius activation over finite barriers tA = τ0 e
β∆V

Flat potential (or unconfining one)

equilibration of p and out of equilibrium dynamics of r

neither stationarity nor FDT of r observables
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General Langevin equation
Non-Markovian dynamics

A particle with mass M and time-dependent position r(t) coupled to an

equilibrium environment with memory evolves according to

Mr̈(t)︸ ︷︷ ︸
inertia

+

∫ t

t0

dt′ ΣB(t− t′)ṙ(t′)︸ ︷︷ ︸
friction

= F (t)︸︷︷︸
force

+ ξ(t)︸︷︷︸
noise

Coloured noise with correlation 〈 ξ(t)ξ(t′) 〉 = kBT ΣB(t− t′) and zero

mean.

Equilibrium environment : the same friction kernel and noise correlation ΣB(t−t′).

Derivations: see, e.g., Weiss 99, LFC Les Houches 02
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Coloured noise
Power-law correlations

Generic: Most of the exact fluctuation-dissipation relations in and

out of equilibrium remain unaltered for generic ΣB, e.g. the fluctuation-

dissipation theorem, fluctuation theorems, etc.

Aron, Biroli & LFC 10

Particular: The functional form of the observables depends on the cha-

racteristics of the noise, i.e. on ΣB.

Some interesting cases are

ΣB(t− t′) =
g

ΓE(1− α)
|t− t′|−α with α > 0

g the ‘friction coefficient’ and ΓE the Euler-function.
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Example
a particle in a harmonic potential

V

r

V (r) = 1
2
Mω2

0 r
2

After a relatively short transient,

independently of the initial condition

equilibrium dynamics

Cr(t, t
′) ≡ 〈r(t)r(t′)〉 → 1

Mω2
0

Eα,1

(
−Mω2

0 |t− t′|α
γ

)
with Eα,1 =

∑
k=0

zk

ΓE(αk+1) the Mittag-Leffler function.

Only for an Ohmic bath α = 1 the relaxation is exponential E1,1(z) = ez

non-Ohmic bath α 6= 1Eα,1(z)→ z−1 for z → −∞ power-law relaxation.
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Example
Time-scales & FDT violations in the simple oscillator

Coupling to one bath at temperature T vs.

Coupling to several baths with different time-scales and temperatures

χ(t, tw) =

χ(t− tw)

C(t, tw) = C(t− tw)

Two scales Not well-separated scales

LFC & Kurchan 99
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Statements
One dimensional Markov Langevin dynamics

Even the long-term dynamics may depend on the microscopic dyna-

mics, in this case as induced by the bath.

The approach to equilibration can be non-exponential

in this example, it is dictated by the noise correlation

It is hard to conclude on thermal equilibration from the functional

form of the observables or stationary correlation functions

The comparison between correlation functions and linear response

functions gives more detailed information in this respect
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Langevin equation
Diffusion in random quenched potentials

V
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Figs. from Carpentier & Le Doussal 00

MSD ∆r(t, t
′) ≡ 〈(r(t)− r(t′))2〉 → 2D|t− t′|a

Interest in anomalous diffusion a, renormalisation of diffusion constantD, etc.

Reviews Bouchaud & Georges 90, Metzler & Klafter 00, Havlin & ben-Avraham 02
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Trap models
For dynamics in real but also phase space
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Bouchaud 92 Bouchaud & Dean 95 Carpentier & Le Doussal 00

Variations on the connectivity of the traps, the trapping time distributions,

the nesting of traps within traps, etc.

Many studies including

Ben Arous, Bovier, Gayrard, Jerny 02-08, Baity-Jesi, Biroli, Cammarota 17-18

More on the relation with disordered systems’ dynamics later
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A tutorial
How does a (large) system reach equilibrium or

what does it do while it evolves out of equilibrium

• One dimensional energy landscapes

• The simplest free-energy landscape : many variables - large dimensions

Time-dependent Ginzburg-Landau equation

Collective effects

Critical relaxation

• Complex free-energy landscapes

• Time scales, thermalisation
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Ferromagnetism
Equilibrium configurations - up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

T →∞ T = Tc T < Tc

Simplest physical problem with a phase transition : Disordered high temperature

phase, 2nd order phase transition, spontaneous symmetry breaking below Tc,

two ordered low temperature phases related by symmetry (all up or all down

decorated with thermal fluctuations).
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Ferromagnetism
Equilibrium configurations - up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

T →∞ T = Tc T < Tc

Static questions: coarse-grained local order parameter, effective “weight”

functional i.e. free-energy functional⇒ Ginzburg-Landau approach

26



Models
Discrete vs. continuous

Ising spin models

H = −
∑
〈ij〉

Jijsisj

Field theory for the order parameter

F [φ] =
∫
dDr

[
1
2
(∇φ)2 + µ

2
φ2 + g

4
φ4)
]

φ(~r) = V−1
~r

∑
i∈V~r

si

F [φ] ∝ Ld while V~r = δd � `d � Ld

Generalisations to vector models. Quenched disorder can be introduced by

taking the Jij or the parameters in the field theory to be random distributed.
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Ferromagnetism
Bi-valued equilibrium states related by symmetry

v[φ] = µ
2
φ2(~r) + g

4
φ4(~r)

Potential density

∆v[φ] = O(1)

φ(~r)

Ginzburg-Landau free-energy Scalar order parameter

Disordered phase (high T , µ > 0) Ordered phases (low T , µ < 0)

Critical point (Tc, µ = 0)
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Ferromagnetism
Free-energy density for the global order parameter

∫
dDr (∇φ)2 ⇒ φ(~r) = φ and f = L−d

∫
dDr v[φ(~r)] = v(φ)

〈φ〉 = φsaddle−point = φmin ≡ φ s. t. v′[φ] = 0 & v′′[φ] > 0

The barrier is ∆f = O(1) but ∆F diverges with L
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Ferromagnetism
Equilibrium configurations - up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

T →∞ T = Tc T < Tc

Dynamic question : starting from equilibrium at T0 →∞ how is equili-

brium at T = Tc or T < Tc approached and attained?
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Models
Dynamics for discrete and continuous

Ising spin models

H = −
∑
〈ij〉

Jijsisj

NCOP [ ↑↓ 7→ ↑↑ ]

COP [ ↑↓ 7→ ↓↑ ]

Field theory for the order parameter

F [φ] =
∫
dDr

[
1
2
(∇φ)2 − µ

2
φ2 + g

4
φ4)
]

∂tφ(~r, t) = −δφ(~r,t)F [φ] + ξ(~r, t)

∂tφ(~r, t)=−∇2δφ(~r,t)F [φ] + ξ(~r, t)

Overdamped limit and white noise commonly accepted

In the COP case 〈ξ(~x, t)ξ(~y, t′)〉 = 2kBT∇2δ(~x− ~y)δ(t− t′)
Generalisations for vector cases. Quenched disorder can be introduced by

taking the Jij or the parameters in the field theory to be random distributed.
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Ferromagnetism
Naively expected spontaneous symmetry breaking

The magenta arrows are naively expected

but diverging times with the system size t = O(Lzd) are needed to reach this regime

and even longer times tA = O(e∆F/(kBT )) are needed to restore the symmetry
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Ferromagnetism
Snapshots after an instantaneous quench from T0 →∞ to T at t = 0

T = Tc

T < Tc

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t

At T = Tc critical dynamics At T < Tc coarsening

A certain number of interfaces or domain walls in the last snapshots.
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Ferromagnetism
Coarsening - domain growth - dynamic scaling

v[φ(~r)]

Locally the system chooses one or the other equilibrium state order

with equal probability
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Ferromagnetism
Coarsening - domain growth - dynamic scaling

In the L → ∞ limit, for finite times with respect to L, the global or ave-

raged order parameter vanishes, 〈φ〉 = 0, and the representative point

remains at the top of the barrier
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Ferromagnetism
Coarsening - domain growth - dynamic scaling

Note that in this representation there is only one independent variable, the

global φ. The remaining Ld − 1 "longitudinal" (flat) directions orthogonal

to this one are not shown
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Scales
Times and system size

Thermodynamic limit taken first

limt→∞ limL→∞

just coarsening is observed, dynamics far from equilibrium

Diverging times with system size, different regimes, depending on

how one scales t and L :

• t = O(Lzd) approach to order, spontaneous symmetry breaking

• t = O(e∆F) jump over barrier global reversals
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Scales
Times and system size

Diverging times with system size, different regimes, depending on

how one scales t and L :

• t = O(Lzd) approach to order, spontaneous symmetry breaking

• t = O(eL
D

) jump over barrier global reversals

φ (Sketch)

t
Lzd eβL

D
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Scales
Times and system size

Diverging times with system size, different regimes, depending on

how one scales t and L :

• t = O(Lzd) approach to order, spontaneous symmetry breaking

• t = O(eL
D

) jump over barrier global reversals

In this case, it is easy to beat the slow dynamics :

apply a pinning field that selects one equilibrium state

H 7→ H − h∑N
i=1 si implying F [φ] 7→ F [φ]− h

∫
dDr φ(~r)

More on flat directions in this context Kurchan & Laloux 96
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Collective phenomena
Critical relaxation in the classical O(N) model

N -component field ~φ = (φ1, . . . , φN ) in a D-dim. space ~r = (r1, . . . , rD).

Ginzburg-Landau type free-energy :

F [~φ] =

∫
dDr

{
1

2
[∇~φ(~r)]2 −

µ

2
φ2(~r) +

λ

4
φ4(~r)

}
Over-damped relaxation dynamics∫ t

t0

dt′ ΣB(t− t′) ∂
∂t′

φi(~r, t
′) = − δF [~φ]

δφi(~r, t)
+ ξi(~r, t)

〈ξi(~r, t)ξj(~r′, t′)〉 = kBTδijδ(~r − ~r′) ΣB(t− t′)

ΣB(t− t′) =
g

ΓE(1− α)
|t− t′|−α with α > 0

High-temperature initial conditions P [~φ(~r, t0)] ∝ e−φ2(~r,t0)/(2∆2)
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Critical relaxation
ε = 4−D–expansion in the classical O(N) model

Region C

Region W

1 2 3 4
0.85

0.9

0.95

1

D

Α

Solid line N = 1

Dashed line N = 4

Dotted horizontal line N →∞
sub-Ohmic bath : slower relaxation

Dc(α) = 4 Tc(α) = Tc

The dynamic exponent

in region W

zd = 2 +
N + 2

(N + 8)2

[
3 ln

4

3
− 1

2

]
ε2

in region C Sub-Ohmic bath

zd =
2

α

[
1− N + 2

4(N + 8)2
ε2
]

Bonart, LFC & Gambassi 11

Gagel, Orth & Schmalian 15
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Statements
Non-frustrated collective relaxation

Slow (non exponential) relaxation

Non-trivial collective effects and competition

From the point of view of landscapes:

importance of flat directions along hidden/longitudinal directions)

Effect of bath correlations (memory) on critical relaxation

More on effective Langevin equations with memory and coloured

noise later
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A tutorial
How does a (large) system reach equilibrium or

what does it do while it evolves out of equilibrium

• One dimensional energy landscapes

• The simplest free-energy landscape : many variables - large dimensions

• Complex free-energy landscapes

Models

Schwinger-Dyson equations & single variable equation

Pure p-spin and SK-like models

Ricci-Tersenghi’s talk for mixtures of p spins

Separation of time scales, aging, FDT, effective temperatures

Dynamics from the landscape point of view

Non-potential forces
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Models
If focus on glasses realistic vs. approximate

Particles in interaction

Pair potential V =
a

r6
ij

− b

r12
ij

Spins in interaction

RKKY V =
sin(2πkF rij)

r3
ij

sisj

Fully connected disordered models

V =
∑
i1...ip

Ji1...ipsi1 . . . sip

e.g., p = 2

They are frustrated.

The p-spin disordered models have quenched disordered interactions : Ji1...ip
drawn from a probability distribution P (Ji1...ip), typically Gaussian.

Mean-field models : defined on a complete or dilute graph.
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Langevin dynamics
System coupled to a memory-less equilibrium bath

Overdamped limit
γṡi(t)︸ ︷︷ ︸

friction

= Fi(t)︸︷︷︸
force

+ ξi(t)︸︷︷︸
white noise

Potential/conservative force Fi[{sk}] = −δV [{sk}]
δsi(t)

with, e.g.

V =
∑
i1...ip

Ji1...ipsi1 . . . sip and Ji1...ip fully symmetric w/r to il ↔ im

Non-potential force

Fi[{sk}] = −p
∑
i2...ip

Jii2...ipsi2 . . . sip

with Ji1...ip fully symmetric w/r to il ↔ im for l,m = 2, . . . , p but asymmetric

w/r to i1 ↔ im for m = 2, . . . p Rheology, neural nets, etc.
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Langevin dynamics
System coupled to a memory-less equilibrium bath

Overdamped limit
γṡi(t)︸ ︷︷ ︸

friction

= Fi(t)︸︷︷︸
force

+ ξi(t)︸︷︷︸
white noise

Initial conditions

• Rapid quench from very high temperature mimicked by random initial condi-

tions si(0), taken, e.g. from a Gaussian pdf⇒ uncorrelated with the quen-

ched randomness Ji1...ip .

• Correlated with J symm
i1...ip

, e.g. PGB(βin) for some initial inverse temp. βin

General : random potential correlation

[V ({sk})V ({s′l})] = Nf(N−1
∑N

k=1 sks
′
k) = Nf(C)
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Time-dependent order parameters

In the limit N → ∞ the evolution of the fully-connected models is completely

captured/described by the two-time correlation and linear response (thermal and

disorder averaged)

C(t, tw) ≡ 1

N

∑
i

[〈si(t)si(tw)〉] ,

χ(t, tw) ≡ 1

N

∑
i

∫ t

tw

dt′ R(t, t′) =
1

N

∑
i

∫ t

tw

dt′ [
δ〈si(t)〉h
δhi(t′)

∣∣∣∣
h=0

] .

and the correlation with the initial condition

C0(t, 0) ≡ 1

N

∑
i

[〈si(t)si(0)〉]

in cases in which this is correlated with the quenched randomness.
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Dynamic equations
Integro-differential eqs. on the correlation and linear response

In the N →∞ limit exact causal Schwinger-Dyson equations

(∂t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+2TR(tw, t) ,

(∂t − zt)R(t, tw) =

∫
dt′Σ(t, t′)R(t′, tw) + δ(t− tw) ,

where the self-energy and vertex depend on C and R. For the potential models

D(t, tw) = f ′(C(t, tw)) , Σ(t, tw) = f ′′(C(t, tw))R(t, tw)

The Lagrange multiplier zt is fixed by C(t, t) = 1. Random initial conditions.

See LFC & Kurchan 93, Ben Arous, Dembo & Guionnet 06, also Dembo’s talk
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Dynamic equations
Integro-differential eqs. on the correlation and linear response

In the N →∞ limit exact causal Schwinger-Dyson equations

(∂t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+2TR(tw, t) ,

(∂t − zt)R(t, tw) =

∫
dt′Σ(t, t′)R(t′, tw) + δ(t− tw) ,

where the self-energy and vertex depend on C and R. For the potential p-spin model

D(C) = f ′(C) = p
2C

p−1 , Σ(C,R) = D′(C)R = f ′′(C)R

The Lagrange multiplier zt is fixed by C(t, t) = 1. Random initial conditions.

see LFC & Kurchan 93, Ben Arous, Dembo & Guionnet 06, also Dembo’s talk

49



Dynamic equations
Integro-differential eqs. on the correlation and linear response

In the N →∞ limit exact causal Schwinger-Dyson equations

(∂t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+2TR(tw, t) ,

(∂t − zt)R(t, tw) =

∫
dt′Σ(t, t′)R(t′, tw) + δ(t− tw) ,

where the self-energy and vertex depend on C and R. For the non-potential models

D(C) Σ(C,R) 6= D′(C)R

explicit violation of FDT

see Crisanti & Sompolinsky 87, LFC, Kurchan, Le Doussal & Peliti 97, etc.
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Dynamic equations
Equilibrium initial conditions

In the N →∞ limit exact causal Schwinger-Dyson equations

(γ∂t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

(γ∂t − zt)C(t, tw) =

∫
dt′ [Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)]

+βin

n∑
a=1

Da(t, 0)Ca(tw, 0) + 2TR(tw, t)

(γ∂t − zt)Ca(t, 0) =
∫
dt′ Σ(t, t′)Ca(t′, 0) + βin

n∑
a=1

Db(t, 0)Qab

a = 1, . . . , n→ 0, replica method to deal with e−βinH and fix Qab

Houghton, Jain & Young 86, Franz & Parisi 95, Barrat, Burioni & Mézard 96
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Dynamic equations
Single variable self-consistent over-damped Langevin equation

γṡi(t)︸ ︷︷ ︸
friction

+

∫ t

0

dt′ Σ(t, t′)si(t
′)︸ ︷︷ ︸

self-generated friction

− z(t)si(t)︸ ︷︷ ︸
sph constraint

=

= ξi(t)︸︷︷︸
white noise

+ ηi(t)︸︷︷︸
self-consist noise

〈ηi(t)ηj(t′)〉 = δijD(t, t′)

Σ and D are self-consistently determined in terms of correlations and

linear responses of the original fields.

cfr. Mode Coupling Th (Götze et al), Dynamic Mean-Field Th (Georges & Kotliar)

see Sompolinsky 81, LFC & Kurchan 00
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Free-energy landscapes
Two representative fully-connected disordered spin models

p-spin model

α = 1

β = 1

T < Td

SK-like models

α < 1

β < 1

T < Ts = Td

Image from LFC & Kurchan 95

Rieger 91, Kurchan, Parisi & Virasoro 93, Cavagna, Giardina & Parisi 98-02,

Crisanti, Leuzzi, Montanari, Ricci-Tersenghi & Rizzo 00s
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Quench from T0 > Td to T < Td
Long tw after N →∞ : separation of time-scales

C(t, t′) = C(t, t′) + Cstat(t− t′)

Slow motion Fast motion

Image from LFC & Kurchan 95
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Quench from T0 > Td to T < Td
Long tw after N →∞ : separation of time-scales

1e+00

1e-01

1e-02
1e+051e+031e+011e-01

C

t-tw

rapid & stationary (C st )

aging &
slow
(Cag)

q ea

t
α

1e+00

1e-01
1e+051e+031e+011e-01

χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Sketch of the separation of time-scales in the out of equilibrium relaxation

The actual form of the aging relaxation is different in the two families of models

Plugging such an Ansatz in the coupled integro-diff eqs. allows one to solve them
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Quench from T0 > Td to T < Td
Long tw after N →∞ : separation of time-scales

Fast C(t, tw) ≈ fst
(
Lst(t)
Lst(tw)

)
with Lst(t) = et/τ

1e-02

1e-01

1e+00

1e+01 1e+03 1e+05 1e+07

C

t-tw

q

tw1
tw2
tw3

Slow

Cag(t, tw) ≈ fc

(
L(t)
L(tw)

)
∂tCag(t, tw)� Cag(t, tw)

log-log scale !

Eqs. for the slow relaxation Cag ≡ C < q :

Approx. asymptotic time-reparametization invariance t→ h(t)
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(Free-)energy density
Pure p ≥ 3 spin-models

At T < Td : limt→∞ e(t) = eth > eeq LFC & Kurchan 93

The threshold level is flat (Hessian analysis).

Confirmation from the dynamic TAP approach in Biroli 00
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View from above the landscape
Level determined by asymptotic (free-)energy density

Sea

Island

Land

Lake

Above threshold At threshold Below threshold

The system is like a ship :

freely navigating the sea above the threshold T > Td

following “narrow” channels at the threshold T < Td

confined to lakes below the threshold Tin < Td and T < Tspinodal

Figs. from LFC Les Houches 02
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Fluctuation-dissipation
Pure p ≥ 3 spin-models

A quench from T0 →∞ to T < Td

Parametric construction

tw fixed

tw1 < tw2 < tw3

t : tw →∞ or

τ ≡ t− tw : 0→∞
used as a parameter

Note that Teff > T

LFC & Kurchan 93 Effective temperature interpretation LFC, Kurchan & Peliti 97
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Fluctuation-dissipation
Pure p ≥ 3 spin-models

A quench from T0 →∞ to T < Td

Parametric construction

tw fixed

tw1 < tw2 < tw3

t : tw →∞ or

τ ≡ t− tw : 0→∞
used as a parameter

Note that Teff > T

Physical picture : each scale evolves with its own "clock" L(t) and its

own temperature (T , the temperature of the bath, or Teff in this case)
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Effective temperature
Pure p spin coupled to multiple baths

χ(t, tw)

C(t, tw)

The two baths induce their scales and temperatures and the last one is

self-consistently determined by the system itself.
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IsTeff related to an entropy?
Yes, configurational entropy

Σ(f) = kB lnN (f) ⇒ 1

kBTeff

=
∂Σ(f)

∂f

∣∣∣∣
fth

NB fmax 6= fth⇒ failure of ‘maximum entropy principles’.

Edwards & Oakshott 89, Monasson 95, Nieuwenhuizen 98

Sketchy view : many amorphous solid configurations (Σ⇔ Teff ) and vibrations around

them (f ⇔ T ).
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Following TAP states
Long tw after N →∞ : trapping

C0(t, 0)→ c 6= 0

Barrat, Burioni & Mézard 96 LFC, Lozano & Nessi 17

Langevin dynamics Newton dynamics isolated system
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Structural glasses

"configuration space"

? ?

1/T

1/T

1/T

1/T

d

g

cage

very 
warm
liquid

warm
liquid

viscous
liquid

glass

The ruggedness of the free-energy landscape increases upon decreasing tem-

perature until a configurational entropy crisis arises (at Kauzmann TK ).

Numerical simulations : one cannot access f but one can explore e, potential

energy landscape. reviews Wales 03, Heuer 08

64



Statements
Pure p-spin model

The pure p spin model

Relaxation dynamics after a quench

separation of time-scales, stationary & aging

FDT and its violation

Partial thermal equilibration interpretation

Approach to the threshold flat level where marginal states are,

O(1) above the equilibrium energy density

Dynamic TAP equations

Following TAP states

No chaos in temperature, smooth
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Free-energy landscapes
Two representative fully-connected disordered spin models

p-spin model

α = 1

β = 1

T < Td

SK-like models

α < 1

β < 1

T < Ts = Td

Image from LFC & Kurchan 95
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Fluctuation-dissipation
Proposal

For non-equilibrium systems, relaxing slowly towards a situation such that one-

time quantities [e.g. the energy-density E(t)] approach a finite value

lim
tw→∞

C(t,tw)=C

χ(t, tw) = fχ (C)

Also or weakly forced non-equilibrium systems in the limit of small work

The effective temperature is − 1

Teff(C)
≡ ∂χ(C)

∂C

LFC & Kurchan 94, Franz & Mézard 94
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Time ultrametricity
Proposal

For non-equilibrium systems, relaxing slowly towards a situation such that one-

time quantities [e.g. the energy-density E(t)] approach a finite value, any

three correlations

C(t1, t2), C(t2, t3), C(t1, t3)

for t3 < t2, < t1 behave such that

C(t1, t3) = min[C(t1, t2), C(t2, t3)]

Ultrametricity in time.

Also or weakly forced non-equilibrium systems in the limit of small work

LFC & Kurchan 94, Franz & Mézard 94
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Statements
SK-like models

Relaxation dynamics after a quench

separation of time-scales, stationary & time-ultrametricity

FDT and its violation x(C) = T
Teff(C) = f ′′′(C)

f ′′(C)

√
f ′′(q)
f ′′(C)

An increasing x(C) implies η(C) ≡ f ′′′(C)

(f ′′(C))3/2 < η(q)

Partial thermal equilibration interpretation

Approach to the equilibrium level (where marginal states are)

x(C) = T
Teff(C) = xParisi(C)⇔ P (C) = PParisi(C)

LFC & Kurchan 94, Baldassarri et al. 95, Franz, Mézard, Parisi & Peliti 99
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Beyond N →∞
The random orthogonal model

from algebraic at t� N to logarithmic at t(N) energy relaxation
from an approach to the threshold to activation below it

Crisanti & Ritort 00

Can one see the TAP states?
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Non-potential force
Driven p = 3 spherical model, N →∞

Waiting-time dependence (α fixed) and α dependence in steady state

Jii2i3...ip = J symm
ii2i3...ip

+ αJasymm
ii2i3...ip

⇒ Σ 6= D′R

LFC, Kurchan, Le Doussal & Peliti 97
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Non-potential force
Driven p = 3 Ising spin model with N →∞

χ(t, tw)

C(t, tw)

Teff admits the good limit for α→ 1

More on this from a rheological viewpoint Barrat, Berthier, Kurchan 00
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Non-potential force
Trapping in the driven p = 3 spherical model, N = 50

Time dependent energy density

Jii2i3...ip = J symm
ii2i3...ip

+ αJasymm
ii2i3...ip

⇒ Σ 6= D′R

LFC, Kurchan, Le Doussal & Peliti 97
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Time-dependent force
Driven p = 3 Ising spin model with N = 50

h = 0 h(ω, t) = h cos(ωt)

Time dependent magnetisation and energy density
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Time-dependent force
Driven p = 3 Ising spin model with N = 50

h(ω, t) = h cos(ωt) with h = 2, ω = 0.01

Stroboscopic-time dependent magnetisation and energy density
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Simulations
Ising fully-connected p spin models with N = 30

Symmetric couplings Asymmetric couplings

-0.65

-0.64

-0.63

-0.62

-0.61

-0.6

-0.59

-0.58

-0.57

 0  500  1000  1500  2000  2500  3000  3500  4000

e(
t)

MCS

N=30, α=1.0, T=0.1

-0.8

-0.6

-0.4

-0.2

 0

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

e(
t)

MCS

N=30, α=0.5, T=0.1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3

P t
w
(e

)

e

Trap energy distributions

N=64,T=0.1,α=1.0,tw=7e5
N=64,T=0.1,α=0.7,tw=7e5
N=64,T=0.1,α=0.5,tw=7e5

Stariolo & LFC in progress
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Statements
Finite N and non-potential forces

Evidence for trapping below threshold

Possibility to test trapping ideas

Better characterisation of trapping times, also barriers?

Chaotic periods, what is the system actually doing?

Links to math-phys results on dynamics Ben Arous et al
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After 2000
Lines of research, out of equil. dynamics of these models

Rheology Barrat, Berthier & Kurchan 00-04

Fluctuations

Castillo, Chamon, Charbonneau, Corberi, LFC, Kennett, Reichman, Sellitto &

Yoshino 02-12
Glassy aspects of active matter

Berthier, Kurchan, Dasgupta, Gov, Szamel, etc. 13-19

Quantum dissipative

Aron, Baldwin, LFC, Biroli, Giamarchi, Grempel, Laumann, Le Doussal, Lozano,

Schehr, Schiró, Busiello, Scardicchio, Saburova, Sushkova, etc. 99 -19

Quenches in isolation : integrability vs. thermalisation

LFC, Lozano, Nessi, Picco, Tartaglia 17-18
Ecology, neural nets, etc.

Agoritsas, Biroli, Burin, Fyodorov, Zamponi, Zdebodorová’s talk, Fisher’s talk
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x =
T

Teff

=
1− q
q

[
qf ′′(q)− f ′(q)

f ′(q)

]
for 1RSB-like

x(C) =
T

Teff(C)
=
q

4

f ′′′(C)

f ′′(C)

√
f ′′(q)

f ′′(C)
for full RSB

η(C) ≡ f ′′′(C)

[f ′′(C)]3/2
< η(q) to be full RSB

79


